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Abstract For projection-based linear-subspace model order reduction (MOR), it is
well known that the Kolmogorov n-width describes the best-possible error for a reduced
order model (ROM) of size n. In this paper, we provide approximation bounds for ROMs
on polynomially mapped manifolds. In particular, we show that the approximation
bounds depend on the polynomial degree p of the mapping function as well as on the
linear Kolmogorov n-width for the underlying problem. This results in a Kolmogorov
(n, p)-width, which describes a lower bound for the best-possible error for a ROM on
polynomially mapped manifolds of polynomial degree p and reduced size n.
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1. Introduction

Model Order Reduction (MOR) is used to derive surrogate models for high-dimensional full-order
models (FOMs). This allows to execute and speed up tasks which require to evaluate the FOM
multiple times for different parameters (e.g. in parameter studies, sampling-based uncertainty quan-
tification) or in real time (e.g. in model-based control). We denote the (possibly parametric) FOM
with P (µ) in dependence of an arbitrary but fixed parameter vector µ ∈ P from a given parameter
domain P ⊂ Rnµ , nµ ∈ N. Typically, the FOM is a parametric system of partial or ordinary differ-
ential equations and it is formulated on an N -dimensional Banach space (V, || · ||V ) over a field K,
(K = R or K = C), with large dimension N ∈ N ∪ {∞}. The goal of MOR is to approximate the
so-called solution manifold

M := {x(µ) ∈ V : x(µ) is solution of P (µ) for parameter vector µ ∈ P} ⊂ V. (1)

To this end, classical MOR determines a low-dimensional subspace Vn ⊂ V with dim(Vn) = n ≪ N
and an efficiently computable reduced-order model (ROM) Pn(µ). The ROM is used to compute a
reduced solution to approximate the FOM solution x(µ) ∈ M. The quality of this approximation
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can be bounded from below by the Kolmogorov n-widths. These quantify how well a given subset
S ⊂ V can be approximated by an n-dimensional linear subspace of V with

dn(S;V ) := inf
Un⊂V,

dim(Un)=n

sup
x∈S

inf
xn∈Un

∥x− xn∥V .

Since classical MOR relies on the approximation in a linear subspace of dimension n, it is well-known
that the best-possible approximation of all elements in the solution manifold M is bounded from
below by dn(M;V ).

For some problem classes, there have been analytical results for the behavior of the Kolmogorov
n-widths for increasing n. E.g. for linear coercive elliptic PDEs (a) with one parameter, it has been
shown that dn(M;V ) decays at least exponentially, i.e., dn(M;V ) ≤ C exp−γn for C, γ > 0, see
[17, 18], or (b) with d ∈ N parameters, [1, 19] prove for affinely decomposable problems that the
decay is at least dn(M;V ) ≤ C exp−cnγ for C, c, γ > 0. For linear transport equations or linear
wave equations, it is known that dn(M;V ) can exhibit slow decays with a rate of at most n−1/2, see
[12, 19]. Especially for the latter case, there have been various attempts to “break” the Kolmogorov
n-width barrier by, e.g., considering model reduction on manifolds.

The object of interest in the Kolmogorov n-width are the linear subspaces Vn ⊂ V . These
can be characterized by a basis {vi}ni=1 ⊂ Vn via linear combination of basis vectors vi ∈ Vn with
basis coefficients x̌i ∈ K. In MOR, the basis coefficients x̌ := (x̌i)

n
i=1 ∈ Kn are referred to as

reduced coordinates and are determined by solving the according ROM. In this paper, we are looking
at Kolmogorov n-widths for a special type of submanifold for which the basis coefficients x̌i are
obtained from a polynomial of degree p ∈ N0. We refer to these submanifolds as polynomially
mapped. Moreover, we introduce an analogue to the Kolmogorov n-width, which we refer to as
polynomial Kolmogorov (n, p)-width which additionally depends on the order p of the polynomial.
For an overview of different versions of nonlinear widths, we refer to [7]. Additionally, we relate our
polynomial Kolmogorov (n, p)-width to a polynomial analogue of the nonlinear manifold width, first
introduced in [9], at the end of this paper.

