
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

Master's Theses Student Works Hub

Spring 4-30-2024

BUILDING SOFTWARE AT SCALE: UNDERSTANDING BUILDING SOFTWARE AT SCALE: UNDERSTANDING

PRODUCTIVITY AS A PRODUCT OF SOFTWARE ENGINEERING PRODUCTIVITY AS A PRODUCT OF SOFTWARE ENGINEERING

INTRINSIC FACTORS INTRINSIC FACTORS

Gauthier Ingende Wa Boway
gingende@students.kennesaw.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/masterstheses

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Ingende Wa Boway, Gauthier, "BUILDING SOFTWARE AT SCALE: UNDERSTANDING PRODUCTIVITY AS A
PRODUCT OF SOFTWARE ENGINEERING INTRINSIC FACTORS" (2024). Master's Theses. 6.
https://digitalcommons.kennesaw.edu/masterstheses/6

This Thesis is brought to you for free and open access by the Student Works Hub at DigitalCommons@Kennesaw
State University. It has been accepted for inclusion in Master's Theses by an authorized administrator of
DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/masterstheses
https://digitalcommons.kennesaw.edu/student
https://digitalcommons.kennesaw.edu/masterstheses?utm_source=digitalcommons.kennesaw.edu%2Fmasterstheses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.kennesaw.edu%2Fmasterstheses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/masterstheses/6?utm_source=digitalcommons.kennesaw.edu%2Fmasterstheses%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

BUILDING SOFTWARE AT SCALE:

 UNDERSTANDING PRODUCTIVITY

AS A PRODUCT OF
SOFTWARE ENGINEERING INTRINSIC

FACTORS

A Thesis Presented to

The Faculty of the Software Engineering Department

By

Gauthier Ingende Wa Boway
BSc Computer Engineering, Mercer University, May 2024

In Partial Fulfillment

of Requirements for the Degree

Master of Science in Software Engineering

Kennesaw State University

May 2024

ii

BUILDING SOFTWARE AT SCALE:

 UNDERSTANDING PRODUCTIVITY

AS A PRODUCT OF
SOFTWARE ENGINEERING INTRINSIC

FACTORS

Approved:

Hassan Pournaghshband

Dr. George Markowsky

Paola Spoletini

iii

In presenting this thesis as a partial fulfillment of the requirements for an advanced
degree from Kennesaw State University, I agree that the university library shall make it

available for inspection and circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy from, or to publish, this thesis may
be granted by the professor under whose direction it was written, or, in his absence, by

the dean of the appropriate school when such copying or publication is solely for
scholarly purposes and does not involve potential financial gain. It is understood that any
copying from or publication of this thesis which involves potential financial gain will not

be allowed without written permission.

Gauthier Ingende Wa Boway

iv

Notice To Borrowers

Unpublished theses deposited in the Library of Kennesaw State University must be used
only in accordance with the stipulations prescribed by the author in the preceding
statement.

The author of this thesis is:

Gauthier Ingende Wa Boway
311 Boulder Run
Hiram GA 30141

The director of this thesis is:

Dr. Reza Meimandi Parizi
Kennesaw State University

Marietta Campus
Office J 353D

Users of this thesis not regularly enrolled as students at Kennesaw State University are
required to attest acceptance of the preceding stipulations by signing below. Libraries
borrowing this thesis for the use of their patrons are required to see that each user records
here the information requested.

v

BUILDING SOFTWARE AT SCALE:

 UNDERSTANDING PRODUCTIVITY

AS A PRODUCT OF
SOFTWARE ENGINEERING INTRINSIC

FACTORS

An Abstract of

Thesis Presented to

The Faculty of the Software Engineering Department

By

Gauthier Ingende Wa Boway
BSc Computer Engineering, Mercer University, May 2024

In Partial Fulfillment

of Requirements for the Degree

Master of Science in Software Engineering

Kennesaw State University

May 2024

vi

During our education at KSU, we have learned about various factors that affect
productivity such as schedule, budget, and risks, but those are often controlled outside of
what we could learn as software engineering principles, patterns, or practices. On top of
that, other off-work factors such as health conditions, emotional distress, or political
climate, just to name a few, could drastically affect the productivity of a software
engineering team. We see a demarcation between those factors that affect productivity in
software engineering but are not inherent to the discipline itself, which we call resistance
factors, and the factors that are inherent to the discipline and drive productivity, which we
call intrinsic factors. Intrinsic factors are driven by the way we learn software engineering
in schools and the way we practice it in industry. During the master’s coursework in
software engineering, we identified three intrinsic inputs that play a solemn role in how
we build and deliver software at scale: people, processes, and tools.

This thesis first provides an enriched understanding of each of the 3 factors listed
above. It is an essential step to establish contextual reasoning about those factors before
diving into deeper discussions concerning how those factors can drive software
engineering productivity. A software engineering environment is the assembly of a team
of people producing software following a defined set of processes and leveraging a
specified set of tools. In a particular software engineering environment, each of those
inputs will exist in some state, and those states will interact with each other to realize a
nominal productivity; that is the raw potential of software to be effectively produced at
scale in that environment accepting all other factors are equal elsewhere. To borrow
electrical engineering language, it is the open-circuit voltage of software engineering
team. That is the productivity potential that would have been attained if there were no
resistance and zero risks, which we call here the nominal productivity.

