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ABSTRACT

Grasping the roof structure of a building is a key part of build-
ing reconstruction. Directly predicting the geometric struc-
ture of the roof from a raster image to a vectorized represen-
tation, however, remains challenging. This paper introduces
an efficient and accurate parsing method based upon a vision
Transformer we dubbed Roof-Former. Our method consists
of three steps: 1) Image encoder and edge node initializa-
tion, 2) Image feature fusion with an enhanced segmentation
refinement branch, and 3) Edge filtering and structural rea-
soning. The vertex and edge heat map F1-scores have in-
creased by 2.0% and 1.9% on the VWB dataset when com-
pared to HEAT. Additionally, qualitative evaluations suggest
that our method is superior to the current state-of-the-art. It
indicates effectiveness for extracting global image informa-
tion and maintaining the consistency and topological validity
of the roof structure.

Index Terms— Roof structure extraction, remote sensing
image, Transformer, geometry reconstruction

1. INTRODUCTION

The creation of comprehensive 3D building models requires
access to roof structure information. Such models are useful
in applications such as building energy modeling, and urban
planning [1]. Various remote sensing data, including monoc-
ular/stereo images, point clouds, and digital surface models,
have been used to extract geometric building outlines and roof
structures [2]. However, the procurement of 3D spatial data
and the creation of accompanying 3D models are costly, es-
pecially over large areas. In contrast, roof structure extraction
based on optical remote sensing images has the potential to
offer low-cost and broad coverage advantages.

Roof structure is a topological collection of fine-grained
geometric elements of building roofs that combine line and
junction elements with their connections. Conventionally,
geometric feature extraction from images is carried out using
perceptual grouping of low-level cues. The advent of deep
neural networks has introduced groundbreaking advances
in spotting low-level primitives and recognizing high-level

geometric structures. End-to-end trainable methods have
achieved notable performance in detecting lines, points, wire-
frame, and floor plans [3, 1]. Despite this progress, research
on automated extraction of the structured geometry (outline
and roof structure) from optical remote sense images has
been limited due to scene complexity and the large variety
of roof top configurations [2, 4, 1]. Existing methods, how-
ever, reveal several false positive candidates in the extracted
geometric primitives that are not positioned inside buildings.
Additionally, they often drop adjacency relationships among
the primitives.

Vision tasks have made significant use of the Transform-
ers’ sequence-to-sequence model [5]. The model denotes
both input features and output targets as visual tokens, which
engage in global interactions with one another via the at-
tention mechanism of the Transformers. Based on DETR
[5] developed for object detection, Holistic Edge Attention
Transformer (HEAT) [6] was proposed to restructure a pla-
nar graph representing an underlying geometric structure.
However, issues concerning the effective and efficient ex-
traction of global image features persist due to insufficient
single-scale feature maps and high computational costs [6].

We propose the Roof-Former, a Transformer network for
efficient planar roof structure extraction from very high res-
olution remote sensing images. The Roof-Former ensures
the consistency of spatial and topological relations of the ex-
tracted primitives within the roof structure by combining to-
kenized entity modeling, primitive detectors, and relationship
inference. Our method is based specifically on HEAT [6],
and we introduce an enhanced feature pyramid module to the
Transformer, which enables the image encoder to learn multi-
scale features while reducing resource consumption during
training. We also add a collaborative segmentation refinement
branch to the existing framework, which ensures the spatial
and topological relations of the extracted primitives within the
roof structure by jointly learning the building masks. Differ-
ent modality features are effectively fused based on an Atten-
tion Feature Fusion Module (AFFM). We evaluate our pro-
posed method on the benchmark dataset and demonstrate its
effectiveness in global structural reasoning compared to other
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Fig. 1: The overall architecture of Roof-Former, which consists of three steps: 1) Image encoder and edge node initialization
(yellow); 2) Image feature fusion with enhanced segmentation refinement branch (blue); and 3) Structural reasoning with
Transformer decoders (green).

methods.

2. METHODOLOGY

The overall architecture of Roof-Former is designed on the
basis of HEAT. It identifies vertices and categorizes edge can-
didates between vertices in an end-to-end manner (Figure 1).
The model infers vectorized planar graphs (i.e., vertices and
edges) representing a roof structure given a 2D raster image.
The proposed Roof-Former comprises three modules: 1) Im-
age encoder and edge node initialization, 2) Image feature
fusion with enhanced segmentation refinement branch, and 3)
Edge filtering and structural reasoning.