Note, that in previous works, polynomial approximations are ubiquitous in the field of numerical
approximation of high-dimensional problems. For example in the work [6], parametric PDEs are
approximated with a polynomial function. However, this approach is polynomial in the parameter
vector µ while our approximation is polynomial in the reduced coordinates which may depend
arbitrarily complex on the parameter vector. It has been shown in [1] for classical MOR (i.e. p=1
in our case) that such methods can perform significantly better than the methods from [6].

Moreover, there have been recent approaches using polynomial approximation for the reduced
coordinates. In the work of [13], the general idea of using nonlinear mapping functions and especially
quadratic mapping functions (p = 2) has been described, but the model reduction is only performed
with piece-wise linear manifolds. Recently, the idea of model reduction with quadratically embedded
manifolds has been introduced in [15, 21] for structural nonlinear dynamics. In these references, the
approaches are introduced for a special class of second-order dynamical systems by e.g., using a
linearized problem to compute vibration modes as linear part of the basis and then constructing the
quadratic extension via modal derivatives. A different possibility to derive the modal derivatives in
the context of model reduction on quadratically embedded manifolds has been derived in [8]. In [2]
the authors perform projection based model reduction on quadratically embedded manifolds, but
their approach holds for more general settings, e.g., first-order equations and transport-dominated
flow problems. The same idea of using a quadratic mapping function has been used in [11], but there
the authors perform operator inference, i.e., the ROM is learned from data instead of projecting the
FOM. In [14], a shifted operator inference using quadratic mapping functions has been used to
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predict solar winds. In [4], also operator interference is used, but the approach utilizes a state-
dependent mass matrix that depends on the derivative of the mapping function. A structure-
preserving technique for Hamiltonian systems has been introduced in [22].

In the present work, we are particularly interested in what is the best-possible approximation
error of a solution manifold by a polynomially mapped manifold. We will derive an upper as well
as a lower bound for this approximation error, with both bounds being related to the classical
Kolmogorov n-width of the problem at hand.

2. Approximation Bounds on Polynomial Manifolds

In this section, we start by defining polynomial mappings and polynomially mapped manifolds.
Then, we show that these polynomially mapped manifolds are contained in a linear subspace, which
leads to a lower and an upper bound for the polynomial Kolmogorov (n, p)-widths of these manifolds.
We close this section by stating how this impacts certain decay rates for which a classical Kolmogorov
n-width is known.

2.1. Polynomial Mappings

Consider a vector space V over a field K, (K = R or K = C). The Kronecker product (of order
k ≥ 0) of a vector x̌ = (x̌i)

n
i=1 ∈ Kn is denoted with

x̌⊗k :=
(
x̌1 · · · x̌1︸ ︷︷ ︸
k terms

, x̌1 · · · x̌1 · x̌2︸ ︷︷ ︸
k terms

, . . . , x̌n · · · x̌n︸ ︷︷ ︸
k terms

)
∈ Knk

for k ≥ 1, x̌⊗0 := 1 ∈ K.

Due to the commutativity of the multiplication of elements in K, the Kronecker product contains
redundant entries. Thus, we consider the symmetric Kronecker product x̌⊗sk ∈ Km(n,k) which
neglects duplicate terms in x̌⊗k and results in

m(n, k) :=

(
n+ k − 1

k

)
≤ nk

entries.
For n ∈ N, p ∈ N0 and a given set of vectors Vn,p :=

{
vkj ∈ V

∣∣ 0 ≤ k ≤ p, 1 ≤ j ≤ m(n, k)
}
⊂

V , we consider polynomial mappings with degree p ≥ 0

Γn,p : Kn → V, x̌ 7→
p∑

k=0

m(n,k)∑
j=1

(
x̌⊗sk

)
j
vkj

which sums over all symmetric Kronecker products from order 0 to p. Following the notation in
MOR, we call x̌ ∈ Kn the reduced coordinates. In total,

t(n, p) :=

p∑
k=0

m(n, k)

vectors are used in the polynomial mapping. The image of a polynomial mapping of order p defines
an at most n-dimensional submanifold of V which we call polynomially mapped submanifold and
denote in the following as

M̃n,p := img(Γn,p) ⊂ V.

We can then immediately show the following lemma, which will be needed later to derive the
approximation bounds.
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Lemma 1 (Intermediate Linear Mapping). The image of a polynomial mapping of order p is con-
tained in a t(n, p)-dimensional subspace of V .

