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A B S T R A C T   

Water quality of eutrophic lakes is threatened by harmful cyanobacterial blooms, which are favored by summer 
heatwaves and expected to intensify with global warming. Societal demands on surface water for drinking, 
irrigation and recreation are also highest in summer, especially during dry and warm conditions. Here, we 
analyzed trends in online searches to investigate how public awareness of cyanobacterial blooms is impacted by 
temperature in nine different countries over almost twenty years. Our findings reveal large seasonal and inter-
annual variation, with more online searches for harmful cyanobacteria in temperate regions during hot summers. 
Online searches and media attention increased even more steeply with temperature than the incidence of cya-
nobacterial blooms, presumably because lakes attract more people during warm weather. Overall, our study 
indicates that warmer summers not only increase cyanobacterial bloom incidence, but also lead to a pronounced 
increase of the public awareness of toxic cyanobacterial blooms.   

1. Introduction 

Harmful cyanobacterial blooms are a major threat to ecosystem, 
animal, and human health (Huisman et al., 2018; Chorus and Welker, 
2021). Blooms are promoted by eutrophication, and are expected to 
benefit from climate change, most notably global warming (Paerl and 
Huisman, 2008; Kosten et al., 2012; Smucker et al., 2021). Many 
bloom-forming cyanobacteria exhibit high temperature growth optima 
(Lürling et al., 2013), favoring rapid growth in warm waters. Warming is 
also expected to increase internal nutrient loading of shallow lakes 
through increased remineralization rates, further promoting cyano-
bacterial blooms (Søndergaard et al., 2013). Furthermore, warming may 
increase water column stability, which can enhance the development 
and proliferation of cyanobacterial blooms, as many bloom-forming taxa 
can regulate their buoyancy and thereby competitively exploit incoming 
light from above and nutrients from below (Jöhnk et al., 2008). 

The human health risk of bloom-forming cyanobacteria is associated 
with their production of toxic secondary metabolites, with dense blooms 
often leading to high concentrations of these toxins (Chorus and Welker, 

2021). Toxic cyanobacterial blooms have a substantial impact on a 
range of ecosystem services associated with surface waters, including 
the provisioning of clean water for drinking, fishing, irrigation, and 
recreation (Janssen et al., 2021). Because of the human health risk 
associated with cyanobacterial toxins and their disruptive consequences 
for aquatic system functioning, water quality monitoring programs often 
include assessment of cyanobacterial biomass or toxin concentrations, 
leading to management actions when guideline values are exceeded 
(Chorus and Welker, 2021; Ibelings et al., 2015). Possible actions 
include the placement of warning signs informing lake visitors about the 
presence of toxic cyanobacteria, closure of lakes for recreation, bans on 
aquaculture and fisheries, and implementation of additional treatments 
for safe drinking water production. These actions will affect public 
awareness of toxic cyanobacterial blooms, which we define here as the 
public’s general interest to collect information about the existence of 
cyanobacterial blooms and their associated risks. We expect that public 
awareness will be raised by the occurrence of cyanobacterial blooms, 
especially if this involves placement of warning signs and closure of 
recreational waters. 
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Online search engines have become a valuable tool to study public 
awareness, as they provide long-term data on the public interest in 
specific topics, cover broad spatial scales, and include many search re-
sults. As such, data from search engines have been used for analyzing, 
tracking, and predicting trends of a wide range of topics in, e.g., econ-
omy (Choi and Varian, 2012), epidemiology (Ginsberg et al., 2009), and 
nature conservation (Burivalova et al., 2018; Nghiem et al., 2016). For 
example, search data from Google Trends were shown to correlate with 
various economic indicators, and may possibly support short-term pre-
dictions of product sales (Choi and Varian, 2012). Moreover, relative 
frequencies of Google searches on influenza were correlated with the 
relative frequencies of influenza-related visits to physicians, and were 
therefore indicative of weekly influenza activity in each region of the 
USA (Ginsberg et al., 2009). While using Google search data to forecast 
influenza outbreaks did not always lead to accurate prediction (Butler, 
2013), it still led to promising forecasts when combined with an 
autoregression model (Yang et al., 2015). Google searches were also 
shown to closely follow recurrent dynamics of natural events such as 
elevated levels of pollen and mosquitoes (Proulx et al., 2014), were 
associated to increased outdoor recreation activities during the 
COVID-19 pandemic (Armstrong et al., 2022), and have been used as 
indicators of climate change awareness (Archibald and Butt, 2018). 
Lastly, a shutdown of drinking water supply in Toledo, Ohio (USA), due 
to a toxic cyanobacterial bloom in western Lake Erie in 2014, caused a 
distinct peak in Google searches for ‘Toledo water crisis’ matching 
searches for ‘algae’ (Cha and Stow, 2015). 

