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ABSTRACT

Despite its environmental and societal importance, accurately
mapping the Brazilian Cerrado’s vegetation is still an open
challenge. Its diverse but spectrally similar physiognomies
are difficult to be identified and mapped by state-of-the-art
methods from only medium- to high-resolution optical im-
ages. This work investigates the fusion of Synthetic Aperture
Radar (SAR) and optical data in convolutional neural network
architectures to map the Cerrado according to a 2-level class
hierarchy. Additionally, the proposed model is designed to
deal with uncertainties that are brought by the difference in
resolution between the input images (at 10m) and the refer-
ence data (at 30m). We tested four data fusion strategies and
showed that the position for the data combination is important
for the network to learn better features.

Index Terms— Cerrado, deep learning, SAR-optical data
fusion, semantic segmentation, remote sensing

1. INTRODUCTION

The Cerrado is the second largest biome in South America
with an approximate area of 2 million km2. It is consid-
ered one of the most diverse ecosystems in the world, with
more than 11.000 different plant species and a unique vast
fauna [1]. The biome’s natural vegetation can be divided
in three main formation levels: forest, savannah, and grass-
land. These formations can be subdivided into lower levels
up to 25 phytophysiognomies [2]. Despite its environmental
importance, the biome has undergone a rapid transformation
process due to human activities in the last 50 years. It is esti-
mated that almost 50% of the biome’s natural vegetation has
been suppressed, and several other areas are still under pres-
sure from agriculture, livestock, and coal production. This
rapid transformation is causing many negative consequences
such as biodiversity loss, growth of invasive species, soil ero-
sion, and water pollution. In fact, less than 3% of the area is
under strict protection. In that sense, mapping and monitoring
the remaining vegetation is essential to guide public policies
for the Cerrado preservation and the sustainable development
of the anthropic areas [3].

Nevertheless, producing accurate high-resolution land use
and land cover (LULC) maps of the Cerrado is a big chal-
lenge. In addition to its large extension, other characteristics
of the region can pose problems for the mapping, such as the
seasonality of natural changes, high dynamic land use pres-
sure, high cloud and smoke coverage, spectral similarities
and high heterogeneity of the natural vegetation formations.
These difficulties are present even in mapping approaches
based on visual interpretation [4]. Recent researches have
indicated that higher spatial resolution is essential to dis-
criminate multiple plant physiognomies. On the other hand,
a higher resolution means more data, which makes visual
interpretation extremely expensive and impractical. There-
fore, researches on machine learning are needed to analyze
large volumes of Earth observation data, and obtain a highly
accurate classification. Recent works in the literature have
explored these techniques using optical data with classic
machine learning algorithms [5, 6], such as random forest,
support vector machines, and others.

Fig. 1. Cerrado areas of the produced dataset.

The resolutions of the optical sensors used in the works
vary from 30m (Landsat) to 2m (WorldView-2). Despite some
promising results using deep learning methods at 2m resolu-
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tion images [7], there is still some spectral confusion between
classes that the optical data cannot deal with.

SAR data is a good complementary source of informa-
tion. Because of SAR canopy penetration capability, it is
more effective in capturing features that can describe struc-
tural elements of the vegetation [1, 8]. Therefore, the com-
bination of SAR and optical data is expected to improve the
classification of the different vegetation types, even in lower-
resolution images. Few works have attempted to fuse infor-
mation from both sensors to map Cerrado’s vegetation using
classic machine-learning algorithms [9, 1, 10]. To the best of
our knowledge, deep learning has not yet been explored for
this matter.

One of the main criticism of the machine learning works
for the Cerrado is that most of them are restricted to a small
study area that does not represent the diversity of the whole
biome [3]. This work aims at investigating the data fusion of
SAR and optical data for mapping the natural vegetation of
the Cerrado at 10m resolution on a regional to national level,
using deep learning semantic segmentation algorithms.