A nominal productivity framework exhibiting the interactions of those intrinsic

inputs' states will be introduced to help analyze and understand their effect on
productivity. We will then conduct some theoretical experiments with this framework and
review the theorical findings with industry and academia experts to evaluate the fidelity
of the framework.
We warn here that the goal of this thesis is not to validate the framework itself, and we
recommend readers not to assess the quality of the paper by the validity of the framework
introduced, but the scientific approach in answering the research questions and any
advances that may fall from it.

The framework introduced, if nothing else, would serve as tool to software
engineering managers to evaluate their current software engineering environment and
prioritize the factors that need the most investment to build an effective and high
performing team.

BUILDING SOFTWARE AT SCALE:

 UNDERSTANDING PRODUCTIVITY

AS A PRODUCT OF
SOFTWARE ENGINEERING INTRISIC

FACTORS

A Thesis Presented to

The Faculty of the Software Engineering Department

By

Gauthier Ingende Wa Boway
BSc Computer Engineering, Mercer University, May 2024

In Partial Fulfillment

of Requirements for the Degree

Master of Science in Software Engineering

Advisor(s): Dr Hassan Pournaghshband

Kennesaw State University

May 2024

2

TABLE OF CONTENTS

INTRODUCTION ... 1
RESEARCH QUESTIONS AND METHODOLOGY ... 3
CONTEXTUAL DISCUSSION ON INTRISIC PRODUCTIVITY FACTORS 6

1.PEOPLE .. 6
Skillset .. 6
Personality .. 8
Organization ... 10

2.PROCESSES .. 14
3.TOOLS .. 20

INTRODUCING THE NOMINAL PRODUCTIVITY FRAMEWORK 24
1.PRESENTATION OF THE FRAMEWORK ... 24
2.QUALITATIVE GRADING OF THE FRAMEWORK INPUTS 29
3.THEORITICAL EXPERIMENTS WITH THE NOMINAL PRODUCTIVITY
FRAMEWORK ... 35

RESEARCH FINDINGS ... 51
1. WHAT ARE THE INTRINSIC FACTORS OF PRODUCTIVITY? 51
2. HOW DO PRACTITIONERS SEE INTERACTIONS BETWEEN PEOPLE,
PROCESSES, AND TOOLS AFFECT PRODUCTIVITY IN SOFTWARE
ENGINEERING? ... 52

CONCLUSION ... 62
Bibliography .. 64

3

LIST OF FIGURES

Figure 1: Software Engineering Skills Multitude and Volatility ... 7
Figure 2: Extroversion Continuum .. 10
Figure 3: Work Relationship Analysis Model ... 13
Figure 4: Effective Process Creation Guide .. 17
Figure 5: Process Maturity Scale ... 18
Figure 6: Tool/Technology and corresponding Software Development Lifecycle phase . 21
Figure 7: Nominal Productivity Framework ... 27
Figure 8: : Example Usage of Nominal Productivity Framework 27
Figure 9: Tools Category by Roongkaew and Prompoon ... 32
Figure 10 : Tools Evaluation Criteria by Software Engineering Institute 33
Figure 11 : Nominal Productivity Framework with Labeled Input 35
Figure 12: Simulation 1: Software Engineering Environment with low-skilled People,
enforced Processes, and safe Tools. .. 37
Figure 13: Simulation 2: Software Engineering Environment with low-skilled People,
enforced Processes, and sharp Tools. .. 37
Figure 14: Simulation 3: Software Engineering Environment with medium-skilled and
good personality/organization fit People, implemented Processes, and safe Tools. 38
Figure 15: Simulation 4: Software Engineering Environment with medium-skilled and
good personality/organization fit People, implemented Processes, and sharp Tools. 38
Figure 16: Simulation 5: Software Engineering Environment with medium-skilled and
good personality/organization fit People, implemented Processes, and smart Tools. 39
Figure 17: Simulation 6: Software Engineering Environment with medium-skilled good
personality/organization fit People, defined Processes, and smart Tools. 39
Figure 18: Simulation 7: Software Engineering Environment with low-skilled People,
undefined Processes, and safe Tools. .. 40
Figure 19: Simulation 8: Software Engineering Environment with low-skilled People,
undefined Processes, and sharp Tools. .. 40
Figure 20: Simulation 9: Software Engineering Environment with medium-skilled and
strong personality/organization fit People, enforced Processes, and smart Tools. 41
Figure 21: Simulation 10: Software Engineering Environment with medium-skilled and
good personality/organization fit People, defined Processes, and smart Tools. 41
Figure 22: Simulation 11: Software Engineering Environment with highly skilled and
good personality/organization fit People, implemented Processes, and smart Tools. 42
Figure 23: Simulation 12: Software Engineering Environment with medium skilled weak
personality/organization fit People, implemented Processes, and smart Tools. 42
Figure 24: Simulation 13: Software Engineering Environment with highly skilled strong
personality/organization fit People, undefined Processes, and sharp Tools. 43
Figure 25 : Contributions Weight to Productivity Across Factors 51

1

INTRODUCTION

It is difficult to overstate the importance of productivity in software engineering

in a world where software has become an undeclared necessity of everyday life. In 2011,

Marc Andreessen, co-founder of Netscape and investor in Silicon Valley venture capital

firm, warned that “software is eating the world (Andreessen, 2011).” He explains that

this software invasion was enabled by the computer revolution 6 decades earlier followed

by the invention of microprocessors in the 70s which preceded the internet boom in the

90s. Several years before cloud computing and smartphones with high-speed internet, all

the technology required to shift businesses into a software centric model were already at

play. Andreessen called out that “software is also eating much of the value chain of

industries that are widely viewed as primarily existing in the physical world (Andreessen,

2011)”. Amazon, where virtually anything can be bought online and delivered to one’s

home was the main example to cite at the time; today we have Uber, Expedia, Webex,

Dash, Waze, or Salesforce just to name a few software driven businesses. Even before

COVID-19 struck, we were already partially living in a virtual world, the pandemic just

made it official. One thing the pandemic did bring is the need for creating increased

software to power that digital universe.