2.1. Image Encoder and Edge Node Initialization

Our Roof-Former network extracts the image feature map
from a backbone with the reduced dimension using an input
image of size H × W × 3. To create spatial relations, po-
sitional embeddings are concatenated with image features.
Unlike HEAT, we introduce an enhanced pyramid structure
into the Transformer framework, called the Feature Pyramid
Transformer (FPT). The backbone consists of four stages that
yield feature maps in varying scales, and each stage has a
patch embedding layer and Li Transformer encoding layers.
The output resolution of the four stages gradually decreases
from high with 4-stride to low with 32-stride, and Pi denotes
the patch size of stage i. Each of the Li encoder layers in the
Transformer encoder’s stage i is made up of an attention layer
and a feed-forward layer. We utilize a linear spatial reduction
attention layer to replace the encoder’s multi-head attention
layer, gaining a linear computational and memory cost.

In the vertex detection network, each 4× 4 super-pixel is
assigned as a node in our network, instead of a pixel in the
256 × 256 image space, to minimize memory costs. Each
node’s fcoord is built with an additional Multilayer percep-
tron (MLP) by summing the coordinate features of the 16

pixels that make up a super-pixel. A ConvNet decoder trans-
forms the 64×64×256 feature maps into the final 256×256
confidence map, consisting of convolution layers, upsampling
layers, and a final linear layer for confidence map genera-
tion. To yield the final vertex detection results, we apply non-
maximum suppression to the confidence map. Each pair of
vertices functions as an edge candidate and becomes a Trans-
former node, with the feature fcoord initialized by the 256-
dimensional trigonometric positional encoding. The vertex
detection model undergoes combined training with edge clas-
sification. Overall, our Roof-Former network efficiently ex-
tracts roof structure from very high resolution remote sensing
images by introducing an enhanced pyramid structure into the
Transformer framework and using a vertex detection network
for combined training with edge classification.

2.2. Image Feature Fusion with Enhanced Segmentation
Refinement Branch

We adapt the deformable attention method used in HEAT to
inject image features into each edge node. We generate sam-
pling sites and attention-weights for image feature aggrega-
tion at each level of the feature pyramid in the image encoder
using an 8-way multi-head attention strategy. To boost ob-
ject accuracy for large-scale roof structure mapping, we add
an additional semantic segmentation branch along the Trans-
former, producing the semantic binary label using the build-
ing outline in the building segmentation branch. After the
backbone network, we convert the backbone feature into the
embedding features of vertices and segmentation maps, pre-
dicting vertice heatmap and the segmentation mask for the
building polygons. For the mask branch, we use two convo-
lutional neural networks with a shared feature map from the
backbone network, using a sigmoid activation function in the
output layer for the aided segmentation map.

We introduce an attention feature fusion module (AFFM)
that uses segmentation branches to enhance feature fusion
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across tasks. The efficient attention mechanism enriches the
feature fusion of mask and edges at both global and local
scales by establishing opposing spatial pooling sizes and se-
lectively executing channel attention at distinct scales. To
keep the weight light, the local context is simply tacked onto
the global context inside the attention module. A local chan-
nel context aggregator, named point-wise convolution (PW-
Conv), relies only on point-wise channel interactions at each
spatial position, conserving parameters using the bottleneck
structure.

Fig. 2: Illustration of the proposed AFFM.

The feature maps X and Y are then taken into consid-
eration. After fusing these features, the network can apply
mask-level guidance to limit the scope of candidate primi-
tives. Additionally, the AFFM is used to combine the edge
candidates with the aided segmentation map in order to gen-
erate line proposals. When deciding whether or not to keep a
primitive, the aided segmentation map is fused with the can-
didate primitives from the primitive detection branch. This is
performed by taking the primitive’s location and state relative
to other features in the image. Once the retrieved candidate
primitives satisfy the segmentation layer’s range, they are ac-
tivated. They will be otherwise suppressed.

2.3. Edge Filtering and Structural Reasoning

After integrating image and mask feature with edge node, we
generate a fused feature by integrating a conventional add-
norm layer and a feed-forward network (FFN), as in the orig-
inal Transformer. Following that, we eliminate unsuited can-
didates by putting f through a 2-layer MLP followed by a
sigmoid function and generating a confidence score. Top-K
candidates are kept, where K is three times the number of
vertex candidates.

Two weight-sharing Transformer decoders are used to cat-
egorize every edge candidate as either correct or not. Each
edge candidate is modeled as a node and assigned the fused
feature f by the image feature decoder. An 8-way multi-head
attention mechanism is incorporated into the network’s six
layers of self-attention, edge image feature fusion module,
and feed forward network. The geometric decoder has the

same architecture and shares the weights without using im-
age information. It is used to enhance the global geometric
reasoning and performance of the image-aware decoder. We
use the same masked training and iterative inference as in [6].

