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Abstract
Motivation: Recent methods for selective sweep detection cast the problem as a classification task and use summary statistics as features to
capture region characteristics that are indicative of a selective sweep, thereby being sensitive to confounding factors. Furthermore, they are not
designed to perform whole-genome scans or to estimate the extent of the genomic region that was affected by positive selection; both are re-
quired for identifying candidate genes and the time and strength of selection.

Results: We present ASDEC (https://github.com/pephco/ASDEC), a neural-network-based framework that can scan whole genomes for selec-
tive sweeps. ASDEC achieves similar classification performance to other convolutional neural network-based classifiers that rely on summary
statistics, but it is trained 10� faster and classifies genomic regions 5� faster by inferring region characteristics from the raw sequence data di-
rectly. Deploying ASDEC for genomic scans achieved up to 15.2� higher sensitivity, 19.4� higher success rates, and 4� higher detection accu-
racy than state-of-the-art methods. We used ASDEC to scan human chromosome 1 of the Yoruba population (1000Genomes project), identifying
nine known candidate genes.

1 Introduction

Positive selection plays a critical role in shaping the evolution
of species. The identification of genes affected by positive se-
lection can shed light on the forces that drive adaptation
(Ohta 1996) and has important practical applications, such as
identifying drug-resistant mutations in pathogens (De Groot
and Bontrop 2013) and designing more effective drug treat-
ments (Alam et al. 2011). In the presence of positive selection,
an allele is favored by natural selection and its prevalence
increases in a population until it is fixed. Due to genetic hitch-
hiking (Smith and Haigh 1974), the frequency of nearby neu-
tral alleles linked to the selected locus also increases, creating
a region with reduced variation. Because genetic diversity in
the neighborhood of the favored allele is swept away by selec-
tion, this process is commonly referred to as a “selective
sweep”.

Detecting traces of positive selection that has acted in the
past in a population relies on finding distinct signatures left in
the genomes by a selective sweep. These genetic signatures,
according to the classic selective sweep model described by
Smith and Haigh (1974), are (i) a shift in the site frequency
spectrum (SFS) toward low- and high-frequency derived var-
iants (Braverman et al. 1995; Fay and Wu 2000), (ii) a distinct
pattern of linkage disequilibrium (LD) where high LD is
found on each side of the selection target and low LD is found
between loci that are located on different sides of the selection
target (Kim and Nielsen 2004), and (iii) reduced genetic diver-
sity in the region surrounding the selected locus. Several meth-
ods can be used for selective sweep detection, ranging from
compute-inexpensive summary statistics, such as Tajima’s D
(Tajima 1989) and Fay and Wu’s H (Fay and Wu 2000), to
more advanced, likelihood-based approaches, such as

SweepFinder2 (DeGiorgio et al. 2016) and SweeD (Pavlidis
et al. 2013). They serve as neutrality tests because their distri-
bution in the presence of selection differs from the expected
distribution under neutrality.

Early neutrality tests were designed to only detect one of
the aforementioned selective sweep signatures. For instance,
Fay and Wu’s H (Fay and Wu 2000) detects regions with a
large number of high-frequency derived variants using out-
group information to distinguish between low- and high-
frequency derived variants. SweepFinder2 (DeGiorgio et al.
2016) implements a composite likelihood ratio test (Nielsen
et al. 2005) that detects the deviation of the SFS in a selective
sweep region from the expected SFS under the standard neu-
tral model (Kimura 1971). Ideally, each neutrality test would
only be sensitive to the sweep signature it was designed to de-
tect. In practice, however, neutrality tests are frequently con-
founded by various factors such as demographic changes in
population size or migration between adjacent populations
(Weigand and Leese 2018), which generate spurious data pat-
terns that resemble those expected to have been introduced in
the genome by a selective sweep. Rapid population growth
following a severe population bottleneck (sharp reduction in
size), for instance, reduces genetic variation and the occur-
rence of intermediate-frequency alleles while increasing low-
frequency alleles, thereby resembling two of the classic sweep
signatures. Confounding factors represent a major challenge
in studies that aim to provide evidence of positive selection
and detect the selection target.

More recently, studies started applying a variety of alterna-
tive techniques to yield more robust analyses in the presence
of confounding factors. Pavlidis et al. (2013) and Vasilarou
et al. (2021) combined the results of several neutrality tests
under the rationale that “the more results agreeing on an
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outcome, the more likely the outcome” to identify common-
outlier, selective sweep regions in the first human chromo-
some and the SARS-CoV-2 virus genome, respectively.
Alachiotis and Pavlidis (2018) proposed a composite evalua-
tion method that relies on single-nucleotide polymorphism
(SNP) vectors (polymorphic columns of a multiple sequence
alignment) and considers all three classic selective sweep sig-
natures in the evaluation of genomic regions. Pybus et al.
(2015) and Schrider and Kern (2016) employed supervised
machine learning using a predefined set of summary statistics
as input variables to learn to identify data patterns that can be
used to distinguish between neutrality and selection. The
aforementioned techniques attempt to exploit the aggregate
power of multiple tests for pattern recognition with the aim to
increase sensitivity when searching for selective sweeps, while
remaining robust to confounding factors. Yet, these
approaches can be sub-optimal because the independently
obtained results of different neutrality tests may be correlated,
to a certain extent, if they depend on the same underlying coa-
lescent tree (Kim and Nielsen 2004).