Here, we test whether public awareness of harmful cyanobacteria, 
based on online searches, exhibited a seasonal and interannual pattern 
that matched the occurrence of cyanobacterial blooms. We further 
assessed how seasonal and annual variation in public awareness of 
cyanobacterial blooms corresponded to variation in temperature and 
precipitation. Lastly, we hypothesized that public awareness is influ-
enced directly by the occurrence of cyanobacterial blooms in lakes and 
indirectly through e.g. media attention (Arlt et al., 2011). We therefore 
also tested relationships between online searches, the occurrence of 
cyanobacterial blooms in lakes, and online media coverage. 

2. Methods 

2.1. Data collection 

We used freely available data from the Google Trends website 
(Google LLC 2023) to explore annual trends in toxic cyanobacteria 
searches on Google, as this is the most used web search engine globally 
(Statcounter Global Stats 2022). We collected trend data using the term 
‘blue green algae’, or analogues in various languages (see Table 1), as 
this is a commonly known term used by the public and media to refer to 
toxic cyanobacterial blooms. We selected those countries and/or states 

and periods that returned clear annual patterns. Please note that our 
intention was not to give a full report on web search results across 
countries in the world, but rather provide examples of annual recurring 
trends in searches for cyanobacteria-related terms. Data in Google 
Trends may show minor day to day variation as it is compiled based on 
search data using a sampling method (Choi and Varian, 2012). Google 
Trends only produces numbers for searches above a certain threshold 
that is set for privacy considerations. Searches in Google Trends are 
normalized to the highest number of searches found in the requested 
period. Values thus range from 0 to 100 %, where a value indicated by 
<1 was set at 0.5. Because several large lakes in China experience 
annually recurring blooms (Huo et al., 2021), we also recovered search 
volumes for equivalent search terms in Baidu (Baidu Inc. 2023), as this is 
the most popular web search engine in China (Statcounter Global Stats 
2022). The number of searches from Baidu were normalized to the 
highest number of searches, similar to Google Trends data. 

We also collected monthly mean air temperature and monthly total 
precipitation data from meteorological stations (Table 1), where 
changes in air temperature are assumed to reflect changes in water 
temperature. Stations were selected based on their central location or on 
their location close to lakes or reservoirs known for their annually 
recurring harmful cyanobacterial blooms. For China, Indonesia, and 
Brazil we collected monthly data on temperature and precipitation from 
the Climate Change Knowledge Portal of the World Bank Group (https 
://climateknowledgeportal.worldbank.org). In addition, we used the 
Netherlands as case study for further comparison of search data with 
temperature, number of affected lakes and number of media items. For 
the number of affected lakes, we refer to lakes where cyanobacterial 
biomass exceeded guideline values and received a warning sign at 
designated bathing water sites. This was based on the Dutch Cyano-
bacterial Protocol 2012 (Ibelings et al., 2012), which assigns a warning 
if cyanobacterial biovolumes exceed 2.5 mm3 L− 1 and a negative bath-
ing advice if cyanobacterial biovolumes exceed 15 mm3 L− 1. For each 
month, the sum of all lakes receiving a warning or negative bathing 
advice was taken to indicate the total number of affected lakes. We 
obtained this data through BIJ12, which is part of the Association of 
Provinces of the Netherlands and responsible for a national information 
portal (www.zwemwater.nl) that reports on the quality of bathing water 
sites. We limited the period to 2013–2019 for which the same moni-
toring and risk assessment protocol was applied. The data of the number 
of online media items that mention the Dutch term for cyanobacteria 
(see Table 1) was acquired through the online media monitoring com-
pany Meltwater, which we recovered for the same period as the number 
of affected lakes. 

