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ABSTRACT
The accurate identification of positive selection in genomes rep-
resents a challenge in the field of population genomics. Several
recent approaches have cast this problem as an image classifica-
tion task and employed Convolutional Neural Networks (CNNs).
However, limited efforts have been placed on discovering a prac-
tical CNN architecture that can classify images visualizing raw
genomic data in the presence of population bottlenecks, migra-
tion, and recombination hotspots, factors that typically confound
the identification and localization of adaptive genomic regions. In
this work, we present SweepNet, a new CNN architecture that
resulted from a thorough hyper-parameter-based architecture ex-
ploration process. SweepNet has a higher training efficiency than
existing CNNs and requires considerably less epochs to achieve
high validation accuracy. Furthermore, it performs consistently
better in the presence of confounding factors, generating mod-
els with higher validation accuracy and lower top-1 error rate for
distinguishing between neutrality and a selective sweep. Unlike
existing network architectures, the number of trainable parameters
of SweepNet remains constant irrespective of the sample size and
number of Single Nucleotide Polymorphisms, which reduces the
risk of overfitting and leads to more efficient training for large
datasets. Our SweepNet implementation is available for download
at: https://github.com/Zhaohq96/SweepNet.
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1 INTRODUCTION
Positive selection is of great significance because it shapes the
evolution of a species. The identification of positive selection in
genomes finds practical application in medicine, e.g., interpret-
ing disease patterns in an evolutionary context [1], identifying
drug-resistant mutations in pathogens [2], and designing more
effective drug treatments [3]. When positive selection acts on a
population, the frequency of the allele that is favored by natural
selection will increase until all individuals carry the favored allele.
Because of genetic hitchhiking [4], the process by which a gene’s
frequency changes due to positive selection acting on linked genes,
the frequency of nearby neutral alleles linked to the selected locus
increases as well. If the linked selected locus reaches fixation, the
genetic variation is reduced locally. Since genetic diversity among
loci that are near the beneficial mutation is swept away, this process
is referred to as a "selective sweep".

Early approaches to identify positive selection capture signatures
of a selective sweep using summary statistics or likelihood-based
methods. Tajimas’ D [5], for instance, calculates the difference be-
tween the mean number of pairwise differences of genetic variation
and the (normalized by the harmonic number for the sample size)
number of segregating sites to distinguish between sequences evolv-
ing under neutrality and sequences evolving under non-random pro-
cesses. More advanced, likelihood-based methods, e.g., SweeD [6]
and SweepFinder2 [7], serve as neutrality tests because their score
distribution in the presence of selection differs from the expected
distribution under neutrality. A more recent method, RAiSD [8],
implements a composite evaluation test that quantifies changes in
the Site Frequency Spectrum (SFS), the Linkage Disequilibrium (LD)
levels, and the amount of genetic diversity along a chromosome.
Mughal et al. [9] present SURFDAWave, a machine learning method
that implements wavelet regression on summary statistics. Both
summary statistics and likelihood methods, however, are sensitive
to and frequently confounded by various genetic factors such as
demographic changes in population size or migration between ad-
jacent populations because these factors affect specific patterns
of the genetic diversity (such as the SFS) similarly to a selective
sweep [10, 11]. The latest efforts in population genetics explore
deep learning (DL) to distinguish between neutrality and a selective
sweep by relying on the accurate classification of adaptive genomic
regions [12]. Convolutional neural networks [13] allow several
such methods [14–16] to approach the problem of selective sweep
detection from a totally new perspective – image classification.

Convolutional neural networks were introduced several decades
ago [17] and are the dominant machine learning method for pat-
tern recognition today [18]. LeNet-5 [19], for instance, is a well
known CNN architecture that was proposed in 1994 and achieved
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high accuracy for handwritten digit recognition on the MNIST
database [20]. AlexNet [21] was proposed in 2012 and won the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) com-
petition. AlexNet has a deeper network structure than LeNet and
uses stacked convolutional layers to extract image features. Thanks
to the ILSVRC competition, more deep network architectures have
been proposed over the years, advancing the state of the art. The
Residual Network (ResNet) [22] that won the aforementioned com-
petition in 2014, for instance, implements a very deep network
structure (over 100 layers) that became computationally feasible by
skipping connections between layers. In 2017, SE-Net [23] won the
ILSVRC and achieved high accuracy at the cost of slightly increased
computational complexity by implementing a building block that
performs a squeeze operation to generate channel-wise statistics,
and an excitation operation to capture channel-wise dependencies.