With that growing demand for software comes an amplified demand for software

developers. Unfortunately, the U.S labor market is not supplying enough individuals

capable of filling software development roles. In the third quarter of 2019, close to a

million IT jobs positions were left unfilled (Loten, 2019). In a viewpoint published in the

2
July 2021, the ACM also adds that “the pandemic is also taking its toll on the upstream

supply of IT labor, and software developers in particular (Moritz, 2021)”. The journal

explains that the number of international students, who make up a good proportion

(35,200 out of about 136,000 in 2019) of awarded Computer and Information Science

(CIS) degrees reduced by 43% during the pandemic. This can only accentuate the

existing shortage in software developers. Many companies today rely on outsourcing

some of their software development activities due to the low supply of this expensive

skill. Moreover, the demand for software development jobs is estimated to grow by 22%

from 2020 to 2030 (Bureau of Labor Statistics, U.S. Department of Labor, 2021).

Overcoming the 21st century world challenges, including pandemics, natural

disasters, wars, and globalization require us to produce more software driven solutions.

With the limited number of software developers on task, we cannot afford to lose more

productivity due to poor management practices. Moreover, the making of software

systems requires good software engineering management to be effective. There is a lot

being done right now to drive up productivity in the software engineering industry. Most

of the efforts focus on traditional management practices such as talent development,

competitive compensation, retention programs, and work-life balance. This paper takes a

stab at an organic approach by understanding the intrinsic factors of software engineering

and how their interactions affect productivity.

3
RESEARCH QUESTIONS AND METHODOLOGY

Software engineering managers are always on a quest to make their team more

productive. If we could read their mind, we certainly find the following question bold and

underlined in font-46 title 1 heading:

“How can I get them to hit those unrealistic deadlines upper management deemed highly

critical to a key performance indicator thus existential for my next bonus?”

Most of the time, the right answer is not making them work harder. Adding more people

to the work does not solve the problem either (Brooks, 1982). Furthermore, to achieve a

certain level of productivity, one needs to measure it, and that proves to be an even more

complex task. How to compare productivity from one team to another when ground

realities are not the same. What metrics to consider and what tools or techniques are

appropriate for measuring those metrics? Those questions are not simple to answer. On

top of that, Heisenberg's principle of observation applied to software engineering

productivity measurement would mean that measuring productivity would affect the

productivity itself. The classic example is those Agile boards that a respectable number of

software shops use. Software engineers must spend time maintaining those boards so that

productivity metrics like sprint velocity or burn down rate are captured.

Worse even, software engineering productivity measurement comes after the fact, and

there is not always time to catch that competitor who has announced the release of their

brew of the same product next week.

Considering the preceding, we deemed it important to explore the following questions for

our research:

4

Research Question 1:

Among all the factors that can affect productivity in software engineering, which

ones are inherent to software engineering common principles, practices and

patterns?

Research Question 2:

How do practitioners see the interactions between people, processes, and tools affect

productivity in software engineering?

Methodology:

In this research exercise, we will focus on the intrinsic inputs of software

engineering productivity we learned from the coursework in the Master in Software

Engineering program at KSU.

From that analysis, we will derive a productivity visualization model that would

allow us to estimate the nominal productivity of the software engineering environment.

The model will allow us to run some theoretical experiments in which we will vary the

state of each input and see its impact on nominal productivity.

5
After we conduct the theoretical experiments, we plan to present the findings to

experienced practitioners to gather some feedback on whether the scenario described in

each experiment is like what they have encountered in their journey and on how effective

the framework is in explaining the observed change in productivity.

As stated before, we warn that the goal of this thesis is not to validate the model

introduced but to explore the possibility of a sensible visualization model that overlaps

the concepts we have learned during our coursework with their impact on productivity.

The research will take form in a questionnaire that we have designed, and it will be

executed by a recognized third-party research firm. Due to the nature of our research,

subjects' recruitment has proven to be a challenge, and we were only able to secure 30

participants. For deeper insights into the research, we would need more financial

resources than available to us at the time of this writing.

6

CONTEXTUAL DISCUSSION ON INTRISIC PRODUCTIVITY

FACTORS

1.PEOPLE

§ If we ever had a talk with any genuine engineering manager, they would tell us

that human factor is the most impactful factor during any engineering project in any

engineering discipline. In a quest to better understand the 3 intrinsic inputs of software

engineering productivity, we will start with people.

There are numerous psychological, anthropological, and sociological discussions

about people. We do not plan to add to that set; here, we want to discuss people in

context of what happens in software engineering trenches. Nevertheless, to balance the

conversation, we may refer to some generally accepted psychology theories. In software

engineering context, there are three attributes of people we found significant: technical

skillset, personality, and organization.