2.2. Data analysis 

All statistical analyses were performed using R Statistical Software 

Table 1 
Applied search terms by country and state (between bracketsa), with locations of weather stations and providers (between brackets) for long-term temperature and 
precipitation data in selected countries.  

Country and state Search term Period Weather station and source 

USA (Kansas) "Blue green algae" 2011–2022 Milford Lake, KS (National Oceanic and Atmospheric Administration); calculated mean of monthly mean min/max 
temperatures 

Canada (Alberta) 2011–2022 Oliver AGDM, Edmonton (Government of Canada)b 

United Kingdom 2010–2022 Bradford (Met-Office) 
Australia 

(Victoria) 
2011–2022 Hume reservoir (Bureau of Meteorology); calculated mean of monthly mean min/max temperatures 

The Netherlands "Blauwalg" 2004–2022 De Bilt (Royal Netherlands Meteorological Institute) 
Germany "Blaualgen" 2004–2022 Thuringia (German Weather Service) 
Brazil "Algas azuis" 2012–2022 Climate Change Knowledge Portal (World Bank Group)b 

Indonesia “Ganggang biru” 2011–2022 Climate Change Knowledge Portal (World Bank Group)c 

China “蓝藻” 2011–2022 Climate Change Knowledge Portal (World Bank Group)c  

a Data was limited to indicated state for testing relationships between online searches and temperature or precipitation. 
b Precipitation data for the period 2013–2022 was retrieved from https://edmonton.weatherstats.ca. 
c Temperature and precipitation data was obtained for the period 2011–2021. 
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version 4.2.2 (R-Core-Team 2022). Figures were plotted using the 
‘ggplot2’ package (Wickham, 2016). For testing the relationships be-
tween online searches and temperature or precipitation (Table 1; Fig. 2, 
Fig. S1), and for the various months in the Netherlands (Fig. S2), we first 
standardized the data by z-scoring each value x according to (x − μ)/σ, 
where μ is the overall mean with standard deviation σ. To disentangle 
seasonal variation from interannual variation in search data, tempera-
tures, and precipitation, we seasonally adjusted the monthly data by 
fitting a LOESS function and retrieving the residuals for further calcu-
lations using the function stl in the ‘bfast’ package (Verbesselt et al., 
2010). These residuals show months that are above or below the overall 
average for that specific month over the entire timeseries, and therefore 
indicate whether a month is warmer or cooler than the interannual mean 
for that month. The association between seasonally adjusted online 
searches and temperature or precipitation was then assessed by a 
Spearman rank correlation on log10(x + 1) transformed data, as the 
dataset contained zero values and data was non-normally distributed 
based on the Shapiro-Wilk test. Significance of all correlations were 
confirmed by a Theil-Sen regression which reduces the influence of 
outliers on the slope of the relationship, using the ‘mblm’ package 
(Komsta, 2019). To gain better insight into patterns by month, we used 
the case study of the Netherlands to explore the slope of the relationship 
between relative means of online searches and summer temperature per 
month (May–September). 

To test the relationship between relative mean temperatures and 
normalized online searches, number of affected lakes, and media 
attention in the Dutch dataset, all data were aggregated to monthly 

means and log10 transformed. Then the relationship between monthly 
summer temperatures and log normalized searches (Fig. 3a), log media 
items (Fig. 3b) and log number of affected lakes (Fig. 3c) was assessed by 
a log-linear regression model. The slopes of these log-linear relation-
ships were compared using an ANCOVA, by testing for significant 
interaction effects between the categorical factor (log online searches, 
log media items, log number of affected lakes) and the covariate tem-
perature. Additionally, we tested the relationships between normalized 
searches (Fig. S3a) and media items (Fig. S3b) and the number of 
affected lakes, as well as the relationship between normalized searches 
and media items (Fig. S3c) using a log-log linear regression model. 