The most recent approaches in selective sweep detection
perform pattern recognition using convolutional neural net-
works (CNNs) (LeCun et al. 1998; Krizhevsky et al. 2012), a
class of deep neural networks that have proven highly effec-
tive and are already widely deployed in various fields, such as
image, video, speech, and audio recognition (LeCun et al.
2015). CNNs process labeled multidimensional data arrays,
e.g. 1D arrays for sequences or 2D arrays for images, to ex-
tract and learn to identify meaningful features (training).
Thereafter, the learned knowledge of a trained CNN can be
applied to produce quantitative predictions for data arrays
that are previously unknown to the CNN (inference). In pop-
ulation genomics, CNN-based frameworks leverage informa-
tion from summary statistics (1D arrays) or from aligned
sequence data represented as images (2D arrays). Kern and
Schrider (2018) presented diploS/HIC, a CNN-based method
for classifying genomic windows into neutral regions, hard
sweeps, or soft sweeps using a multidimensional vector of
summary statistics (represented as an image) calculated from
the window to be classified. Chan et al. (2018) developed a
method for processing raw population genomic data to accu-
rately localize recombination hotspots, i.e. genomic regions
with increased recombination rate (Petes 2001). Similarly,
Torada et al. (2019) developed a classification pipeline to de-
tect and quantify natural selection from raw population geno-
mic data. An exploratory study with a broader scope by
Flagel et al. (2019) assessed the effectiveness of CNNs for var-
ious problems in population genomics: the detection of intro-
gression (gene flow between species), the estimation of
recombination rates, the detection and categorization of posi-
tive selection, and the inference of demographic information
about a species’ population size history. The authors con-
cluded that CNNs frequently match or outperform current
methods in terms of accuracy.

The aforementioned studies that deploy CNNs for positive
selection (Kern and Schrider 2018; Flagel et al. 2019; Torada
et al. 2019) cast the detection problem as a classification task
for a limited number of genomic regions, i.e. they do not thor-
oughly scan the entire dataset to accurately localize the selec-
tion target or estimate the extent of the genomic segment that
has been affected by positive selection. Although it is possible
to use these approaches to scan whole genomes, additional
programming effort is required because they are not designed

to perform whole-genome scans; diploS/HIC, for instance,
evaluates 11 genomic windows and does not offer users the
flexibility to modify this number. Furthermore, the aforemen-
tioned studies do not facilitate the discovery and deployment
of new CNN designs that can potentially yield more accurate
scans for selective sweeps given the data at hand. Efforts to fa-
cilitate the development of neural networks for population ge-
netic data and the implementation of complex simulation
models have only been reported very recently, but the avail-
ability of such frameworks is currently very limited (Adrion
et al. 2020; Sanchez et al. 2023).

To this end, we developed a bioinformatics pipeline with a
CNN at its core, dubbed ASDEC (Accurate Sweep Detection
Enabled by a CNN), that can be used to build custom CNN
models for genomic-region classification and selective sweep
detection, and easily deploy them to scan whole genomes for
traces of positive selection. Using simulations for a wide range
of non-equilibrium evolutionary models, we performed a
hyper-parameter optimization search to find a custom CNN
architecture that is suitable for population genetic data. We
used ASDEC for region classification, observing comparable
classification accuracy with another CNN-based framework
designed for region classification [diploS/HIC (Kern and
Schrider 2018)], but an order of magnitude shorter processing
times; the performance advantage of ASDEC comes from the
direct use of raw sequence data instead of relying on summary
statistics (diploS/HIC calculates 12 summary statistics).
ASDEC is able to perform genomic scans for hard selective
sweeps more accurately and with higher sensitivity than state-
of-the-art selective sweep detection methods. Examining con-
founding factors that present major challenges to existing
tools (Alachiotis et al. 2012; Pavlidis et al. 2013; DeGiorgio
et al. 2016; Alachiotis and Pavlidis 2018), we observed that
ASDEC is more robust to population bottlenecks, migration,
and recombination hotspots. To showcase ASDEC, we
scanned the first human chromosome of the Yoruba popula-
tion [1000Genomes dataset (Sudmant et al. 2015)] and identi-
fied a number of candidate genes (top 0.5%) for which we
report what has been discovered in the literature.