Skillset

While skillsets are required for any type of labor, it’s important to note the

multitude, volatility, and spread of skills that are involved in the building of software

systems. From conversations with practicing software engineers, we created the

7
following word cloud that shows the spread and frequency of usage of technical skills

they use depending on the task at hand:

Figure 1: Software Engineering Skills Multitude and Volatility

As we can see, people in software engineering go back and forth between a litany of

skills to efficiently perform their jobs. Moreover, with the advent of Agile practices and

concepts like full-stack engineering, software engineers are expected to participate in all

phases of the Software Development Life Cycle. While in most other engineering

discipline specialists are wanted and acclaimed, they are less and less desired in software

engineering in favor of people who are willing and able to expand their skillset. This

poses as a challenge for people who want to learn one thing and apply it during a long

span of time to become experts. Also, while large scale software projects are executed by

8
a group of people, it does not mean that everyone participating equally contributes in

terms of time and effort in such a way we can switch people between tasks and obtain the

same output.

Personality

We hire people mainly for their skills; but when people come with their skills,

they also bring their personality along. To borrow again from electrical engineering, we

will think about the signal and noise concept. When an electrical device generates a

signal that contains useful information, it also generates some undesired signal (hear

noise here) which is inherent to its internal properties. While building electrical circuits,

the goal is to maximize signal strength and minimize noise strength. In software

engineering the same effect is also desired between people’s skills and their personality,

but the task here is much more difficult. We have seen managers try to exchange people

with similar skillsets across teams in motion and expect to maintain the same

productivity. The outcome of the experiment was shockingly disappointing.

Apart from technical skills, there is another set of intangible abilities called “soft skills”

that people bring to the team. These are often a good indicator of a person's personality

and play a significant role in how people approach work and react to the challenges of the

work environment.

In her work discussing the conflict between personality and skillset required to succeed in

the modern, Bonnie Urciuoli retakes this passage from Menochelli’s work:

9
<< A soft skill refers to the cluster of personality traits, social graces, facility with

language, personal habits, friendliness, and optimism that mark each of us to varying

degrees (Urciuoli, 2008)>>

Urciuoli adds that soft skills represent an imaginary line between self and work.

From that angle, personality can be understood as the result of the collision between self-

interest and job-interest, and it drives how one interacts with the task at hand. One

question that arises here is, when confronted with a judgement-based decision point, do

we rely more on our inner valuing systems, or do we leverage more of the surrounding

factors at play?

This thinking aligns well with Carl Jung’s extrovert vs introvert personality theory. He

defines personality as continuum between introversion and extroversion. The first is a

trait found in people who are often motivated by self-internal factors while the latter is

found is people who are more stimulated by external environmental factors. In 2013,

Susan Cain introduced ambiversion which serves as a midpoint between the two extremes

(Cain, 2013). The diagram below, extracted from a summary of the book found online,

does an excellent at depicting this idea of an introvert-extrovert personality continuum

(Academic Accelerator, Mar).

10

Figure 2: Extroversion Continuum

On top of the Jung’s theory explained above, American personality psychologist Golberg

R Lewis created a superset of personality traits named the “Big Five” (Goldberg, 1990).

He also lists introversion as a personality measure but introduces four additional

dimensions of personality: openness, consciousness, agreeableness, and neuroticism.

While these new dimensions add more details and color to people's personalities, we will

limit our upcoming analysis to extroversion, as this dimension has far greater interaction

with the software engineering environment.

Organization

We have hired a group of skilled people, and with their skills they also brought on

a personality which we understand better now even though we may not like it. The next

challenge is how do we make all these people work together.

First, we said earlier that large scale software is built by a group of people. We will take

that back. We meant large scale software is built by a team of people.

So, what is the difference between a group and a team as it relates to people?

11
A team is a circle of organized people who work together to fulfill a common mission

which also resonates with everyone's personal goals. Before the team is created, the

mission must exist, and anyone who joins the team must participate in achieving the team

mission. While it is true that most folks will say that the primary reason why they show

up every day at work is to get paid, some software engineers perform beyond

expectations because they believe in and enjoy what they do. Salary is not a motivation; it

is a compensation. Engagement creates motivation, and we create engagement by

defining a mission all team members want to be part of. In 2013, 70% of American

workers were reported not working to fullest potential because they are not sufficiently

engaged causing an estimated $550 billion every year to American company (Gallup,

2013). The Global analytics firm Gallup defines employee engagement as “the

involvement and enthusiasm of the employees in both their work and workplaces

(Gallup, 2013).” In lay man terms, the question here is “are the people in your team

proud of what they are doing? If not, there will be some productivity losses.

We need to define an engaging mission for the team, and once we do that, the next thing

is to establish some type of order. While cost varies with the addition of people into a

project, progress does not, unless all tasks are partitioned in such a way that there is no

communication required between people working on the project (Brooks, 1982). Let us

be honest, this never happens in large scale software engineering.

A team structure is created by the definitions of roles, responsibilities, and relationships.

Fred Brooks addresses this well in chapter 3 of his classic. He suggests we create

“surgical teams” where every person has a rigorously defined set of attributions and

12
performs those better than anyone. As the French saying puts it, let every man (or

woman, in the modern industry) do his job, and the cattle will be safe.