3. EXPERIMENT AND RESULTS

3.1. Dataset and Evaluation Metrics

We performed experiments on the Vectorizing world building
dataset (VWB) [7] to verify the performance and robustness
of our method. The VWB dataset is a part of the SpaceNet
challenge 2 with a spatial resolution of ∼ 30 cm. The entire
dataset contains 2001 patches in total. We separated them into
1601 and 400 for training and testing, respectively. The image
patches are with the size of 256× 256 pixels.

We applied two evaluation schemes for evaluation, in-
cluding pixel-wise and vector-wise metrics. Specifically, We
compute a heat map based average precision (APH ) and an
F1-score (FH ) for each of the vertex and edge primitives. We
also apply the mean structural Average Precision (msAP ),
metrics defined on vectorized wireframes for both vertex
(msAPV ) and edges (msAPE) [1].

3.2. Experimental Setup

The PyTorch environment was used for all experiments. All
training and testing were carried out on a single GTX 2080Ti
GPU with 12 GB of memory. The loss balancing weights for
the three edge Binary cross-entropy (BCE) losses all equal
1.0, while the vertex prediction BCE weight equals 0.05. The
Adam optimizer is used to train our model. We set an initial
learning rate as 2e−4, and a weight decay factor of 1e−5. For
the last 25 epochs, the learning rate decays by a factor of 10.
Our network is trained for 400 epochs. Roof-Former can be
trained from end to end without the requirement for a separate
preparatory extraction phase.

3.3. Results and Evaluations

We compared our method against four competing methods:
ConvMPN [4], HAWP [3], RSGNN [1], and HEAT [6]. Each
model was trained and evaluated using the same split.

3.3.1. Quantitative analysis

Table 1 shows the experimental results. Roof-Former sur-
passes all the competing methods on all the precision and
F1-scores. Specifically, compared to HEAT, our method has
greatly enhanced the vertex and line segment outcomes, and
the vertex and edge heat map F1-scores have risen by 2.0
points on the VWB dataset. The msAP for vertices and edges
is 43.1, which is higher than the HEAT and other methods.
The results indicate that our method also increases geometric
accuracy.

4901

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 26,2024 at 08:42:33 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Quantitative results on the VWB dataset.

Datasets Methods msAPV msAPE APH
V FH

V APH
E FH

E

VWB

ConvMPN 35.7 34.2 78.0 78.8 57.0 58.1
HAWP 31.1 31.0 90.9 85.2 76.6 72.1
RSGNN 34.8 34.6 89.6 85.7 76.4 75.7
HEAT 41.6 40.3 91.7 87.1 80.6 76.2
Ours 43.1 42.4 92.3 89.1 82.3 78.1

Non-Transformer methods rely predominately on image
features and do not acquire global geometric reasoning across
query nodes, resulting in a large number of false edges and
building reconstructions that do not resemble buildings. The
performance gap is especially noticeable for edges, which in-
volve high-level geometry reasoning.

Fig. 3: Sample results on the VWB datasets.

3.3.2. Qualitative analysis

Figure 3 provides the qualitative comparisons. The recon-
struction quality of Roof-Former is easily noticed to be supe-
rior to competing methods and closer to reality, which is true
even when massive and complex buildings are considered.
Carefully scrutinizing the structures, Roof-Former is partic-
ularly effective at determining global information and main-
tains the overall prediction consistency and geometric valid-
ity (e.g., less hanging edges, not distracted by background
buildings). It can be easily observed that the addition of the
building segmentation branch can significantly increase the
accuracy of roof structure extraction.

3.4. Discussion

There are still some major failures of our methods. First, our
method fails to recover from vertices overlooked by the ver-
tex detector. Absent vertices result in absent incident graph
structure or degraded geometry. Second, our method adopts a
piece-wise linear structure and cannot deal with curved build-
ings. Third, our method may become less effective when
transferring our method to oblique, relatively low-resolution
satellite images. In addition, the segmentation outcomes are
strongly reliant on the quality of the reference data. Future re-
search will explore Generative adversarial networks (GANs)
to improve instance data augmentation and more effective
training processes to improve the proposed method.

4. CONCLUSION

This paper introduces an improved planar reconstruction
method for vectoring 2D roof structures directly from a sin-
gle image. Our method is built upon HEAT, and is enhanced
by applying a feature pyramid Transformer and introducing a
collaborative branch of semantic segmentation into primitives
extraction. Compared with HEAT, the vertex and edge heat
map F1-scores have risen by 2.0% on the VWB dataset. Qual-
itative evaluations also demonstrate that our method makes
improvements over the existing state-of-the-art. Future re-
search will continue to explore more efficient and effective
training methods, such as the introduction of self-supervised
learning and knowledge distillation.
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