3. Results & discussion 

3.1. Annual trends in online searches 

We first analyzed temporal variation in the frequency of online 
searches for harmful cyanobacteria using data from Google Trends and 
Baidu (for China), applying the common public term ‘blue-green algae’, 
or analogous terms in languages of tested countries (Table 1). We 
observed clear annual patterns with peaks in searches for harmful cya-
nobacteria during summer in temperate climate regions, and during wet 
seasons in tropical climate regions (Fig. 1). These trends were particu-
larly evident in temperate regions, where 67–90 % of the total number of 
normalized searches were found during the summer months in six out of 
seven countries (i.e., May-September in the USA, Canada, UK, the 
Netherlands, and Germany; and November–March in Australia). For 

Fig. 1. World map with seasonal variation in online searches for harmful cyanobacteria in different countries, using the layman’s term ‘blue-green algae’ or its 
analogues in other languages as search terms. Search data are normalized to highest values in targeted period. Map lines delineate study areas and do not necessarily 
depict accepted national boundaries. 
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China, 47 % of the total number of normalized searches were found in 
summer, and in the countries with a tropical climate these percentages 
were 54 % and 36 % during the wet season for Indonesia and Brazil, 
respectively. These findings show that, in countries with a temperate 
climate, public awareness of harmful cyanobacteria is generally higher 
during summer periods, whereas public awareness shows a less distinct 
annual pattern in countries with a tropical climate. The observed trends 
in temperate regions are very likely linked to both the predominant 
presence of cyanobacterial blooms and the more intense use of surface 
waters during the summer period. 

3.2. Warming effects on online searches 

The reported trends also show interannual variation in peak height, 
indicating raised awareness in some years relative to others. We tested 
whether this pattern follows the interannual variation in summer tem-
peratures in temperate regions. Our analyses confirmed that relatively 
warmer summers yielded significantly more online searches in six of the 
seven investigated countries with a temperate climate (Fig. 2a–f,h), but 
not in the two countries with a tropical climate (i.e. Indonesia and 
Brazil; Fig. 2g, i). To account for potential bias by temporal autocorre-
lation between months within the same year, we also tested the re-
lationships between online searches and temperature for each individual 

Fig. 2. Relationship between deviations from the mean of normalized monthly number of searches for harmful cyanobacteria and of the mean normalized monthly 
air temperature for Kansas, United States (a), Alberta, Canada (b), the United Kingdom (c), the Netherlands (d), Germany (e), China, (f), Indonesia (g), Victoria, 
Australia (h), and Brazil (i). Symbols indicate mean values of summer months from May to September on the northern hemisphere (a–f), and from November to 
March on the southern hemisphere (g–i). The statistics show the Spearman rank correlation coefficient (σ), its significance (P), and the significance of the Theil-Sen 
regression (PTS). Regression lines are shown when PTS < 0.05. 
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month for the Netherlands (Fig. S2). This largely confirmed the overall 
trends, with particularly strong correlations in the summer months July 
and August (Fig. S2c and d). Thus, our findings indicate that relatively 
hotter summers in temperate regions are accompanied by an increased 
public awareness of harmful cyanobacterial blooms compared to the 
overall mean, while online searches diminish in relatively cooler sum-
mers. There are multiple explanations for the increased public aware-
ness during warmer summers; 1) the frequency and magnitude of 
harmful cyanobacterial blooms is higher in warmer summers, 2) the 
likelihood of people (interested in) bathing and swimming in lakes, and 
thereby seeing warning signs, will be higher, and 3) with more harmful 
cyanobacterial blooms and more people (interested in) visiting lakes the 
overall media attention for harmful cyanobacterial blooms will be 
higher. 

For the countries with a tropical climate, i.e. Indonesia and Brazil, we 
did not observe a relationship between online searches and temperature. 
This is not surprising, since temperature is often not the main driver for 
cyanobacterial blooms in tropical regions (dos Santos Machado et al., 
2022; Mowe et al., 2015). Instead, blooms have been linked to other 
factors, including nutrients and precipitation patterns (Mowe et al., 
2015; Zapata-Anzola et al., 2009). We therefore also tested the rela-
tionship between online searches and precipitation, and our results 
show that the number of searches decreased slightly but significantly 
with total monthly precipitation in Indonesia and Brazil, the two trop-
ical countries tested in our analyses (Figs. S1g,i). Comparable negative 
relationships with precipitation were found for only two of the countries 
in temperate regions (i.e. The Netherlands and Germany; Fig. S1d and 
e), while a slightly positive relationship was observed for China (Fig. 
S1f). Our results thus suggest that online searches follow the key climatic 
factors driving cyanobacterial blooms, where warmer and/or drier pe-
riods cause a relative increase in online searches. 