2 Methods
2.1 Framework overview

ASDEC is a processing pipeline implemented in Python. It
uses Keras (Chollet et al. 2015), a high-level API to build and
explore machine learning models, and the TensorFlow 2
(Abadi et al. 2016) library as the back end for training and in-
ference of deep neural networks. ASDEC employs a CNN
that consists of three combined layers (a convolutional layer
and a pooling layer paired together) with the same filter size
(32) and a dense layer of size 32. This CNN was developed
through a multi-step hyper-parameter optimization process
that involved a comprehensive exploration study that assessed
different network architecture design choices, such as the
number of combined layers (2, 3, 4, 5), the filter size (8, 16,
32, 64) and form (increasing/decreasing), and the number
(1, 2) and size (16, 32, 64) of dense layers. Deploying a pre-
trained machine learning model, ASDEC can scan whole
genomes to provide estimates of the physical location and the
extent of selective sweeps. Furthermore, ASDEC calculates
several evaluation metrics that, in combination with the fast
model-experimentation capabilities of Keras and TensorFlow
2, facilitate the search for new neural models for selective
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sweep detection and other population genomics problems
where image classification techniques on sequence data can
be exploited. A high-level overview of the framework is pro-
vided in Fig. 1.

2.2 Input data

Input sequence data in ms (Hudson 2002), FASTA, or VCF
(Danecek et al. 2011) format are parsed, encoded into two
bits per state, and stored in memory. ASDEC implements the
infinite-sites model (Kimura 1969) of molecular evolution
and assigns “00” to the ancestral state and “01” to the de-
rived state, while all other states (ambiguous characters and
alignment gaps) are represented by “10”. Other encoding
schemes, such as one-hot-encoding, were not considered due
to higher processing/memory requirements and limitations to
scale with an increasing number of possible states (for in-
stance, representing DNA and ambiguous characters would
require 16 bits per state). A sliding-window algorithm with a
width of W SNPs and a step of S SNPs is used to convert se-
quence data to a set of W �N grayscale images, where N is
the sample size. Windows are logically placed on SNP data,
thereby allowing increased granularity in SNP-dense regions
while avoiding redundant operations in SNP-sparse ones. To
convert a SNP window to a grayscale image, every 2-bit state
(integer) is multiplied by a constant factor (127) and the result
is used to form a grayscale color code. This leads to black pix-
els corresponding to the ancestral state (per image column),
gray pixels corresponding to the derived state, and white pix-
els corresponding to all other states. Given n sequences with
T SNPs, the sliding-window algorithm will create L ¼ T�W

S
windows, with consecutive windows overlapping by W � S
columns if S < W, or no overlap otherwise. Both the window
width and the step can be determined by the user. The default
width value is W¼ 50 (empirically determined), and the win-
dow step is S¼1 to create the maximum number of windows/
images and achieve the maximum resolution.

Analyses of genomes that contain many missing data, e.g.
sequences that have not been accurately or completely assem-
bled/annotated, can be affected by the encoding scheme.
In this case, additional investigation is needed to assess the

degree to which ASDEC results may be inaccurate/misleading.
A different encoding scheme to accommodate more states,
e.g. differentiating alignment gaps from missing data, only
requires to adapt the assignment of color codes to the encoded
states accordingly. This modification will result in a more di-
verse color palette in the resulting images while no further
changes are necessary in the rest of the ASDEC framework.

2.3 Image classification

In the classification stage, ASDEC can be used in one of two
modes: it can either train a network architecture to generate a
model, henceforth referred to as “model generation”, or it
can deploy a trained CNN architecture for inference, hence-
forth referred to as “CNN deployment”. Notice that Figure 1
illustrates ASDEC in “CNN deployment” mode. The user
friendly Keras interface is used to specify different network
architectures that ASDEC will train by generating samples un-
der various neutral/selection evolutionary models according
to the standard coalescent theory (Kingman 1982; Hudson
et al. 1990; Nordborg 2004). For this purpose, the framework
includes an extensive list of ms (Hudson 2002), mssel (kindly
provided by R. R. Hudson), msHOT (Hellenthal and
Stephens 2007), and mbs (Teshima and Innan 2009) com-
mands for various evolutionary model assumptions that have
been previously used for the evaluation of selective sweep de-
tection methods (Alachiotis and Pavlidis 2018). To perform
simulations for model generation, one can either opt to em-
ploy a subset of the existing commands, or extend the com-
mand list with additional evolutionary model assumptions.
Table 1 provides a summary of the evolutionary models that
are included in ASDEC and can be used (referenced by dataset
number) in “model generation” mode. Irrespective of the
mode of operation, the output of the classification stage is a
c� L numeric matrix, R, of posterior class probabilities,
where c is the number of classes and L is the number of input
data instances to the CNN. To detect positive selection in this
study, we have c¼ 2 to distinguish between a classic selective
sweep (“selection” class) and a neutral genomic region
(“neutral” class).