The CNNs that are currently used in population genetics im-
plement shallow networks (few layers), since images that visual-
ize genetic information, e.g., mutations, are considerably simpler
than real-world images. These images either visualize summary
statistic distributions or raw sequence data. Kern and Schrider [24]
presented diploS/HIC, which distinguishes among hard selective
sweeps, soft selective sweeps, and regions that are linked to a sweep
by computing, normalizing, and visualizing 12 summary statistics
per image/window. However, the independently obtained results
of different neutrality tests may be correlated if they depend on the
same underlying coalescent tree [25]. Furthermore, both summary
statistics and the convolutional operation of a CNN extract features
from the input data. Unlike summary statistics though, which rely
on the underlying population genetics theory, a CNN abstracts
the implicit information within an image through various aspects
like the topological structure and high dimensional features [26].
Thus, using summary statistics as features can possibly limit the
classification power of a CNN since the neural network will only
extract features from an already compressed form of the available
genomic sequence data.

Several studies have explored CNNs for the detection of pos-
itive selection without calculating summary statistics but using
the raw sequence data instead. Flagel et al. [14] employed CNNs
using raw sequence data for inference and classification tasks (e.g.,
demographic history inference, identification of selective sweeps,
estimation of recombination rates). Torada et al. [15] presented
ImaGene, which sorts genetic segments before deploying a CNN
to identify and quantify natural selection. Nguembang et al. [16]
used CNNs to identify natural selection and explored the effect of
hyper-parameters. While such early approaches present promising
results, it has not yet been explored how well can a CNN perform
the classification task in the presence of confounding factors such
as population bottlenecks, migration, and recombination, factors
that extensively affect real population histories. Furthermore, the
proposed CNN architectures so far have been experimentally de-
termined based on limited search of the architecture space, thereby
possibly missing the evaluation of CNN designs that have the po-
tential to further improve classification performance in this domain;
some CNNs even have a comparable number of network parameters
with CNNs for large-scale everyday-life image challenges.

(a) (b)

(c) (d)

Figure 1: A selective sweep. a. Neutral mutations (white cir-
cles) are present in the population. b. An advantageous muta-
tion (black circle) appears in the population. c. The frequency
of the chromosome that carries the advantageous mutation
increases. d. The advantageous mutation appears in all indi-
viduals of the population (fixed beneficial mutation).

To this end, this work presents a new lightweight CNN architec-
ture, dubbed SweepNet, that can efficiently classify grayscale im-
ages representing mutations in genomic regions using the Infinite-
Site Model [27]. SweepNet has overall higher training efficiency
than other CNNs used in population genetics and is robust to vari-
ous demographic models that confound sweep detection. Further-
more, it has a smaller number of trainable parameters and its size
is constant irrespective of the sample size and the number of Sin-
gle Nucleotide Polymorphisms (SNPs) visualized in image data.
SweepNet can be trained with images that depict raw sequence
data. Thereafter, it can be used to make predictions about unknown
genomic regions using images that represent the raw sequence data
in those regions. Using raw-data images leads to shorter execution
times by avoiding the computation of summary statistics, which
often requires a considerable amount of computational time.

2 BACKGROUND
2.1 A selective sweep
Distinct signatures left in the genomes by a selective sweep allow
the detection of traces of positive selection in a population. Accord-
ing to the classical selective sweep model described by Maynard
Smith and Haigh [4], these genetic signatures are a) a shift in the
site frequency spectrum (SFS) toward low- and high-frequency de-
rived variants [28], b) a distinct pattern of linkage disequilibrium
(LD) where high LD is found on each side of the selection target
and low LD is found between loci that are located on different sides
of the selection target [25], and c) reduced genetic diversity in the
region surrounding the selected locus.