3.3. Temperature dependence in online searches, media coverage, and 
harmful cyanobacteria 

To investigate the different potential causes for increased public 
awareness in warmer summers, we used detailed data available in the 
Netherlands on the number of cyanobacteria-affected lakes, evidenced 
by the issued warning signs when blooms exceeded guideline values, as 
well as on the number of online media items containing the Dutch 
analogue to the common term ‘blue-green algae’ (Table 1). Our findings 
show that the number of affected lakes, media appearances, and online 
searches all increased significantly with temperature (Fig. 3). Remark-
ably, the observed patterns are best described by a log-linear model, 
which pointed to an exponential increase in the number of online 
searches along the investigated temperature range (Fig. 3a). While we 
also found a log-linear relation for the number of affected lakes (Fig. 3c), 

the slopes for both media attention and online searches along the tem-
perature gradient were significantly steeper than the affected lakes – 
temperature relation (i.e. compare slopes in Fig. 3a and b, with Fig. 3c; 
ANCOVA, F1,66 = 5.5, P = 0.022, and F1,66 = 25.0, P < 0.001, respec-
tively). This implies that the public awareness of cyanobacterial blooms 
shows an even stronger exponential increase with temperature than the 
incidence of harmful cyanobacterial blooms. Specifically, the slopes of 
the log-linear regressions correspond to a 1.17-fold increase of the 
number of affected lakes for every 1 ◦C rise in temperature, but a 1.34- 
fold and 1.62-fold increase of media items and online searches per 1 ◦C, 
respectively. These patterns support our hypothesis of a synergistic 
interaction, where public awareness of cyanobacterial blooms is raised 
by direct effects of warming on the incidence of blooms (Fig. 3c), and 
further amplified by indirect effects of warmer summers on the general 
interest to spend time at recreational lakes for bathing and swimming (as 
reflected by the increase in searches with increasing number of lakes 
affected by blooms (Fig. S3a)). This synergistic interaction may be 
mediated by the strongly increased media coverage with temperature, 
which indeed is correlated to the incidence of cyanobacterial blooms 
and, particularly, the number of online searches (Fig. S3b and c). While 
we cannot fully disentangle these underlying causes for an increased 
public awareness, our results clearly demonstrate that the online 
searches for cyanobacterial blooms and their coverage by online media 
increase more steeply during warmer summers than the number of 
affected lakes. We note that this was tested only for the Netherlands. 
Additional comparisons of online searches, media attention, and bloom 
incidences with temperature will be required to confirm the observed 
relationship for other countries. 

3.4. Use of online search engines to study awareness 

Our findings show the potential for using Google Trends to retrieve 
long-term data indicative for public awareness of cyanobacterial blooms 
across a wide range of geographic locations. Similar patterns of public 
awareness may possibly also apply to other water quality-related issues. 
There are also some limitations to consider when using search engine 
data as a proxy for public awareness. First, the data only reflect the 
number of searches, and not necessarily the reason why people are 
searching for these terms. To link the search terms to public awareness 
of harmful cyanobacteria, we applied common popular terms (such as 
‘blue green algae’) that are typically only used by the public and media 
when referring to harmful cyanobacterial blooms. As such, we expect 
that the number of searches will reflect the interest of the general public 
in cyanobacterial blooms in lakes, and that this is indicative of their 
awareness of this issue. Second, the privacy threshold for number of 
searches in Google Trends may possibly mask potential trends when the 
number of searches is limited. Such a limited number of searches, in 

Fig. 3. Number of normalized searches (a), media items (b), and affected lakes (c) in relation to mean monthly air temperatures (T) in the Netherlands. Symbols 
indicate mean values of summer months from May to September over the period 2013–2019, where the shading indicates different years from light (2013) to dark 
(2019) shades. The statistics show the adjusted R2 and significance of a log-linear regression. 
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turn, may have various reasons. For example, not all population groups 
may have access to the internet or use internet search engines for in-
formation acquisition. Moreover, instead of Google, there could be 
other, more dominant search engines in some countries. Comparative 
trend analysis between data from different search engines, however, 
showed similar trends between different types of search engines (Jun 
et al., 2017; Jun et al., 2018), suggesting that while absolute numbers 
may vary, the shown trends are reflective for overall online search 
behavior. 