Figure 1. Overview of ASDEC for CNN-based selective sweep detection using a pre-trained CNN model. A multiple sequence alignment or SNP data are

converted to grayscale images (Input Data) that are classified by a CNN (Image Classification) by assigning each image a probability of belonging to the

“Neutral” class and a probability of belonging to the “Selection” class. The array of “Selection”-class probabilities is used in a post-processing step to

generate a “Selection” profile (Profile Generation). (a) Evolutionary models included in ASDEC that contain a selective sweep and a population bottleneck

with varying severity and duration. (b) Evolutionary models included in ASDEC that simulate a sweep under migration (61–70, increasing population join

time) or recombination (92–96, increasing recombination intensity).
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2.4 Population profile

After classification, a post-processing step is applied on the
probability matrix R to create an ASDEC population profile
per class. A population profile is a 1D array of probabilities
that correspond to different positions along the genome, with
each entry being the average probability over a user-defined
number of SNP windows that form a continuous region
around the corresponding position in the genome. To gener-
ate a population profile, the user can choose among three av-
eraging configurations: (i) a sliding window applied on the
probability array, which allows for increased granularity in
SNP-dense regions, (ii) a sliding window applied on genomic
positions, or (iii) an evaluation of a series of evenly spaced ge-
nomic positions, which we henceforth refer to as grid-based
evaluation. The latter facilitates the detection of common out-
liers between ASDEC and methods that produce grid-based
score distributions along the genome [e.g. SweepFinder2
(DeGiorgio et al. 2016), SweeD (Pavlidis et al. 2013), and
OmegaPlus (Alachiotis et al. 2012)].

3 Results

To evaluate ASDEC, we used three metrics: (i) sensitivity (true
positive rate), (ii) detection accuracy (measured as the average
distance between the reported sweep location and the true tar-
get), and (iii) the success rate (the proportion of sweeps
detected within a given maximum distance from the true
sweep location). A detailed description of the metrics can be
found in Supplementary Section 1.

3.1 Classification in the presence of confounding

factors

We initially evaluated the classification performance of
ASDEC by comparing with the machine learning approach
SURFDAWave (Mughal et al. 2020) and the CNN-based tool
diploS/HIC (Kern and Schrider 2018) that are designed for
classifying selective sweeps. We calculated F1-scores to mea-
sure classification performance for every evolutionary model
included in ASDEC (Table 1) that contains a selective sweep
and a confounding factor (population bottleneck, migration,

recombination hotspot). The F1-score assumes values from
0.0 to 1.0, with 1.0 indicating perfect precision and recall,
and 0.0 corresponding to either the precision or the recall be-
ing zero. For each of the 101 evolutionary models described
in Table 1, we generated an ASDEC model using 1500 neutral
simulations and 1500 simulations with a selective sweep at
the center of the simulated region, as training data. We
trained the model for six epochs and used the
ModelCheckpoint callback of Keras to keep the model with
the highest validation accuracy. The sample size was 20
sequences. For testing, we generated anew 100 neutral simula-
tions and 100 simulations with a selective sweep at the center
of the simulated region, and used the central region of each
population as test data. To train diploS/HIC and ASDEC, we
used 50-SNP segments from the center of the simulated
regions, whereas for SURFDAWave we used segments with
650 SNPs because it cannot process populations with less
than 645 SNPs. This is due to the fact that SURFDAWave
needs 128 observed windows for the wavelet transformation,
which requires a number of observations that is a power of
two. It computes 9 summary statistics in 128 genomic win-
dows across the region of interest, where each window con-
sists of 10 SNPs and overlaps with its neighbors for 5 SNPs,
thus requiring at least 645 SNPs. All three frameworks were
trained with data that contained confounding factors, and
tested using simulations with a correctly specified evolution-
ary model, i.e. the training and testing simulations per test
had the same evolutionary model (no model misspecification).
Supplementary Section 2 presents a model-misspecification
analysis.

Figure 2 shows F1-scores per classification method. All
three ML/AI methods exhibit similar performance, with some
deviations observed for some of the datasets, mainly between
SURFDAWave and the other two methods. In the presence of
population bottlenecks (Fig. 2a), SURFDAWave achieves
slightly better performance when all tools already achieve
high F1 scores (over 0.95), but is more sensitive to more
severe bottlenecks. For a mild bottleneck (dataset 1), for
instance, SURFDAWave, diploS/HIC, and ASDEC achieve
F1-scores of 0.995, 0.936, and 0.955, respectively, whereas

Table 1. The 101 evolutionary models included in ASDEC.

Ref. no. Sweep type Confounding factor Software Parameters and range [v/f]

1–60 Hard, complete Bottleneck ms, mssel Severity (�eN): 0.005–0.5 [v]
Durationa (�eN): 0.0004–0.002 [v]
Beginninga (�eN): 0.004–0.1 [v]
Selection coefficient (�s): 0.02 [f]
Sweep start timea (�t): 0.016 [f]

61–70 Hard, complete Migration ms, mssel Population joina (�ej): 0.003–3 [v]
Selection coefficient (�s): 0.02 [f]
Sweep start timea (�t): 0.005[f]

71–91 No sweep Recombination hotspot msHOT Hotspot region size (v): 5–10 kb [v]
Hotspot intensity (�v): 2-100 [v]
Mutation rateb (�t): 2,000 [v]
Recombination rateb (�r): 2000 [v]

92–101 Hard, complete Recombination hotspot msHOT, mbs Hotspot region size (�v): 5 kb [v]
Hotspot intensity (�v): 2-20 [v]
Selection coefficient (�s): 0.02 [f]
Sweep start timea (�t): 0.005 [f]
Mutation rateb (�t): 2,000 [v]
Recombination rateb (�r): 2,000 [v]

a Bottleneck duration/beginning, sweep start time, and population join time in 4N0 generations.
b Population mutation/recombination rates for the region.