Figure 1 illustrates the effect of positive selection on the fre-
quency of mutations (beneficial and linked) in a population at dif-
ferent time junctures. Each row represents an individual and white
circles indicate neutral mutations while black circles indicate an
advantageous mutation. Because of positive selection, an advanta-
geous mutation appears in an individual (Figure 1b) and spreads in
the population over generations (Figure 1c). When the frequency
of the advantageous mutation reaches 1.0, i.e., all individuals carry
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this mutation, the mutation is said to be fixed (Figure 1d). Due to
genetic hitchhiking, the frequency of near-by linked alleles will
change as well. High LD is observed on each side of the selection
target but low LD is observed between loci on different sides .

2.2 Convolutional neural networks (CNNs)
A CNN is an artificial neural network that uses convolution in at
least one of its layers [29]. It can have multiple layers (in addition
to convolutional layers) including non-linearity layers, pooling lay-
ers, and fully-connected layers [30]. Figure 2 shows the general
structure of a CNN; it consists of two stages: feature extraction and
classification. In the feature extraction stage, the CNN applies a set
of filters to scan the input images and extract different features from
the raw data using convolutional operations. Thereafter, a pooling
layer is used to reduce the number of samples of extracted features
and the complexity of the representation. Normally, a convolutional
layer and a pooling layer are paired together into a combined layer,
and combined layers are connected in a sequence. In the classifica-
tion stage, a set of fully connected layers (also called dense layers)
are used to learn the non-linear combination of the features ob-
tained from previous convolutional layers. Each artificial neural
unit (an artificial neuron that is the elementary unit of an artificial
neural network) in dense layers receives the inputs from all the
neurons in the previous layer and then performs a linear operation
on these inputs which are passed through an activation function to
add non-linearities into neural networks. The last layer of a neural
network is called output layer and its number of neurons is equal
to the number of classes to be categorised. All layers between the
first and the last layers are hidden layers.

A CNN is a supervised machine learning method [31]; it requires
labeled data to train the model. During training, the weights of the
neural network are repeatedly updated after every training iteration
(epoch) to minimize a loss function (a measurement of how well a
network performs). Besides the training set, a validation set is used
for evaluating the model to find the best trained model. Once the
CNN is trained and a model has been generated, it can be used to
classify unknown data. Widely used frameworks for implementing
CNNs include Keras [32] and PyTorch [33]. Keras is a high-level
API to build machine learning models via standardized packaged
building blocks and uses TensorFlow [34] as its back-end for train-
ing and inference of deep neural networks. PyTorch provides a
low-level environment to define the details of implementing neural
networks, e.g., the training procedure and the testing process ac-
cording to design requirements. In comparison with Keras, PyTorch
provides more flexibility, such as a user-defined loss function and
training process, but requires higher development effort to build
neural networks and realize mathematical functions.

2.3 Squeeze-and-Excitation Networks
Squeeze-and-Excitation networks contain a novel architecture unit
termed "Squeeze-and-Excitation" (SE) block. It was introduced by
Hu et al. [23] to boost the representational power of a network. An
SE block performs two operations: the squeeze operation and the
excitation operation, to adaptively recalibrate channel-wise feature
responses and explicitly model interdependencies between chan-
nels. During the squeeze operation, global spatial information is

squeezed into a channel descriptor by using global average pooling
to generate channel-wise statistics. During the excitation opera-
tion, a gating mechanism with a sigmoid activation is deployed
to fully capture channel-wise dependencies from the aggregated
information of the squeeze operation. The SE block first squeezes
the features received from the previous layer to reduce their dimen-
sions and then assigns weights to them. Thereafter, it reverts the
dimensions of the features and assigns new weights. This process is
visualized in Figure 4. The dimensions of the features are converted
from 𝐻 ×𝑊 × 𝐶 to 1 × 1 × 𝐶 and returned to 𝐻 ×𝑊 × 𝐶 with
new weights (shown by different colors in the figure). The gating
mechanism is formed by a bottleneck with two fully connection lay-
ers to rescale the transformation output with the channel weights
adapted to the input-specific descriptor. The SE block boosts feature
discriminability.

3 RELATEDWORK
Pybus et al. [35] and Schrider and Kern [36] employed supervised
machine learning using summary statistics as input variables to
learn to distinguish between neutrality and selection. Kern and
Schrider [24] released diploS/HIC, a CNN-based framework that
relies on summary statistics to classify a genomic region as a hard
sweep, a soft sweep, a region linked to a hard sweep, a region
linked to a soft sweep, or neutral. The region under evaluation is
split into 11 subwindows and a total of 12 summary statistics are
computed for each subwindow. These values are then normalized
across all subwindows to capture the relative shape of a given statis-
tic across the whole region. The normalized values per subwindow
are converted into a 11 x 12 input image for CNN training and
classification.