At this point, I can hear the Agile purists scream to the top of their voices that this should

not be so. They suggest we create “balanced teams” where everybody is equally capable

of taking on the task at the top of the backlog. We also agree with the idea, and we even

tried it in our many years down in software production trenches, but the beauty of this

theory was betrayed by the realities of the field. It is very hard to find a team where

everybody can perform the same task at the same level of efficiency. Fred’s “surgical

team idea” rests upon research done by Spackman, Erikson, and Grant that concluded

that there is an order of magnitude observed in productivity between high performers and

low performers for given set of tasks; since this whole thesis is about productivity, this

finding is of high significance (Sackman, Erikson, & Grant, 1968). The idea is that even

though we want versatility so that we can reduce dependency and achieve sustainability,

we must consider the ground reality of disparate individual capability and make them

work for our advantage. If we sacrifice tactical planning and assignment and decide to

pull from the top of the backlog like Agile priests preach us, we will gain sustainability,

but we will lose speed.

In a world where software engineers are in high demand and speed the market is

fatal for business, many are the times when speed is favored over sustainably because of

tight business constraints. The choice here cannot be dogmatic; we must be pragmatic

and play it by ear. The type of team structure suited for a team depends on the nature of

the work being done (Mantei, 1981). In her work, Marylin Mantei compares the effect of

13
utilizing Weinberg’s “Chief Programmer Team” approach versus Baker’s “Egoless

Team” approach over programming tasks of varying difficulty, size, duration,

modularity, reliability, deadline penalty, and sociability. The key result is that even

though both approaches had varying success here and there, neither of them proved to be

better than the other overall. The appropriate type of team structure depends on the

characteristics of the task being worked on.

Another challenge that arises when we put a team of people to work is to establish

the appropriate workplace relationships. Some workplaces interactions are task-driven

while some others are relationship-driven. The diagram below maps the appropriate

relationships to develop to the dominant need type of the people on the team is shown

below (Dent & Brent, 2015) .

Figure 3: Work Relationship Analysis Model

14
A transactional relationship is a relationship in which people work together but

choose not to socialize. Casual relationships are those where there is little professional

interaction and little socialization. On the other hand, mutually beneficial relationships

have very high levels of professional interaction and socialization. The last quadrant is

for social work relationships where there is little professional interaction but a high level

of socialization.

In the length and breadth of this paper, we will not be able to exhaust all the aspects of

workplace relationships. The point here is to raise awareness of the existence of those

nuances so that software engineering managers do not fall into the trap of making

homogenous relationships assumptions. Awareness of those nuances will help software

engineering managers find the optimal balance to guarantee smooth collaboration.

2.PROCESSES

§ Everyone recognizes the need for competent, motivated, and diversity-aware

people for software engineering teams, yet those very same people will perform poorly if

provided unclear and insufficient directions.

Processes help us define what are the expected inputs and outputs of any task, and what

are the sequence of steps that need to be followed to transform those inputs into outputs.

Processes also guarantee that the same input into a task will always produce the same

output given that all pre-conditions are met. This is key in achieving consistency with a

team with many people with disparate personalities and competency levels coupled with

15
a diversity of culture; the process is really the common denominator of a team, and it

helps everyone move forward in the same direction.

Let us face it, companies have priorities and initiatives; people have agendas, which are

mostly made up of bullet pointed selfish goals they wish they achieve before they are

forty, or before they retire for those who did not achieve them by forty. There is always

inconsistency in the way a large enough number of people accomplish the same task. One

way we solve this is to establish some rigorous processes that everyone must follow

while achieving anything meaningful to the company. We have mentioned processes a

few times in this section, but strictly speaking, what can be considered as a process in

software engineering?

A process is what people do using procedures, methods, and equipment to

transform inputs into output that is of value to customers. It is a framework to accomplish

tasks with the high chances of attaining the desired output while respecting the

predefined constraints. Speaking of frameworks, software engineers understand very well

that they are scaffolding into building software in a safe and repeatable manner. A

process should be targeted to solving the problem of facilitating a task or set of tasks.

This assumes a thorough understanding of the task by the person who is creating the

process around it. Unfortunately, after working in the industry for close to nine years

now, we know this is not always the case. Numerous are the times where the software

engineer manager or the lead engineer will ask somebody to do something they do not

even understand themselves, yet they expect the person to have it “done well.” What is

the definition of “done” for the task, and what is the definition of “well.” Failure for the

16
task requester to precisely answer those questions can yield some heated arguments and

confusion when deliverables are submitted. A process acts like a contract between the

task requester and the task performer. It removes the ambiguity on how to perform the

task and creates a precisely defined rendezvous point for the outcome of the task.

Nevertheless, while processes shed light on the path to success, that light itself

must be bright enough to show enough of the path. That is, the process itself must be

comprehensible and usable. The flow chart below proposes a step-by-step guide on how

to create effective processes (Pournaghshband, 2021).

17

Figure 4: Effective Process Creation Guide

§ This guide above aims at providing a chain of business benefit that goes from

improved schedule and budget predictability to improved employee morale which

induces increased productivity and quality which brings increased customer satisfaction,

which eventually causes increased return on investment.

On the other hand, processes must be measured for effectiveness and evolve with time to

cope with ever-changing business needs. The table below illustrates the progressive state

of a process maturity (Pournaghshband, 2021).

18

Figure 5: Process Maturity Scale

From the table above, we can observe three main phases in the process maturity

scale of a process. The definition phase regroups the first two states and is the vital phase

of process maturity evolution. As we mentioned earlier the process must first exist, and it

only exists if it is in writing, or in today’s digital words in some form of digital

documents. Failure to have formally documented processes will create an immature

organization with no reliable approach to repeating challenges coupled with inconsistent

results and inadequate value growth.