v: varying parameter; f: fixed parameter.
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for a more severe bottleneck (dataset 47) diploS/HIC and
ASDEC have F1 scores of 0.898 and 0.897, respectively,
while SURFDAWave has an F1 score of 0.763. Classification
performance deteriorates in a similar way for all methods un-
der migration (Fig. 2b), with F1-scores dropping with an in-
creasing population join time parameter (datasets 61–70).
When a selective sweep occurs in a recombination region
(datasets 92–96), ASDEC appears to be more robust than
diploS/HIC, but all three methods are confused to a certain
extent, as shown by the F1-scores that assume values as low
as 0.619 for ASDEC (dataset 93), 0.5 for diploS/HIC (dataset
93), and 0.85 for SURFDAWave (dataset 92). SURFDAWave
appears to be less sensitive to recombination hotspots than
the other methods. A possible explanation for this is that
SURFDAWave uses larger SNP windows and the confound-
ing effect of recombination hotspots within such large win-
dows is limited. Datasets 85–91 and 97–101 are not included
in this analysis because they do not simulate a selective sweep.

Both diploS/HIC and ASDEC employ CNNs for classifica-
tion. The former relies on the underlying selective sweep the-
ory (Smith and Haigh 1974) by computing summary statistics
to capture the evolutionary characteristics of the genomic
regions that can be used for selective sweep classification,
while the latter solely uses the raw sequence data and only
relies on the neural network’s ability to detect and use distinc-
tive features in the data. The fact that both approaches exhibit
similar performance suggests that CNNs can potentially be
used in population genetics problems with limited underlying
theoretical advances. In addition, processing raw sequence
data directly allows ASDEC to classify genomic regions faster
than diploS/HIC since the computational cost to prepare the
input data for the CNN is greatly reduced by omitting the cal-
culation of summary statistics. Table 2 quantifies this im-
provement in training and inference processing times for two
different evolutionary models, a mild bottleneck (dataset 1)
and a more severe one (dataset 24). We used a personal off-
the-shelf laptop with an Intel i7-10750H 6-core CPU at
2.6 GHz and 16 GB of main memory as a test platform (one
CPU core was used). ASDEC is trained 10� faster than
diploS/HIC for both datasets. Although the CNN training
times are similar for both methods, computing summary sta-
tistics to train diploS/HIC is 100� slower than converting the
raw sequence data to images to train ASDEC. SURFDAWave,
also trained with the same data, required approximately half
the time than diploS/HIC and over 5� longer than ASDEC
for the mild bottleneck (dataset 1). For the more challenging
severe bottleneck (dataset 24), however, SURFDAWave took

considerably longer to train, becoming 3.5� slower than
diploS/HIC and 34� slower than ASDEC. The inference times
of all three methods do not vary noticeably with the evolu-
tionary model. ASDEC is 5.4� faster than diploS/HIC and
3.1� slower than SURFDAWave for both datasets.

3.2 Detection in the presence of population

bottlenecks

We evaluated the detection performance of ASDEC by com-
paring with the selective sweep detection tools SweeD
(Pavlidis et al. 2013), SweepFinder2 (DeGiorgio et al. 2016),
OmegaPlus (Alachiotis et al. 2012), and RAiSD (Alachiotis
and Pavlidis 2018). For these comparisons, we used a subset
of the evolutionary models included in ASDEC (due to the
prohibitively long execution times of the likelihood-based
tools SweepFinder2 and SweeD). For each tool, we measured
the true positive rate (TPR), the success rate, and detection ac-
curacy per evolutionary model. Each dataset comprised 100
neutral sets of SNPs and 100 sets of SNPs with a selective
sweep and/or a confounding factor. The sample size was 20
sequences. ASDEC was trained for 6 epochs and 420,000
images. The other tools do not use simulated data for train-
ing; they are not ML/AI methods and, therefore, there is no
training involved. Because of this fundamental difference in
the underlying methods, these tools might have an advantage
over ASDEC, especially when there is uncertainty about the
correctness of the demographic model (with respect to the tar-
get data).

We used ms (Hudson 2002) and mssel (kindly provided by
R. R. Hudson) to simulate 10 bottleneck models. Figure 3
provides the varying parameters per model (severity, begin
time, duration). Each dataset comprised neutral sets of SNPs
and sets of SNPs with demography and a selective sweep at
the center of the simulated region. The relative population
size during the bottleneck varied between 0.5 and 0.005 in
comparison with the present-day population size, and the bot-
tleneck duration ranged from 80 to 400 generations. The be-
ginning of the bottleneck varied between 800 and 20 000
generations (backward in time), while the sweep start time
was fixed at 3200 generations, including simulations where
the sweep happened before, during, or after the bottleneck.
Coalescent time units were converted to generations based on
the assumption that the present-day population size is 50 000
diploid genomes.