Flagel et al. [14] explored CNNs using raw sequence data for
various population genomics tasks including the detection of posi-
tive selection. The authors proposed a dedicated CNN architecture
(henceforth referred to as “Net-1") to detect selective sweeps and
distinguish between a hard sweep and a soft sweep. Net-1 consists
of five layers (two 1D convolutional layers and three dense layers).
The images used as input for Net-1 are created by rearranging the
rows (sequences) based on sequence similarity, which improves the
network’s classification accuracy. Net-1 outperforms the supervised
machine learning approach presented by Schrider and Kern [36].

Torada et al. [15] presented ImaGene, a 4-layer CNN with three
combined layers (each followed by a dropout layer to avoid overfit-
ting) and one dense layer. ImaGene sorts the rows and the columns
based on the frequency of sequence occurrence per image to help
the CNN extract features from the raw image data. The evaluation
is based on images of size 128 × 128.

Nguembang et al. [16] employed a CNN (henceforth referred to
as “Net-2") with two combined layers followed by a dropout layer
and two dense layers to detect a selective sweep by classifying
images of size 1000×48. The authors explored the effect of different
image sizes and learning rates, observing similar training accuracy.

Table 1 provides a summary of the aforementioned CNN archi-
tectures that process raw sequence data, and an early comparison
with SweepNet in terms of cost (memory size to store the weights,
number of trainable parameters, and number of layers (depth)). As
shown in the table, SweepNet has less trainable parameters than
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2D convolution
Max pooling

layer Dense layer

Fully
connected

Class A

Class B

Class CInput image

Combined Layer

Feature Extraction

Classification

Figure 2: Overview of a CNN consisting of feature extraction and classification. The data features are extracted by the convolu-
tional layers and the output of the last convolutional layer is passed through one or more fully connected layers (also known
as dense layers) that map the features extracted by the convolutional layers to the output classes (classification).

Table 1: Comparison of CNN architectures for two different image sizes that have been previously used by related papers for
CNN evaluation. Torada et al. [15] used 128 × 128 images while Nguembang et al. [16] used 1000 × 48 images.

Authors Image size 128 × 128 Image size 1000 × 48 Depth MnemonicSize (MB) Parameters Size (MB) Parameters

Flagel et al. [14] 3.50 287.1K 24.81 2.1M 5 Net-1
Torada et al. [15] 0.86 68.5K 1.24 100.1K 4 ImaGene

Nguembang et al. [16] 177.11 14.7M 487.75 40.6M 4 Net-2
This work 0.19 9.7K 0.19 9.7K 5 SweepNet

(a) N-Raw (b) N-Reordered (c) S-Raw (d) S-Reordered

Figure 3: Images of a neutral region and a selective sweep un-
der amild bottleneck. “N" and “S" stand for neutral and sweep,
respectively. The simulated data before pre-processing are
denoted as “Raw", while “Reordered" describes the pixel re-
arrangement strategy that sorts rows based on hamming
distance and columns based on allele frequency.

other CNNs used in the field of population genetics and its size
remains constant irrespective of the image size, i.e., the sample size
and the number of SNPs per image, thereby making it practical for
large-scale datasets.

4 SWEEPNET
Unlike images showing faces and everyday objects, images that
visualize raw genetic data are rather monotonous and can be rep-
resented by very few characteristics [37]. Thus, deep CNN archi-
tectures with millions of parameters are not needed when using
images visualizing raw genomic data since they will likely lead to
overfitting because of excessive feature extraction.