The implementation phase of the process maturity scale combines the “trained,”

“practiced,” and “measured” states and represents a major milestone in the process

evolution. The process audience needs to be aware of the process and practice it. It is

important to note that this will probably be the most time-consuming phase for any large

19
enough organization. This is also where we can make measurements for the effectiveness

of the process. Measuring the process is critical as it helps not only to evaluate the value

of the process itself, but also the value change in the product being output by the process.

Processes are made to improve return on investment. It takes a long time and a lot of

resources to change people behavior or force them to operate following a new process, so

each process must go through all the maturity state to be proven to yield the expected

improvement or it would surely yield unsatisfactory results by decreasing both employee

morale and the return on investment for process stakeholders. Practice makes perfect, but

practice takes time, a lot of time. Impatient process stakeholders will never reap the

benefits of the process if they fail to invest the adequate amount of time and resources

required to train the process audience to the point where they can autonomously execute

the process.

The last phase which encapsulates the “controlled,” “maintained,” “supported,”

and “enforced” states of the process maturity scale is the enforcement phase. At this

point, we have “mastered” the implementation of the process, and we have proven that it

yields productivity benefits, but we need to make that all are following marching orders.

If a big organization with millions of dollars at stake, there is no tolerance for

assumption; everything needs to be verified. Enforcement is a two-way street. It helps the

leader ensure his vision is followed, but it also helps the subordinates ensure that they get

the proper reward/recognition when they follow the vision.

20
The last state in the process maturity scale is “improvable.” In practice, this state

is really hidden behind all the other states in the scale. The maturity scale could be

represented as a circle that we keep rotating around with each full turn being one level of

improvement. This is a continuous activity that should be carried out on predetermined

cadence by all process stakeholders.

3.TOOLS

So far in this discussion, we have hired a set of competent people that we formed

into a team, and we have created processes to guide them in the tasks we assigned to

them; now we need to equip the team will all the tools they need to efficiently do the job.

If software engineering were warfare, tools are the weapon we would fight with. Since

modern wars cannot be won with swords and spears, modern software calls for several

advanced tools and technologies to produce, package and deliver software. The diagram

below shows various tool types and which phase of the software development lifecycle

they support.

21
Tool Function Examples SLCD Phase Supported

Integrated Development

Environment

 CONSTRUCTION

 TESTING

Version Control

 CONSTRUCTION

 TESTING

Programming Languages

 CONSTRUCTION

 TESTING

 MAINTENANCE

Code Analysis

 TESTING

CI/CD

 CONSTRUCTION

Monitoring:

 MAINTENANCE

Communication

 ALL PHASES

Task Management

 ALL PHASES

Figure 6: Tool/Technology and corresponding Software Development Lifecycle phase.

In context of software engineering, a tool is a computer program that helps automate a

task executed by a machine. Twenty-first century large-scale software development,

which requires the execution of an almost infinite number of tasks, has been enabled by

22
several advances in automation we have seen accelerate in the last two decades in the

industry. The race for automation has fueled a proliferation of tools which occasioned the

release of immature and sometimes counterproductive tools on the market. We have

witnessed a tool that caused a critical task to fail and the company to lose money.

Blue/green deployment was being implemented with a tool that was supposed to route

incoming request traffic to a secondary availability zone while we were upgrading the

software in the primary one. The tool failed to do so correctly, and this was not the first

time. Incoming requests continue to come into the availability zone being maintained and

caused some sales transactions to fail. The managerial response was to have a dedicated

team monitor incoming requests traffic shaping during all deployments to make sure that

the tool performed correctly. Creating a burdening process around an unreliable tool is

paying twice for an item that was never delivered. Just like the people who are hired; a

tool must meet certain criteria before the team adopts it. We recommend software teams

to conduct a thorough analysis based on three criteria: mechanical advantage, accuracy,

and consistency. A tool eligible for adoption must yield all three benefits.

The mechanical advantage is obtained through speed and fatigue. The tool must

perform the task much faster than people and must do so continuously without rest. One

fitting example that comes to mind is version control tools. Yes, we can keep track of

changes made to a set of files and decide what state of the files I want to keep, but how

many files can keep track of in a day, and what if those are modified multiples time by

more than 20 plus people in that same day. Obviously, a tool will do a much better job

than us here.

23
The second advantage a tool must offer is accuracy. People can do measurements and

computations, but the probability of a human mistake in an overly complex measurement

or computation is much higher than that of a machine. Think about calculating the unit

test coverage of a piece of code that requires calculating the cyclomatic complexity of a

method that has 14 “if statements” in while loop that with 5 flags condition. If we are

building critical systems, we will better use a tool do that.

The last advantage a tool must provide is consistency. We said it before in this

discussion; for the same task, different people will produce comparable results in separate

ways.

A tool helps ensure that the task is executed systematically following a

deterministic procedure, and since machines are far less prone to indiscipline than

humans, we can expect consistent results.

Nevertheless, we must warn here that tools do not replace people, they amplify them.

Machines are good at executing tasks fast and without rest, yet machines do not have any

creative capability, and this is the single most reason people will always be used for

building software. Their creativity is what makes them indispensable, but their behavioral

and physical limitations create the need for tools. Tools compensate for human

limitations during the execution of tasks, but as we discussed before, the appropriate tool

must be used to reap the expected benefits.