Figure 3a shows a comparison of TPR for FPR¼5%. As
can be observed in the figure, all tools achieve similarly high
TPR in the case of recent and mild bottlenecks (datasets 1, 9,

(a) (b)

Figure 2. Classification performance evaluation of SURFDAWave, diploS/HIC, and ASDEC based on F1-scores.
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12, and 45). More severe bottlenecks, however, present a
challenge for all tools, with ASDEC exhibiting considerably
higher sensitivity than the previous methods in distinguishing
between neutrality and a selective sweep. For dataset 48, for
instance, which simulates a severe bottleneck (sever-
ity¼ 0.005), the SFS-based tools SweepFinder2 and SweeD
achieved TPR¼ 2.40%, whereas ASDEC achieved
TPR¼ 15.0% (6.25� higher). The greatest TPR improvement
over the SFS-based tools was observed for dataset 57, with
SweepFinder2 and SweeD achieving TPR¼ 3.60%, while
ASDEC achieved TPR¼ 55.0% (15.2� higher). For the LD-
based OmegaPlus and the multi-signature-based RAiSD, data-
set 60 was the most challenging evolutionary scenario, with
TPR values as low as 5.10% and 5.80%, respectively. For
this dataset, ASDEC achieved TPR¼24.0% (4.7� higher
than OmegaPlus and 4.1� higher than RAiSD). Overall, it
was observed that ASDEC exhibits similarly high TPR values
with the current state-of-the-art tools for mild bottlenecks,
and considerably outperforms them when more severe bottle-
necks are present.

Figure 3b and C provide an evaluation of success rates and
detection accuracy, respectively. Similarly to our previous
observations based on TPR, ASDEC outperforms the SFS-
based tools for all datasets, achieving considerably higher suc-
cess rates (up to 19.4�, observed for dataset 57) while

locating the selective sweep closer to its true location (up to
4� higher accuracy, also observed for dataset 57). ASDEC
achieves comparable success rates with OmegaPlus and
RAiSD, and higher detection accuracy for the most challeng-
ing bottlenecks (datasets 45, 48, 57, and 60). For dataset 45,
OmegaPlus and RAiSD achieved their lowest success rates,
5.90% and 10.20%, respectively, while ASDEC achieved
12.0% (2� and 1.18� higher than OmegaPlus and RAiSD,
respectively). The largest distance from the true selection tar-
get (lowest accuracy) of OmegaPlus and RAiSD was 18.82%
and 15.85% of the genome length, observed for dataset 48.
For this dataset, ASDEC located the selective sweep at dis-
tance 12.46% from the selection target, on average (33.8%
and 21.4% improvement over OmegaPlus and RAiSD,
respectively).

3.3 Sweep detection in models with migration

We used ms (Hudson 2002) and mssel to simulate a
continent-island model for the migration models. Figure 4
provides a summary of the varying parameter per migration
model (population join time). The continent has an effective
population size that is 20� larger than the effective popula-
tion size of the island, and acts as a ghost population, i.e. only
sequences from the island are available. The migration rate
Mic ¼ 4Ncmic, where Nc is the continent’s effective

Table 2. Breakdown of training and inference times (in seconds) of SURFDAWave, diploS/HIC, and ASDEC for a mild bottleneck model (Dataset 1, upper

table) and a severe bottleneck model (Dataset 24, lower table).

ASDEC Training Inference

Dataset Summary statistics Image

generation

CNN

training

Execution

time

Summary statistics Image

generation

CNN

inference

Execution

time

Ref. Num.: 1 Neutral

class

Sweep

class

(per class) Neutral

class

Sweep

class

(per class)

SURFDAWave 13.5 12.7 946.1 972.3 0.9 0.8 5.1 6.8
diploS/HIC 864.9 799.2 104.8 1768.9 58.1 54.6 1.2 113.9
ASDEC 15.5 148.2 179.2 1.1 19.1 21.3

ASDEC Training Inference

Dataset Summary statistics Image

generation

CNN

training

Execution

time

Summary statistics Image

generation

CNN

inference

Execution

time

Ref. Num.: 24 Neutral

class

Sweep

class

(per class) Neutral

class

Sweep

class

(per class)

SURFDAWave 13.6 12.9 6109.9 6136.4 0.9 0.8 4.9 6.6
diploS/HIC 859.9 830.8 96.5 1787.2 59.3 56.5 1.2 117.0
ASDEC 9.4 157.2 176.0 1.1 19.3 21.5

(a) (b) (c)

Figure 3. Evaluation of ASDEC based on bottleneck models with varying severity, begin time, and duration in terms of TPR for FPR¼ 5% (a), success rate

(b), and detection accuracy (c). All success rates are based on e ¼ 1%� L. Detection accuracy is measured in terms of average distance from the

selection target reported as a percentage of the genome length.
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population size and mic is the fraction of the island population
that consists of immigrants from the continent, was set to 3.
The two populations merged at time tm (measured in 4Nc gen-
erations), which varied between 0.003 and 3 in our simula-
tions, thereby implementing population divergence models
that ranged from very recent (tm ¼ 0:003) to very old ones
(tm ¼ 3). The population mutation rate h ¼ 4N0l and popu-
lation recombination rate q ¼ 4N0r were set to 2000 for the
entire simulated region.