3.5. Implications for the study and management of harmful cyanobacteria 

The annually recurring trends in online searches for harmful cya-
nobacteria suggest that online search records can provide valuable in-
sights into the occurrence of cyanobacterial blooms, particularly in 
regions where the resources required for full-scale monitoring programs 
are limited. However, our current analyses focused on seasonal and 
multi-annual trends using monthly data, which is of insufficient fre-
quency to timely inform water management authorities about poten-
tially occurring cyanobacterial blooms. Higher frequency data with 
weekly or even daily analyses could possibly inform water management 
about regions with an elevated risk for harmful cyanobacterial blooms. 
In combination with responsive sampling schemes, this may support the 
development of tailored risk assessments. Moreover, higher frequency 
search data may support the development of an early warning system. 
For example, Google Trends data with a temporal resolution of a week or 
less have provided reasonable forecasting abilities for early detection of 
infectious disease outbreaks such as Lyme, HIV, and influenza, as well as 
for changes in health-related behaviors (Yang et al., 2015; Arora et al., 
2019), or as input for early warning systems of financial market turbu-
lence (Petropoulos et al., 2022). Such forecasting abilities could be 
further optimized when online search data are complemented with 
cyanobacterial bloom occurrence and analyzed using deep learning 
techniques (Arora et al., 2019; Petropoulos et al., 2022). 

3.6. Interacting global change factors 

Increases in cyanobacterial blooms, number of online searches, and 
media attention are typically not affected by temperature alone, but by a 
complex interplay with other global change factors (Richardson et al., 
2019). For example, in temperate climate regions, global change also 
involves more extreme droughts, a higher frequency of storms and more 
intense rainfall events (IPCC 2021). When such combined changes in 
global change factors lead to new occurrences of blooms, or blooms of 
uncommon (e.g. invasive) species, this may particularly spark media 
attention and thereby raise public awareness. One example is the 
outbreak of cyanobacterial blooms in the hypereutrophic Milford 
Reservoir in Kansas, US. The initial 2011 bloom caused illnesses of 
humans and animals, including five dog deaths, which led to increased 
press coverage (Trevino-Garrison et al., 2015) and likely underlies the 
annual recurring summer peaks in Kansas since 2011. The cyanobacte-
rial blooms in Milford Reservoir have been attributed to a combination 
of warming, promoting increases in microbially-mediated internal 
nutrient loading, and increased nutrient run-off from extreme rainfall 
events in spring, followed by more extensive droughts (Graham et al., 
2012). Such local combinations of interacting global change factors may 
provide “the perfect storm” for ecological surprises (Filbee-Dexter et al., 
2017; Haig et al., 2022), including the development of intense cyano-
bacterial blooms (Huisman et al., 2018; Paerl et al., 2016). An increased 
occurrence of local bloom events, in turn, may cause a societal response 
reflected by unexpected shifts in search dynamics, such as sudden in-
creases in number of searches in a particular year or the start of annually 
recurring dynamics in online searches. 

4. Conclusions 

Warmer summers are expected to promote the occurrence, fre-
quency, and magnitude of harmful cyanobacterial blooms. Our findings, 
for the first time, document online patterns of public awareness of 
cyanobacterial blooms, with pronounced increases in online searches 
every summer. Importantly, our analyses revealed climate-related 
trends in search behavior, where warmer and/or drier summers eli-
cited a stronger interest by the public. This is likely caused by a syner-
gistic combination of direct temperature effects on cyanobacterial 
blooms, as an increasing number of lakes and reservoirs experience 
blooms exceeding guideline values in warmer summers, and indirect 
temperature effects because warmer weather stimulates more outdoor 
activities and therefore raises people’s interest in the water quality of 
recreational lakes. Thus, the public is likely to become more aware of the 
potential problems caused by harmful cyanobacterial blooms when 
summers get warmer. In the future, online search patterns for harmful 
cyanobacteria may help to highlight regions or seasons with deterio-
rating water quality, especially in areas that are not monitored closely, 
and may thereby act as part of an early warning system for management 
action. 
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