Existing CNN-based approaches sort image rows based on their
sequence similarity [14] or sort both rows and columns based on
their frequency of occurrence [15]. In this work, we assume the

Infinite-Site Model (ISM) and assign ‘0’/white to the ancestral state
and ‘1’/black to the derived state. As a pre-processing step, we
calculate the hamming distance between sequences as a measure
of sequence similarity, and we sort the rows based on increasing
hamming distance from the row with the lowest average hamming
distance over all other rows. We also sort the columns by increasing
derived-allele frequency, thereby unveiling Site Frequency Spec-
trum (SFS) information. Figure 3 provides an example of the effect
of row and column reordering on images representing a neutral
region (Figures 3a and 3b) and a selective sweep (Figures 3c and 3d)
under a mild bottleneck demographic model. It can be observed
that the sorted selective sweep image contains coarser same-color
blocks than the neutral image, an indication of SNP regions with
high LD, in line with the LD signature of a selective sweep.

We performed a hyper-parameter optimization to find a CNN
architecture that can accurately distinguish a selective sweep from
a neutral region using sorted images. Each network was trained
for 3 training cycles (epochs). We used categorical cross entropy
as the loss function and the Adam optimizer [38] for training. Our
network-architecture exploration comprised six steps. The first
three steps assessed the effect of different network architecture
design choices. In the first step, the number of combined layers (2,
3, 4, 5) and the filter size (8, 16, 32, 64) were explored. In the second
step, the effect of increasing/decreasing filter size was explored on
the three best-performing (highest accuracy) network architectures
from the previous step. In the third step, the number (1, 2) and
size (16, 32, 64) of dense layers were explored. The remaining steps
assessed the effect of more extensive training by using a larger
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Fsq Fex

H ×W ×C

1×1 ×C 1×1 ×C

H×W ×C

Class A

Class B

3x Combined Layers

Squeeze & Excitation block
(following the last combined layer)

Dense Layer feature maps

Global Average Pooling

Figure 4: SweepNet. It comprises 3x combined layers (conv.+pooling), an SE block, a dense and a global average pooling layer.

Table 2: The hyper-parameter optimization steps that led to
SweepNet. (S: Step, P: Parameters, E: Epochs, A: Architectures,
M: Models, I: Inferences, C: Candidate architectures)

S P E A M I C

1

Combined layers: 2-5

3 16 64 128 4Filter sizes: 8, 16, 32, 64
Training set size: 210 × 103
Evolutionary trajectories: 10

2 Increasing/decreasing 3 14 56 112 1filter size

3 Num. of dense layers: 1, 2 3 7 28 56 2Dense layer size: 16, 32, 64
4 Training set size: 420 × 103 6 7 28 56 0
5 Evolutionary trajectories: 60 6 7 7 14 0
6 Training set size: 2.5 × 106 6 4 4 8 SweepNet

training set size and doubled epochs (420,000 images & 6 epochs,
step 4), less images per evolutionary trajectory (step 5), and a large
training set that comprised image data representing several bottle-
neck models (2.5 × 106 images) in the final step. Table 2 provides a
summary of the exploration steps.

The optimization process resulted in a CNN architecture that
consists of three combined layers and two dense layers, with each
combined layer including a 2D convolutional layer and a max pool-
ing layer. Each convolutional layer comprises 32 filters with a 2x2
kernel with stride 1 while the dense layer comprises 32 filters. An
SE block follows the third combined layer to capture channel-wise
dependencies and a global average pooling operation [39] is per-
formed after the dense layer. Because global average pooling applies
average pooling on the spatial dimensions until each spatial dimen-
sion is one while leaving the other dimensions unchanged, the
number of network parameters of SweepNet is constant irrespec-
tive of the image size. This can be observed in Table 1 in comparison
with the other CNNs; the size of all other CNNs in terms of number
of parameters varies with the image size (sample size and number
of SNPs). We assessed the effect of pre-processing on the resulting
CNN from the hyper-parameter optimization process and observed
between 1.6% higher and 4.15% lower top-1 error rates over the
different evolutionary trajectories. The SweepNet CNN architecture
is depicted in Figure 4.

5 EVALUATION
5.1 Experimental setup
The SweepNet framework is implemented using Python and Keras
with TensorFlow as its back-end. To assess how confounding factors
affect the identification of positive selection, we simulated classic
selective sweeps under three different demographic models that
confound selective sweep detection, i.e., population bottlenecks,
migration, and recombination heterogeneity. We assumed that the
present-day population size is 50,000 haploid genomes. The sample
size is 128 individuals and the image size is 128× 128, i.e., 128 SNPs
are encoded per image. Table 3 provides details of the simulated
datasets. Each dataset consists of a training set, a validation set,
and a test set comprising 800, 200, and 1000 images, respectively.
To evaluate SweepNet, we measured performance in terms of top-1
error rate1 and execution time and compared with the raw-data-
based CNNs Net-1 [14], ImaGene [15], and Net-2 [16], the summary-
statistic-based CNN diploS/HIC [24], and the machine learning
framework SURFDAWave [9] to classify genomic regions as neutral
or a selective sweep.