Proof. Firstly, we rewrite the polynomial mapping as the composition Γn,p := An,p ◦ Kn,p of a
nonlinear map

Kn,p : Kn → Kt(n,p), x̌ 7→ (x̌⊗sk, x̌⊗sk−1, . . . , x̌⊗s2, x̌, 1)

which generates all symmetric Kronecker products and a linear map

An,p : Kt(n,p) → V, y 7→
∑

vi∈Vn,p

(y)ivi.

But then, the submanifold M̃n,p = img(Γn,p) ⊂ img(An,p) =: An,p is a subset of the t(n, p)-
dimensional subspace An,p.

Example 1 (Finite-Dimensional Vector Spaces). In the case of V = KN for some N ∈ N, the
vectors vkj ∈ Vn,p for the polynomial mapping may simply be given by the columns of (p+1) mapping
matrices Ak := [vk 1, . . . , vkm(n,k)] ∈ KN×m(n,k), 0 ≤ k ≤ p, such that

Γn,p(x̌) =

p∑
k=0

Akx̌
⊗sk,

In this case, the linear map from Lemma 1 stacks all 0 ≤ k ≤ p mapping matrices Ak in its columns

An,p(y) = Ay, A := [Ap, . . . , A0] ∈ KN×t(n,p) such that Γn,p(x̌) = AKn,p(x̌).

Thus, the definition of a polynomial mapping covers

1. classical MOR on affine or linear subspaces with Γn,1(x̌) = A1x̌+A0,

2. MOR on quadratic manifolds, as e.g. in [2, 4, 11, 14], with Γn,2(x̌) = A2x̌
⊗s2 +A1x̌+A0.

2.2. Bounds for the Approximation Error using Polynomial Mapping

We start by recalling the classical Kolmogorov n-width and transfer its concept to polynomially
mapped manifolds. Afterwards, we show that the polynomial Kolmogorov (n, p)-width can be
bounded from below and above by classical Kolmogorov widths.

Definition 1 (Worst Best-approximation Error). Let (V, || · ||V ) be a normed vector space. For two
sets S, T ⊆ V , we call

dist(S, T ) := sup
s∈S

inf
t∈T

||s− t||V

the worst best-approximation error of S in T .

Next, we are interested in how well a subset S ⊆ V can be approximated by an n-dimensional
linear subspace of V . This measure is known as the Kolmogorov n-width and the idea was first
formulated in [16], although we refer here to a later definition.
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Definition 2 ((Classical) Kolmogorov n-width [20, Chapter II, Definition 1.1]). Let (V, || · ||V ) be a
normed vector space and let S ⊂ V be a subset. Then, the Kolmogorov n-width

dn (S;V ) := inf
U⊆V subspace
dim(U)≤n

dist(S,U), (2)

measures the theoretically optimal worst best-approximation error of S achievable by some at most
n-dimensional subspace U of V . If dn (S;V ) = dist(S,U), for some subspace U of dimension at
most n, then U is said to be an optimal subspace for dn (S;V ).

The Kolmogorov n-widths are an established measure to argue how well the solution manifold
M ⊂ V from (1) can be approximated by classical MOR. Since the approximation of the ROM in
classical MOR is determined in an n-dimensional subspace Vn ⊂ V , the best-possible approximation
is limited from below by the Kolmogorov n-width by construction, i.e.

dist(M, Vn) ≥ dn (M;V ) . (3)

In the following, we generalize the classical Kolmogorov n-width to the polynomial Kolmogorov
(n, p)-width, i.e., we are interested in the best-possible approximation error for a ROM constructed
by a polynomial mapping.

Definition 3 (Polynomial Kolmogorov (n, p)-width). Consider a normed vector space (V, || · ||V )
with a subset S ⊆ V . Then, the polynomial Kolmogorov (n, p)-width

d⊗n,p (S;V ) := inf
M̃l,ppoly. mapped submnf.

dim(M̃l,p)≤n

dist(S,M̃l,p)

measures the theoretically optimal worst best-approximation error of S achievable by some polyno-
mially mapped submanifold M̃l,p of V with dimension dim(M̃l,p) ≤ l ≤ n.

This allows us to bound the best-approximation error for ROMs from MOR with polynomially
mapped manifolds of order p and reduced dimension n from below with the polynomial Kolmogorov
(n, p)-width analogously to (3) by

dist(M,M̃n,p) ≥ d⊗n,p

(
M;M̃n,p

)
.