2. STUDY AREA

Ten areas of the Cerrado were selected to build a dataset us-
ing Sentinel-1 (S1) Single Look Complex (SLC) data and
Sentinel-2 (S2) optical data from the year 2018, during the dry
season (June to September). The total study area comprises
an area of 142,801 km2 and spreads across 55 S2 tiles. Each
tile has an average area of 100×100km2 with a 5km overlap
between adjacent tiles. 36 of those tiles were used for train-
ing, 9 for validation, and 10 for testing (one tile per area). For
the testing tiles, the overlapping areas were excluded to guar-
antee a proper accuracy assessment. Figure 1 presents the
chosen areas and an example of how the tiles were separated.

Fig. 2. Investigated SAR-optical fusion architectures.

The reference data was derived from the combination of

the TerraClass Project 2018 LULC map [4] and the vegetation
map produced by [6] in a hierarchical manner. TerraClass was
used to produce the reference at a first hierarchical level, with
three classes: 1) anthropic areas, 2) natural areas, and 3) water
bodies. The natural areas were further subdivided into five
second-level classes using both references: 1) natural non-
vegetated areas (sandy and rocky outcrops), 2) grassland, 3)
forest, 4) savannah and, 5) secondary vegetation areas.

The reference maps were downscaled from 30m to 10m
resolution using nearest neighbor resampling. However, this
interpolation introduces noise to the labeled dataset, affecting
the performance of supervised learning methods. Moreover,
another source of noise is the uncertainty on each reference
map. The Terraclass map, for example, is reported to have a
90.7% overall accuracy, while the other reference’s is 86%.

3. METHODOLOGY

Our methodology addresses three main aspects to achieve our
goal: 1) learn from a noisy dataset due to different spatial
resolution between the input data and the reference maps; 2)
evaluate different deep learning data fusion architectures, and
3) apply a hierarchical classification approach according to
the classes structure.

Table 1. Test set accuracies of the architectures with one and
two outputs for the first level of the hierarchical classification

S2 1-output S2 2-outputs
Accuracy OA 84.27% 88.81%

Natural 84.03% 93.30%
Anthropic 85.75% 80.81%

Water 39.50% 20.26%
IoU mIoU 60.30% 58.46%

Natural 78.40% 85.00%
Anthropic 63.91% 70.64%

Water 38.59% 19.73%
F1-Score mF1-Score 73.86% 69.21%

Natural 87.89% 91.89%
Anthropic 77.98% 82.79%

Water 55.69% 32.96%

Our main approach to deal with the resolution noise was
to design network architectures in an encoder-decoder archi-
tecture that infers the results at both resolutions (10m and
30m). While the 10m output was evaluated in the noisy re-
sampled reference, the 30m output used the original refer-
ence. The back-propagation used the sum of the loss from
each output to update the weights of the network. The op-
timization algorithm used was Adam, with an exponential
learning rate decay. This novel two-output combination is
expected to reduce the effects on the training of the noisy ar-
tifacts introduced by the nearest neighbor resampling of the
reference data. During training, the accuracy of both outputs
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Table 2. Test set accuracies of the different data fusion architectures proposed for the first level of the hierarchical classification
S1+S2 early 1 S1+S2 early 2 S1+S2 middle S1+S2 late

Accuracy OA 87.03% 89.11% 86.76% 81.57%
Natural 85.93% 89.79% 90.28% 86.45%

Anthropic 89.55% 88.06% 80.09% 72.27%
Water 78.39% 71.91% 51.45% 33.98%

IoU mIoU 61.43% 68.64% 65.60% 55.25%
Natural 81.95% 84.81% 82.23% 76.21%

Anthropic 70.35% 72.96% 66.36% 55.85%
Water 31.99% 48.14% 48.21% 33.68%

F1-Score mF1-Score 73.72% 80.38% 78.36% 69.52%
Natural 90.08% 91.78% 90.25% 86.50%

Anthropic 82.60% 84.37% 79.78% 71.67%
Water 48.47% 64.99% 65.05% 50.39%

in the validation dataset was monitored. We selected the best
model by the best accuracy on the 30m output, since this out-
put is the most trustworthy. In order to test this hypotesis, we
first tested two networks only with S2 data. One of the net-
works only had the output at 10m and the other one had the
two outputs.