Figure 4a shows a comparison of TPR rates for FPR¼ 5%.
As can be observed in the figure, the SFS-based methods are
highly confounded by migration, with the highest TPR being
as low as 10.80%, observed for the most recent divergence
model (dataset 61, tm ¼ 0:003). For the same dataset,
OmegaPlus and RAiSD achieved TPR of 12.60% and
38.78%, respectively, while ASDEC achieved TPR¼ 64.0%
(5.9�, 5.1�, and 1.65� higher than SweepFinder2/SweeD,
OmegaPlus, and RAiSD, respectively). For older divergence
models, the tools that rely on only one sweep signature
(SweepFinder2 and SweeD rely on the SFS, and OmegaPlus
relies on LD) perform poorly, while ASDEC exhibits similar
TPR performance with RAiSD that relies on three signatures.

Figure 4b and c provides an evaluation of success rates and
detection accuracy, respectively. It can be observed that
ASDEC outperforms all other tools for all datasets, both in
terms of success rate and detection accuracy. For the most re-
cent divergence model, ASDEC achieves a success rate that is
5.26� higher than the previously highest success rate, which
was achieved by RAiSD (20.0% versus 3.80%). ASDEC also
achieves 1.94� higher success rate than RAiSD for the oldest
divergence model. In addition, ASDEC reports the sweep lo-
cation closer to the true selection target than all other tools
for recent divergence models, while exhibiting similar perfor-
mance with RAiSD for the older ones. However, all tools ap-
pear to be confounded by migration.

3.4 Detection in the presence of recombination

hotspots

Varying recombination rates along the genome affect the ex-
tent of LD, which can confound selective sweep detection.
Increased recombination intensity in a region might create
neighboring subregions with lower LD between them relative
to the LD within them. This can affect FPR since ASDEC
might capture consecutive regions in a recombination hotspot
that have high LD within each of them but low LD between
them. This is a typical selective sweep signature and, expect-
edly, will resemble the selective-sweep training data. To inves-
tigate this possibly confounding effect, we used msHOT
(Hellenthal and Stephens 2007) to generate neutral simulated

datasets with and without recombination hotspots, and mbs
(Teshima and Innan 2009) to simulate recombination hotspot
models with a selective sweep. We simulated neutral evolu-
tionary models with a single 5-kb or 10-kb recombination
hotspot, and a model with three 5-kb recombination hotspots,
with recombination intensity ranging from 2 to 100 (relative
to the rest of the genome). Furthermore, we simulated evolu-
tionary models with a 5-kb recombination hotspot in the mid-
dle of a 100-kb simulated region (recombination intensity
ranging from 2 to 10 relative to the rest of the genome), and a
selective sweep either at location 50 kb (in the recombination
hotspot) or at location 30 kb (outside the recombination hot-
spot). ASDEC was trained using data from neutral and
selective-sweep regions that were outside recombination
hotspots.

To assess the effect of recombination hotspots on the FPR
(false positive rate), we set cut-off values based on neutral
models without recombination hotspots (95th percentile) and
examined the FPR using the neutral models with recombina-
tion hotspots. We found that recombination hotspots have
negligible effect on the FPR, as shown in Table 3 (the
expected FPR is 5%). Neither ASDEC nor the signature-
based tools are considerably misled into identifying a recom-
bination hotspot as a selective sweep, but ASDEC is slightly
more sensitive than the other methods, on average (average
FPR for SweepFinder2: 3.81%, SweeD: 3.78%, OmegaPlus:
5.84%, RAiSD: 4.93%, ASDEC: 6.44%). In general, recom-
bination hotspots do not affect the FPR. However, there were
two instances where the FPR for ASDEC doubled. These oc-
curred in regions with very high recombination intensity (10
and 100 times higher than the rest of the genome) and a small
hotspot region (5 kb).

To assess the power of ASDEC to locate a selective sweep
in the presence of a recombination hotspot, we measured TPR
for FPR¼5% (Fig. 5a), the success rate (Fig. 5b), and detec-
tion accuracy (Fig. 5c). Irrespective of the intensity of recom-
bination in the hotspot, neither ASDEC nor any of the
signature-based tools can distinguish between selection and
neutrality when the selective sweep is simulated in the recom-
bination hotspot region (datasets 92–96 in Fig. 5). When the
selective sweep is outside the recombination hotspot (datasets
97–101), all methods achieve higher TPR and success rates,
and lower distance error. Figure 5a shows that, for the SFS-
based tools (SweepFinder2 and SweeD), TPR reduces with in-
creasing recombination intensity in the recombination hotspot
while success rates and accuracy remain more or less con-
stant. The rest of the tools exhibit similar behavior, with TPR,
success rate, and accuracy being less affected by the intensity
of recombination in the recombination hotspot. For dataset

(a) (b) (c)