24
INTRODUCING THE NOMINAL PRODUCTIVITY

FRAMEWORK

1.PRESENTATION OF THE FRAMEWORK

Let’s provide a simple working definition of productivity: it is the ratio of output

over input. It should be that simple, shouldn't it? Earlier in this thesis, we have taken

some time to discuss the intrinsic inputs of software engineering productivity, but what

are the intrinsic outputs? Is it the number of lines of code produced, is it the number of

JIRA stories completed, it is the number of production deployments, is it the number of

App store downloads or usage statistics in case of internal apps, or is it the amount of

revenue generated by the application? Even though we have studied at the graduate level

and practiced software engineering for a living during the past nine years, we still find it

difficult to answer the question. Moreover, from reviews with others in academia and in

industry, we found that software engineering productivity is hard to measure quantitively

and objectively. This is illustrated by this passage from The Pragmatic Engineer blog:

<<Try to measure any one dimension, and you'll fail. Measuring lines of code is

meaningless and leads to busywork. Number of tickets closed? People will get creative

opening tickets, or optimize for the easy-to-fix ones. Number of commits per day? It will

lead to small and frequent commits, but not more. Any single metric you give to people, it

can - and will - be gamed (Orosz, 2022)>>.

25

Moreover, we need to distinguish activity from productivity. Most metrics we

utilize today in the software industry are mere indicators of work being done, but is that

work creating value for the business? While we can continue the enticing debate on

which productivity metrics are representative and accurate, the American Analytics and

Advisory firm Gallup finds that the biggest question is: “What are the conditions that

promotes productivity? (Maese & Robison, 2021)” .

This interrogation has inspired us to introduce the nominal productivity framework.

The nominal productivity of a team is the potential of a team to produce software due to

its internal setup and excluding the effects of constraints factors such as budget,

dependencies, and schedule. Nonetheless, we imposed ourselves some constraints in the

way the framework will behave to reflect how productivity behaves in real software

development trenches.

From years of observation in the industry, we have noticed that productivity is

typically not a continuous function, it is very discrete. The level of productivity between

high-performing teams and the average team is sometimes an order of magnitude greater,

but the difference in productivity between an average team and a poor team is abysmal.

There is an imaginary threshold of team health that must be attained before unlocking any

significant productivity. Below that threshold, teams are refractory to any productivity

boost. Even adding more people does not help (Brooks, 1982). The foundational team

setup issues must be resolved.

26
We showed earlier in this discussion that good team health rests upon defining a

compelling mission, choosing the optimal structure, and developing the appropriate

workplace culture. While building a team, the goal is not to maximize, but to balance.

Productivity is not a monotonic function whereby we can drive output to the maximum

by driving input to the maximum. Hiring a PhD skillset for a project that requires high-

school-plus-some-bootcamp skillset will not maximize productivity, it will ruin it.

Creating a very stringent process for people working in innovation-based roles will shy

them off and make them unproductive.

To steal again from electrical engineering concepts, we can say productivity has a

transient response and a steady state response. The transient is what we are interested in

here. What is the right amount of boost we can give the team before we reach breakeven,

and productivity does not follow the stimulus anymore.

The last key observation is that while we know that the first past to this exercise will not

gain unanimous praise, our goal is to at least create the possibility of a sensible

visualization model that overlaps the concepts we have learned so far with their impact

on productivity. It is a framework one can use to explain and think about productivity

based on how we understand and practice software engineering. Consider its layout

below:

27

Figure 7: Nominal Productivity Framework

It is represented as a triangle in which each side is a directed and graded axis on

which we plot the state of each of the three productivity inputs we are working with.

The position of each point denotes the qualitative state of the input or the level of

sophistication/maturity along its axis, and the surface area of the triangle cornered by

these three plotted points denotes the nominal productivity achieved with that

combination of input states. Let’s plot an example to familiarize ourselves with the

working of framework:

Figure 8 : Example Usage of Nominal Productivity Framework

28
In the example above, we plotted one point on each of the graphs. Tz is the level of

sophistication of the tools we want to use in the team, which is high in this case. It might

be a choice we made or an existing condition we found as we start putting together the

development team. We hired a team of average people (Pex is about in the middle), and

we decided to go with simple and rudimentary processes (Pry is close to Prmin.). The area

in green is the nominal productivity we get. The area of the big triangle is the maximum

nominal productivity, which we may never get. The goal is to maximize the area in green

by moving Tz, Pex, Pry but as we learned from the earlier discussion, there are

implications in changing those input. This framework helps visualize and explain the

impact of changing the states of each of the three intrinsic inputs of software engineering

productivity.

As we move the plotted points in each axis of the triangle, the obtained nominal

productivity must respect the following constraints:

1. Since productivity has discrete levels, they should a finite amount achievable

level of productivity given the number of states for each factor. Each axis will

have a finite number of graded states, which we will define later.

2. Since productivity has a transient response, the nominal productivity cannot keep

increasing at we keep increase one input (qualitatively or quantitatively)

3. Since productivity does follow not monotonic function curve, lower position of

certain input along their corresponding can produce bigger nominal productivity

than the higher position, other inputs being constant.

29

2.QUALITATIVE GRADING OF THE FRAMEWORK INPUTS

At this point, we have established a working tool to visualize the change in

nominal productivity and we move the states of its input. Observing the visualization

model, we understand that reaching the high end on each input axis is not the goal here,

as this will not yield the suggested nominal productivity. In fact, the first thing we learn

from this framework is that the maximum nominal productivity is not obtained by

combining Pemax , Prmax and Tmax , that is maximizing investments in people, processes,

and tools. Funny enough, it is equivalent to investing the minimum in each of those input.