In terms of data fusion, we investigated four different deep
learning architectures: two early fusion methods, one mid-
dle fusion, and one late fusion. Early fusion refers to the
combination of the data before the encoder feature extraction
of the network, while middle fusion happens before the de-
coder path of the network, and late fusion, before the fully-
convolutional classification layer. Figure 2 shows a scheme
with all four architectures. The main difference between the
two tested early fusion methods is the addition of a convolu-
tion layer called feature adaptation before the encoder. The
function of this layer is to prevent a raw combination of the
inputs since they have different natures and statistical distri-
butions.

The final classification was performed following the hier-
archical structure of the LULC reference map. First, a clas-
sifier was built to segment the data into the 3 classes of the
first level (i.e. anthropic, water and natural areas). The data
fusion architectures were explored in this first level of clas-
sification. After the decision on the best data fusion method,
another classifier with the same structure was trained to sep-
arate the natural areas in the other 5 categories of the second
level of the LULC. At test time, a final classification map is
produced by combining the outputs of each networks. All pix-
els classified as anthropic and water from the first network is
directly imported to the final map, and the pixels with natural
class receive the corresponding classification from the second
network. The final map has 7 classes. For comparison, a non-
hierarchical classifier with the 7 classes was also trained and
evaluated, using the same data fusion network structure. All
tests used the 10m bands of S2 and the intensity in both po-
larizations of S1 as input.

Table 3. Test set accuracies of the final classification
Level-2 Non-hierarchical Hierarchical

Accuracy OA 65.45% 68.03%
Anthropic 86.41% 88.06%

Water 60.93% 71.91%
Nat. non-veg. 0.00% 0.00%

Grassland 53.92% 66.97%
Forest 75.61% 59.11%

Savannah 53.24% 60.25%
Sec. veg. 0.06% 15.33%

IoU mIoU 35.75% 38.18%
Anthropic 62.38% 72.96%

Water 55.86% 48.14%
Nat. non-veg. 0.00% 0.00%

Grassland 42.42% 47.56%
Forest 46.92% 42.81%

Savannah 42.58% 44.64%
Sec. veg. 0.06% 11.16%

4. RESULTS

Table 1 compares the results obtained when using only the
10m output and the two outputs. We can observe that there
is an improvement of 4.54% on the overall accuracy (OA),
and improvements on both anthropic and natural classes’ IoU
and F1-score. Despite these improvements, the network had
a considerable drop in the detection of the water class. This
drop little affected the OA because water is a minority class in
the dataset, but it highly affected the mean intersection over
union (mIoU) and mean F1-score.

Table 2 compare the different architectures for the fusion
of S1 and S2. All architectures have 2 outputs, motivated
by the results from the previous test. The early fusion ar-
chitectures present better results than the other models. This
behaviour happens because the combination in earlier stages
makes the network learn better features with the data, than
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in each individual path. In terms of the OA, the amount of
the improvement is just marginal, which could indicate that
the SAR information is just marginally contributing to the
network. If we observe the mIoU and mean F-1 score, the
addition of the SAR information had a high contribution in
differentiating the classes. The early fusion with the feature
adaptation module presented the best results. Figure 3 shows
the result in a small area for the level-1 classification.

Fig. 3. Example of results obtained with the early fusion 2
architecture for the level-1 of the classification. (a) is the ref-
erence and (b) is the model prediction

The final hierarchical classification results are presented
in table 3. The table also shows the non-hierarchical classifi-
cation results. The hierarchical approach improved the accu-
racy in 2.58% and reduced the confusion for several classes
that happened in the non-hierarchical classification. Neither
models were able to identify the natural non-vegetated class,
because of the high imbalance of this specific class. It repre-
sents less than 0.012% of the pixels in the dataset.

5. CONCLUSION

The results show that the location in which the fusion is done
has a high impact on the results. It can bring more confusion
to the classification instead of improving it. The addition of
the second output at 30m and the combined loss function im-
pacts the classification in the proposed dataset, but it only im-
proved the learning of the majority classes. On one side, the
hierarchical classification reduces the complexity of the clas-
sifier decision, but the final accuracy accumulates errors from
previous levels. There is still yet room for improvement by
exploring more bands of the S2 data, trying different combi-
nations of the two output individual losses, and using different
network structures that can better deal with SAR data.
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