5.2 Training efficiency
To evaluate the training efficiency of SweepNet, we compared its
performance with other raw-data-based CNNs in terms of average
validation accuracy per epoch over 5 training runs for 100 epochs.
As can be observed in Figure 5, SweepNet reaches a steady state
faster than all other CNNs, exhibits more consistent behavior over
all demographic models, and, importantly, achieves higher perfor-
mance in terms of validation accuracy in less than 100 epochs.

In the case of a mild bottleneck (Figure 5A), SweepNet achieves
top-1 validation accuracy2 of 1.0 (epoch 1) while Net-2 achieves the
second highest validation accuracy, 0.97 (epoch 35). Net-1 shows
improvement after 25 epochs and reaches accuracy of as low as
0.66. The validation accuracy of ImaGene remains mostly constant
at 0.6 throughout the whole training process. Similarly, for a se-
vere bottleneck (Figure 5B), SweepNet and Net-2 achieve 0.92 and
0.91, respectively. Net-1 shows improvement after the 30th epoch,
reaching 0.70 (epoch 98). ImaGene has a mostly constant validation
accuracy between 0.71 and 0.75.

1The frequency of incorrect highest-probability class predictions for a given input.
2The frequency of correct highest-probability class predictions for a given input.
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Table 3: Simulated datasets for evaluation (download: https://figshare.com/articles/dataset/SweepNet-Datasets/22194118)

Dataset Confounding factor Simulation software Model parameters

D1 Mild bottleneck ms and mssel 0.5 (severity), 0.1 (begin time), 0.01 (duration)
D2 Severe bottleneck ms and mssel 0.005 (severity), 0.1 (begin time), 0.004 (duration)
D3 Recent migration ms and mssel 0.003 (population join time)
D4 Old migration ms and mssel 3 (population join time)
D5 Low intensity recombination msHOT and mbs 2 (recombination intensity)
D6 High intensity recombination msHOT and mbs 20 (recombination intensity)
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Figure 5: Comparison of average top-1 validation accuracy over 5 runs for 100 epochs. A) mild bottleneck, B) severe bottleneck,
C) recent migration, D) old migration, E) low-intensity recombination hotspot, F) high-intensity recombination hotspot.

For recent migration (Figure 5C), SweepNet, ImaGene, and Net-2
achieve validation accuracy of 0.99, 0.98, and 0.95 at the 2nd, the
24th, and the 25th epoch, respectively. For old migration (Figure 5D),
SweepNet outperforms all other networks achieving a validation
accuracy of as high as 0.89 (epoch 91) whereas Net-2 achieves the
second highest validation accuracy (0.6 at epoch 58). Net-1 and
ImaGene were not trained correctly.

For low recombination intensity (Figure 5E), SweepNet achieves
a validation accuracy of 0.89 (epoch 98) while Net-1 and Net-2 reach
as low as 0.57 (epoch 59) and 0.62 (epoch 65), respectively. ImaGene
behaved as a random classifier. In the case of high recombination
intensity (Figure 5F), SweepNet reaches validation accuracy of 0.99
(epoch 6) while ImaGene achieves the second highest validation
accuracy (0.9, epoch 8). Net-1 and Net-2 were not trained correctly.

Overall, SweepNet achieved the highest validation accuracy for
all simulated evolutionary models and is more robust to confound-
ing factors. SweepNet also reached its highest validation accuracy
faster than the other CNNs (less epochs) and has a stable behavior
for the rest of the epochs.