We can show, that the polynomial Kolmogorov (n, p)-width can be bounded from above and
below with quantities relating to the classical Kolmogorov n-width.

Theorem 1 (Approximation Bounds for Polynomial Kolmogorov (n, p)-width). Consider a normed
vector space (V, || · ||V ). For any set S ⊆ V the polynomial Kolmogorov (n, p)-width for p ≥ 1 is
sandwiched by the classical Kolmogorov t(n, p)-width and n-width, i.e.,

dt(n,p) (S;V ) ≤ d⊗n,p (S;V ) ≤ dn (S;V ) . (4)

Proof. We start by proving the upper bound d⊗n,p (S;V ) ≤ dn (S;V ): As p ≥ 1, linear mappings
are included in Γn,p as a special case by setting all vectors vkj ∈ Vn,p with k ̸= 1 to zero. Thus,
the polynomially mapped submanifolds M̃l,p in the polynomial Kolmogorov (n, p)-width include all
linear subspaces with dimension l ≤ n as special case and the polynomial Kolmogorov (n, p)-width
is bounded by the classical Kolmogorov n-width from above.
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Mx(µ)

M̃n,p
x(µ1)

x(µ2)
x(µ3)An,p

dist(x(µ),An,p)
dist(x(µ),M̃n,p)

Figure 1: Schematic illustration of the main assertion of the paper for n = 1, p = 2 and nµ = 1. Approxima-
tion of the solution manifold M (solid blue line) with a polynomially mapped submanifold M̃n,p

(solid yellow line) which is contained in the subspace An,p (green surface). To this end, for a fixed
parameter µ ∈ P, the approximation of x(µ) by M̃n,p cannot be better as the approximation of
x(µ) by An,p.

We continue by deriving the lower bound dt(n,p) (S;V ) ≤ d⊗n,p (S;V ): From Lemma 1, we know
that img(Γl,p) ⊂ Al,p with dim(Al,p) = t(l, p). Then, for any set S ⊆ V , it holds that

dist(S,M̃l,p) ≥ dist(S,Al,p)
(2)
≥ dt(l,p) (S;V )

l≤n
≥ dt(n,p) (S;V )

since dn (S;V ) is monotonically decreasing in n and t(l, p) is monotonically increasing in l. By taking
the infimum over M̃l,p in the left-hand side of the inequality, we arrive at the lower bound.

Especially critical in the statement of Theorem 1 is the lower bound. It states that the poly-
nomial mappings are limited by a classical Kolmogorov n-width, which results from Lemma 1: we
know that the image of every polynomial of order p is contained in a t(n, p)-dimensional subspace
of V . This is visualized schematically in Fig. 1, where the solution manifold M is approximated by
the polynomially mapped manifold M̃n,p, which is in turn embedded in the linear subspace An,p. If
for a given parameter vector µ ∈ P, we consider the distance from x(µ) ∈ M to M̃n,p, then this
particular distance cannot be less than the orthogonal projection of x(µ) onto An,p.

In the following, we show how this impacts certain decay rates in the classical Kolmogorov
n-widths.

Corollary 1. If the decay of the Kolmogorov n-widths is at most algebraic or exponential

dn (S;V ) ≥ Mn−α, or dn (S;V ) ≥ Me−anα
, (5)

for some M,α, a > 0, then for p ≥ 2, n ≥ 4, the decay of the polynomial Kolmogorov (n, p)-width is
also at most algebraic respective exponential with

d⊗n,p (S;V ) ≥ Mn−αp, or d⊗n,p (S;V ) ≥ Me−anαp
.

Proof. We can estimate the total number of vectors used in the polynomial mapping for p ≥ 2 and
n big enough with

t(n, p) ≤ np. (6)

For the rigorous proof of this part, we refer due to length to the Appendix A. With Theorem 1 we
derive for the algebraic case

d⊗n,p (S;V )
(4)
≥ dt(n,p) (S;V )

(5)
≥ M (t(n, p))−α

(6)
≥ Mn−αp
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and for the exponential case

d⊗n,p (S;V )
(4)
≥ dt(n,p) (S;V )

(5)
≥ Me−a(t(n,p))α

(6)
≥ Me−anαp

since both, (·)−α and e−α(·)α , are monotonically decreasing.