Figure 4. Evaluation using migration models with varying population join time: TPR for FPR¼ 5% (a), success rate (b), detection accuracy (c).
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97 (lowest recombination intensity in our tests), the SFS-
based tools SweepFinder2 and SweeD achieved TPR of
23.2% and 23.3%, respectively, success rates of 37.6% and
37.7%, respectively, and accuracy of 13.18% and 13.06%,
respectively. The LD-based OmegaPlus and the multi-
signature-based RAiSD achieved TPR of 47.50% and
48.60%, respectively, success rates of 57.3% and 63.7%, re-
spectively, and accuracy of 7.67% and 6.14%, respectively.
ASDEC outperformed all methods, achieving a TPR of 75%,
a success rate of 77%, and accuracy of 3.67%. For dataset
101 (highest recombination intensity in our tests),
SweepFinder2 and SweeD achieved a TPR of 4.6% (both), a
success rate of 33.8% (both), and accuracy of 14.05% and
14.01%, respectively. OmegaPlus and RAiSD achieved TPR
of 72.40% and 87.10%, respectively, success rates of 59.9%
and 59.1%, respectively, and accuracy of 6.11% and 6.96%,
respectively. ASDEC showed comparable performance with
RAiSD and OmegaPlus, with a TPR of 84%, a success rate of
54%, and accuracy of 5.75%.

3.5 Scan of human chromosome 1

We analysed chromosome 1 of the human genome [Yoruba
population, 1000Genomes dataset (Sudmant et al. 2015)] us-
ing ASDEC to demonstrate its capacity to handle real data.
Monomorphic sites (�83% of the data) and sites that violated
the infinite-sites model (�4:2% of the data) were discarded.
The default window width (W¼ 50) and step (S¼ 1) were
used for data preparation, and the “selection” profile was
generated using the grid-based configuration, evaluating
800 000 positions along the chromosome (10 samples) by av-
eraging 5000-bp genomic regions. Table 4 provides a list of
nine candidate genes with high scores (top 0.5%) that have
been previously identified as targets of positive selection using
other methods: iHS (Voight et al. 2006), dN/dS
(Kryazhimskiy and Plotkin 2008), nSL (Ferrer-Admetlla et al.
2014), CMS (Grossman et al. 2010), and GRoSS (Refoyo-

Mart�ınez et al. 2019). Another seven candidate regions were
discarded (not identified by other studies). Supplementary
Section 3 shows the results for the whole chromosome.

4 Conclusion

We presented ASDEC, a standalone framework that performs
genome-wide scans for positive selection with higher sensitiv-
ity, success rate, and detection accuracy than state-of-the-art
methods. To the best of our knowledge, ASDEC is the first
CNN-based tool that can handle whole genomes and addi-
tionally localize the selection target and estimate the extent of
the selective sweep. ASDEC can serve as the building block
for designing neural architecture search strategies to discover
new CNN architectures for population genomics problems.

ASDEC achieves higher detection accuracy and an order of
magnitude higher sensitivity and success rates than widely
used tools. It delivers similar performance with state-of-the-
art tools for mild population bottlenecks, and considerably
outperforms them in the case of severe bottlenecks. ASDEC is
more robust to migration than methods that rely on a subset
of the known selective sweep signatures. It is also robust to re-
combination hotspots in neutral data, and has higher perfor-
mance than existing tools in detecting selection when the
target is not in a recombination region. When the selection
target is in a recombination hotspot, however, all methods are
confounded. Finally, we used ASDEC to scan the first chro-
mosome of the Yoruba population and identified nine candi-
date genes that have been previously reported as selection
targets.

We performed an extensive simulation study and a series of
benchmark experiments. The large number of simulations un-
der various parameters can pave the way for fostering better
practices in the evaluation of approaches in population genet-
ics (ML/AI and others). In general, ASDEC and other ML/AI
methods perform better than non-ML/-AI approaches. This

Table 3. The effect of recombination hotspots on FPR.

Dataset no. 71 74 77 78 81 84 85 88 91

Recombination region size 5 kb 10 kb 5 kb � 3

Recombination intensity 2 10 100 2 10 100 2 10 100

SweepFinder2 3.9 4.4 3.8 3.8 3.6 4.2 3.7 3.6 3.3
SweeD 3.9 4.4 3.7 3.7 3.5 4.2 3.7 3.6 3.3
OmegaPlus 5.9 5.4 7.0 5.1 6.2 5.9 5.6 5.4 6.1
RAiSD 5.1 5.5 5.6 6.4 4.0 5.2 4.9 3.1 4.6
ASDEC 6.0 11.0 10.0 7.0 4.0 5.0 3.0 4.0 8.0

(a) (c)(b)

Figure 5. Evaluation based on models with varying recombination intensity and a selective sweep inside the recombination region (D92–D96) and outside

the recombination region (D97–D101): TPR for FPR¼ 5% (a), success rate (b), detection accuracy (c).
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might be due to the fact that specific data features are
extracted (and learned) from both neutral and selection data,
whereas non-ML/-AI methods use neutral data only to deter-
mine a threshold. Another reason is that these methods either
exploit certain data features based on the theory of selective
sweeps (SweepFinder2, SweeD, OmegaPlus) or rely on the
simplistic combination of multiple features (RAiSD), while
summary-statistic-free ML/AI methods like ASDEC, extract
distinctive features from the data without relying on theory.

Supplementary data

Supplementary data is available at Bioinformatics online.
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