5.3 Overfitting
Figure 6 shows the training accuracy, training loss, validation ac-
curacy, and validation loss when trained for 100 epochs. Sweep-
Net achieves high training and validation accuracy with very few
epochs for a mild bottleneck and recent migration, and has a stable
behavior for all 100 epochs. For more complex genetic scenarios
such as old migration and recombination hotspots, the training
and validation loss decreased while the training accuracy and the
validation accuracy increased, showing that it does not overfit for
any of the genetic scenarios we examine in this study.

https://figshare.com/articles/dataset/SweepNet-Datasets/22194118
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Figure 6: Training behavior of SweepNet for 100 epochs. A) mild bottleneck, B) severe bottleneck, C) recent migration, D) old
migration, E) low intensity recombination, F) high intensity recombination.

5.4 Classification under confounding factors
5.4.1 Accuracy versus execution time. To perform a comprehen-
sive comparison of SweepNet with other approaches, we report
inference accuracy (top-1 error rate) with respect to total execution
time (pre-processing, training, and inference) in the presence of
various confounding factors. For raw-data-based CNNs, two types
of experiments were performed to report performance of the best
models (highest validation accuracy) obtained through 10-epoch
and 100-epoch training. Figure 7 illustrates the results.

For a mild bottleneck (Figure 7A), all methods except for SURF-
DAWave achieved top-1 error rates lower than 1.55%. SUFDAWave
could not be trained because some summary statistics assumed
infinite values. SweepNet, Net-2, and diploS/HIC achieved error
rates of 0.25%, 0.1%, and 0.2%, respectively, while SweepNet was
4x faster than Net-2 and 18x faster than diploS/HIC. The error rate
of the best Net-1 model out of 100 epochs was 1.55%. For a severe
bottleneck (Figure 7B), SweepNet achieved 8.6% error rate while
diploS/HIC achieved the lowest top-1 error rate over all tools (5.6%).
SURFDAWave had the highest error rate (17%) and the longest ex-
ecution time (8006 seconds). Net-1, Net-2, and ImaGene achieved
top-1 error rates of 7.4%, 6.6%, and 8.6%, respectively.

For recent migration (Figure 7C), all tools achieved compara-
ble top-1 error rates that were lower than 2%, with SURFDAWave
achieving the lowest error rate of 0.05% while SweepNet achieved
0.35% from the 100-epoch training. The only exception was Net-1
with a top-1 error rate of 19.8%. SweepNet was faster than SUF-
DAWave (1.2x), Net-2 (1.4x), and diploS/HIC (7.5x). For old mi-
gration (Figure 7D), Net-2 had the lowest top-1 error rate (6.25%)
while SweepNet achieved the second lowest error rate (10.3%), both
trained for 100 epochs. Net-1 and SURFDAWave had error rates of
21.4% and 18.5%, respectively.

For low recombination intensity (Figure 7E), SweepNet achieves
the lowest error rate (10.1%) among all raw-data-based CNNs, but
slightly higher than diploS/HIC (8.35%) and SURFDAWave (6.35%).
Net-1 and Net-2 achieved 24% and 26.4%, respectively. ImaGene
behaved as a random classifier. For high recombination intensity
(Figure 7F), SweepNet, ImaGene, and SURFDAWave achieved top-
1 error rates of 0.85%, 0.25%, and 0.05%, respectively. diploS/HIC
achieved 5.7% error rate while taking 1.8x longer than SweepNet.
Net-2 was 2.4x slower than SweepNet, with a top-1 error rate of as
high as 35.2%.

Compared with other genetic-data-based CNNs, SweepNet is
able to achieve generally lower top-1 error rates on classification
under various genetic scenarios. Although some CNNs achieved
lower top-1 error rates than SweepNet for specific datasets, they
are affected by genetic scenarios differently. For instance, Net-2
exhibited outstanding performance on bottleneck and migration
models among raw-data-based CNNs but is severely confounded by
recombination. In comparison with diploS/HIC and SURFDAWave,
SweepNet achieves comparable top-1 error rates faster while being
robust to confounding factors. SweepNet achieved similar top-1
error rates when trained with 10 and 100 epochs. After being trained
with 100 epochs, SweepNet exhibits only about 1% top-1 error rate
lower than being trained with 10 epochs for most datasets.