For MOR, this theorem means that, if bounds on the classical Kolmogorov n-widths dn (M;V )
are known, then the best-possible approximation error of ROMs based on polynomially mapped
manifolds d⊗n,p (M;V ) decays within the same type of convergence class. This is exemplified in the
following.

Example 2 (Linear Advection [19], Linear Wave Equation [12]). Two classical results for a provable
lower bound of the Kolmogorov n-widths are the linear advection model from [19] and the linear wave
equation from [12]. These papers prove that the decay rate of the Kolmogorov n-widths of the snapshot
set is bounded from below by 1/2 · n−1/2 for the linear advection problem and, respectively, 1/4 ·
n−1/2 for the linear wave equation. With Corollary 1, we can see that the corresponding polynomial
Kolmogorov (n, p)-widths of the snapshot set will be limited by

d⊗n,p (M;V ) ≥ 1/2 · n−p/2 and d⊗n,p (M;V ) ≥ 1/4 · n−p/2,

respectively.

In [7], an alternative formulation of nonlinear widths is introduced, the so-called manifold widths.
The following definition transfers this concept to our case of polynomially mapped manifolds.

Definition 4 (Polynomial Manifold (n, p)-width). Consider a normed vector space (V, || · ||V ) with
a subset S ⊂ V . Then, the polynomial manifold (n, p)-width

δ⊗n,p (S;V ) := inf
Γl,p poly. map.

l≤n

inf
e∈C0(V,Kl)

sup
s∈S

||s− Γn,p(e(s))||V

minimizes the maximum distortion of the encoding procedure of S over the set of all polynomial
mappings Γl,p and some continuous encoder e ∈ C0(V,Kl) with reduced dimension l ≤ n.

Indeed, we can show directly from Theorem 1 that the lower bound transfers to the polynomial
manifold width.

Theorem 2. The polynomial manifold (n, p)-width is bounded from below with

dt(n,p) (S;V ) ≤ d⊗n,p (S;V ) ≤ δ⊗n,p (S;V ) .

Proof. For a fixed polynomial map Γl,p, it holds for all encoders e ∈ C0(V,Kl)

sup
s∈S

||s− Γl,p(e(s)︸︷︷︸
∈Kl

)||V ≥ inf
x̌∈Kl

sup
s∈S

||s− Γl,p(x̌)||V

and thus

inf
e∈C0(V,Kl)

sup
s∈S

||s− Γl,p(e(s))||V ≥ inf
x̌∈Kl

sup
s∈S

||s− Γl,p(x̌)||V . (7)
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Together with the max–min inequality (see e.g. [5, Equation (5.46)]) in step (∗), we observe

δ⊗n,p (S;V ) = inf
Γl,p poly. map.

l≤n

inf
e∈C0(V,Kl)

sup
s∈S

||s− Γn,p(e(s))||V

(7)
≥ inf

Γl,p poly. map.
l≤n

inf
x̌∈Kl

sup
s∈S

||s− Γn,p(x̌)||V

(∗)
≥ inf

Γl,p poly. map.
l≤n

sup
s∈S

inf
x̌∈Kl

||s− Γn,p(x̌)||V

= d⊗n,p (S;V )

(4)
≥ dt(n,p) (S;V )

where we use in the second to last step that choosing a polynomially mapped manifold M̃l,p is
equivalent to choosing a polynomial map Γl,p and choosing an element from t ∈ M̃l,p is then
equivalent to choosing a reduced coordinate x̌ ∈ Kl.

Note that the presence of the lower bound allows to transfer the decay rates of Kolmogorov
n-widths to the polynomial manifold (n, p)-widths from (5) to

δ⊗n,p (S;V ) ≥ Mn−αp, or δ⊗n,p (S;V ) ≥ Me−anαp
,

respectively. The proof works analogously to the proof of Corollary 1.

Remark 1 (Best-Possible Approximation Error vs. Error in Reduced Simulation). Note that all
the above is a discussion about the best-possible approximation error or respective manifold width.
However, it is by no means guaranteed that the approximation provided by solving the ROM realizes
this best-approximation. Thus, the error between the FOM and the ROM solution, the error in the
reduced simulation, may be much higher than these two quantities.