5.4.2 Execution time. Figure 8 provides a total training time break-
down, consisting of pre-processing and CNN training. For Net-1,
ImaGene, Net-2, and SweepNet, the pre-processing time refers to
the time required for row and column sorting (pixel rearrangement),
while for diploS/HIC and SURFDAWave the pre-processing time
refers to the calculation of summary statistics. As can be observed
in the figure, the raw-data-based methods are not affected by the
different evolutionary models and/or the presence of a selective
sweep and they spend most of the time (over 90%) on CNN training.
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Figure 7: Comparison of the top-1 error rate and the total execution time for different genetic scenarios. A) mild bottleneck,
B) severe bottleneck, C) recent migration, D) old migration, E) low intensity recombination, F) high intensity recombination.
Net-1, ImaGene, Net-2, and SweepNet were tested using a 10-epoch model and a 100-epoch model. For the 100-epoch training,
the execution time of the epoch that yielded the highest top-1 validation accuracy is reported. Note that SURFDAWave could
not be trained in the case of a mild bottleneck because of computing infinite values for some summary statistics.

On the other hand, diploS/HIC and SURFDAWave spend most of the
time on data pre-processing to calculate summary statistics. The
execution time of diploS/HIC, in particular, was dominated by pre-
processing, which took considerably longer than the pre-processing
step of all other methods, but the CNN trained faster than most.
Furthermore, we observed that the training time of SURFDAWave
was heavily affected by the simulated genetic models. The training
time for the high recombination intensity, for instance, was as low
as 681 seconds, whereas for the severe bottleneck, the training time
was two orders of magnitude higher (19,174 seconds).

Notice that SweepNet takes longer to train than Net-1 [14] and
ImaGene [15] despite having considerably less parameters (see
Table 1). This is due to fundamental differences in the CNN archi-
tectures. Net-1 uses 1-D convolution which is considerably less
compute-intensive than 2-D convolution that is used in SweepNet.
Net-1 and ImaGene have more parameters than SweepNet because
they have flatten layers in-between dense layers. A flatten layer
converts the feature maps of the previous layer into 1-D vectors
resulting in 𝐻 ×𝑊 ×𝐶 additional parameters, where 𝐻 ,𝑊 , and 𝐶
are the height and width of the feature maps and the number of
channels, respectively. SweepNet, on the other hand, uses global
average pooling layers, which add the same number of feature
maps as the number of channels, resulting in only 𝐶 additional
vectors/parameters. SweepNet has more layers and a more complex

architecture than ImaGene, which uses 2-D convolution and flatten
layers as well. The longer training times of SweepNet are due to
the 2-D convolution while the low number of trainable parameters
comes from the two global average pooling layers (one of them is
in the SE block).

Figure 9 provides a classification time breakdown, consisting of
pre-processing and CNN inference. As can be observed in the figure,
all methods exhibit similar execution times irrespective of the sim-
ulated genetic models. Furthermore, the fraction of time spent on
pre-processing with respect to CNN inference is not affected by the
simulated genetic models. Overall, all tools except for diploS/HIC
took between 734 and 865 seconds, while diploS/HIC took nearly
30x longer overall (due to the slow computation of the summary
statistics). Overall, SweepNet has comparable execution times for
classification with most methods, and is faster than diploS/HIC and
SURFDAWave by avoiding the computation of summary statistics.

6 CONCLUSION
We presented SweepNet, a lightweight CNN architecture to accu-
rately distinguish a selective sweep from neutrality under various
evolutionary scenarios. To further improve its classification perfor-
mance, we devised a sorting strategy that reorders rows based on
their pairwise hamming distance, and columns based on their allele
frequency. To evaluate SweepNet, we compared its performance
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Figure 8: Training time comparison. A) mild bottleneck, B) severe bottleneck, C) recent migration, D) old migration, E) low
intensity recombination, F) high intensity recombination. For the severe bottleneck (B) and old migration (D), SURFDAWave
took 7,817 seconds and 19,174 seconds for training, respectively (the corresponding bars in the figure have been cropped).

with raw-data-based CNNs and summary-statistic-based methods
in terms of classification accuracy to identify a selective sweep and
training and inference execution times. SweepNet exhibits a more
stable training behavior than state-of-the-art CNNs used in the field
of population genetics and is able to learn to distinguish between
neutrality and a selective sweep in the presence of confounding
factors. Furthermore, it consistently achieves higher validation ac-
curacy with less training epochs, is more robust to confounding
factors, and spends less time on data preparation since it classifies
images containing raw genomic data instead of summary statistic
distributions.
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