This becomes relevant, if one thinks about choosing a ROM based on a polynomially mapping
Γn,p of order p or a (classical) ROM based on an affine linear map Γ1,t(n,p). Although both of
these choices share the same lower bound on the best-possible approximation error, the error in the
reduced simulation may differ. In [2], it is observed experimentally for a complex three-dimensional
CFD benchmark problem with a quadratic mapping Γ2,n2 and n2 = 39 that the error in the reduced
simulation behaves as expected from the best-approximation error presented in our paper: A ROM
based on the quadratic mapping Γ2,n2 matches the error in the reduced simulation of a (classical)
ROM based on a linear mapping of size

n1 = 627 ≈ 820 = t(n2, 2),

while at the same time, the offline and online runtimes are improved with the ROM based on the
quadratic approach. This supports the idea that, despite the lower bound on the best-possible approx-
imation error, polynomial mappings are relevant in the application.

Remark 2 (Extension to More General Nonlinear Mappings Kn). Although Theorem 1 refers to
polynomially mapped manifolds only, it also holds for a more general setting of nonlinearly mapped
reduced coordinates. If we consider the structure of dn := An ◦Kn in Lemma 1 as the composition
of a general nonlinear map Kn : Kn → Kt for some t ∈ N and a linear mapping An : Kt → V ,
one could also choose the linear mapping, e.g., from modes of the proper orthogonal decomposition
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and the nonlinear mapping (a) as an autoencoder [10] or (b) a general artificial neural network [3].
Then, following the ideas of Theorem 1, the best-possible approximation error and manifold width
over decoders of the proposed form can be bounded from below by the classical Kolmogorov t-width
dt (M;V ).

3. Conclusion

In this paper, we derived bounds for the best-possible approximation error for ROMs based on poly-
nomially mapped manifolds. If bounds on the Kolmogorov n-width of the snapshot set are known,
we can derive an upper and a lower bound on the best-possible approximation error depending on
the order of the polynomial. We showed that the class of convergence does not change, but the rate
of convergence can be improved, depending on the degree of the polynomial. Future work could be
related to the questions on how sharp this lower bound is as well as on what are good algorithms for
the construction of polynomially mapped manifolds such that this best-approximation bound could
possibly be attained within some tolerance.
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A. Appendix

We provide a rigorous argument by induction for the first part of the proof of Corollary 1, i.e., we
show that t(n, p) ≤ np for all p ≥ 2, n ≥ 4.

Lemma 2. For all p ≥ 2, n ≥ 4, it holds that

(t(n, p) = )

p∑
k=0

(
n+ k − 1

k

)
≤ np.
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Proof. We provide a proof by induction over p for all n ≥ 4.
1) Initial case for p = 2 and n ≥ 4 arbitrary:

2∑
k=0

(
n+ k − 1

k

)
=

(
n− 1

0

)
+

(
n

1

)
+

(
n+ 1

2

)
= 1 + n+

n(n+ 1)

2
= 1 +

3

2
n+

1

2
n2.

We thus need to verify that

1 +
3

2
n+

1

2
n2 ≤ n2,

which is equivalent to

0 ≤ 1

2
n2 − 3

2
n− 1 =: φ(n).

The function φ(n) has roots r1,2 = 3±
√
17

2 , with r1 < r2. As the function φ(n) is a parabola with
positive curvature, we obtain that φ(r) ≥ 0 for all r ≥ r2 ≈ 3.5616 and thus φ(n) ≥ 0 for all n ≥ 4.
2) Induction assumption (IA): We assume that for fixed p ≥ 2 and for all n ≥ 4 it holds that

p∑
k=0

(
n+ k − 1

k

)
=

(
n+ p

p

)
≤ np.

3) Induction step p → p+ 1, n ≥ 4 fixed, i.e., we prove that

p+1∑
k=0

(
n+ k − 1

k

)
=

(
n+ p+ 1

p+ 1

)
≤ np+1. (8)

We start by using the definition of the binomial formula and apply the (IA)(
n+ p+ 1

p+ 1

)
=

n+ p+ 1

p+ 1

(
n+ p

p

)
(IA)
≤ n+ p+ 1

p+ 1
np.

To finish this part of the proof, we need to show that

n+ p+ 1

p+ 1
≤ n,

which can be reformulated to

0 ≤ n(p+ 1)− (n+ p+ 1) = p(n− 1)− 1.

The latter inequality is fulfilled for all p ≥ 2, n ≥ 4, thus (8) is proven.
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