We can see that combination (Pemin ,Prmin and Tmin) and combination (Pemax ,Prmax and

Tmax) both produce straight lines with surface area of 0.

The challenge here is to find the combinations of positions Pex, Pry and Tz, on each side

of the triangle that will maximize the nominal productivity and confront the implications

of those combinations with the explanations we provided earlier in this discussion. To

effectively practice this exercise, we will need to grade each of the directed axis that

make up the triangle. The number of positions we want to work with on each axis is

subjective, as it does not change the working of the model; it just gives more possibility

for experimentation with the environment conditions.

Let us start with “people” axis. We have discussed three key attributes of interest in

software engineering: skillset, personality, and organization. In assessing people for

hiring, we emphasize skillset, as this is the primary measure or whether the individual can

30
fulfil the duties of the job. As we explained earlier from signal and noise analogy,

personality and skillset are received in the same atomic transaction in we hire people.

Organization is something we as software engineering managers establish by a

mechanism of team which should have a mission, a structure, and a culture. For this to

work effectively we dream of drafting a team of talented and homogenous people who

are all modeling our culture (think the utopic no-drama team where everybody gets along

super well). Unfortunately, we have not seen this happen in the industry; there is often a

good jambalaya of various levels of personality which can conflict among one another

and with the desired organization. We recall that our working definition of personality in

context is the result of the collision between self-interest and job-interest. From these

reasoning we can emerge the following possible categories for people:

1. The low skilled – strong personality vs organization fit category

2. The low skilled – good personality vs organization fit category

3. The low skilled – weak personality vs organization fit category

4. The medium skilled – strong personality vs organization fit category

5. The medium skilled – good personality vs organization fit category

6. The medium skilled – soft personality vs organization fit category

7. The high skilled – strong personality vs organization fit category p/o

8. The high skilled – good personality vs organization fit category

9. The high skilled – weak personality vs organization fit category

31
The first three categories are the ones we do not want to hire from. As we said earlier,

people are hired primarily for their skills; if the skills are insufficient, the rest is

irrelevant. We can then collapse category 1-3 to a single low-skilled category. We obtain

these 7 simplified and effective categories of people.

1. The low skilled category

2. The medium skilled – strong p/o fit category

3. The medium skilled – good p/o fit category

4. The medium skilled – weak p/o fit category

5. The high skilled – strong p/o fit category

6. The high skilled – good p/o fit category

7. The high skilled – weak p/o fit category

The 3 medium skilled groups are where most people will be found with varying

degrees of personality fit.

The highly skilled category is made up of extraordinarily talented people. Sometimes

they are very easy-going with soft personalities which easily fit the desired organization

or sometimes they are reluctant to change with hard personalities which conflict with the

desired organization. The question now becomes whether we should put more weight on

skillset or on personality vs organization fit. We will defer answering the question until

we consult the expert later for our research.

32
Now, we are going to try to determine a graded classification of software

engineering tools. As Figure 6 showed, modern software engineering involves a litany of

tools. Wanwisa Roongkaew and Nakornthip Prompoon followed the SWEBOK SDLC

phase to derive 10 categories of tools (Roongkaew & Prompoon, 2013):

Figure 9: Tools Category by Roongkaew and Prompoon

While this reinforces the earlier discussion about the proliferation and

pervasiveness of tools across the entire software lifecycle, it will be tedious to re-evaluate

the software engineering environment setup at each phase. We have consulted a report

by the Software Engineering Institute (SEI) that takes a different approach in evaluating

tools. This approach provides 6 aspects to consider during tools evaluation (Firth,

Mosley, Pethia, Roberts, & Wood, 1987):

33

Figure 10 : Tools Evaluation Criteria by Software Engineering Institute

Earlier in this paper, we said that the three benefits of a tool are its mechanical

advantage, its accuracy advantage, and its consistency advantage. This goes hand in hand

with the criteria proposed by the SEI approach. Criteria 1 and 2 fall well under the

mechanical advantage while 3, 4 and 6 contribute to accuracy and consistency. Yes, we

missed 5, ease of insertion (into the environment) which supersedes the other three. In a

quest to build a highly productive software engineering environment, it may seem

obvious that we always should strive for all three benefits, but the environment may

suggest otherwise.

The SEI report cited above adds that:

<<a tool in and of itself has no value. It is valuable only when applied by a particular

individual or organization. Individuals and organizations are different; what is

appropriate to one organization or individual may be inappropriate to another

organization or individual. >>

34
We understand from the excerpt above that we should not focus on some metrics

of a tool to define how the environment should operate; the environment should dictate

the tools to be used. The value of a tool will vary from one software engineering

environment to the other. We remind here that a software engineering environment is

the assembly of a team of people producing software with a specified set of tools and

processes.

When software engineers want to perform a task that they master, they use a tool just to

cope with energy and time savings. They don’t expect the tool to dictate how the task

should be done, they just want it to follow instructions and work their way. On the other

hand, sometimes a black box tool is needed when we want to ensure that everyone

performs this task the same way every time. but for now, we retain 3 main environment-

based categories of tools:

1. sharp tools: that faithfully follows user-defined execution procedures with no

safeguard, yielding a lot of power and flexibility.

2. smart tools: that helps get to the predefined “right” outcome with limited user

control.

3. safe tools: that forces that outcome of the task and its execution procedure.

We have already discussed the process maturity scale and the different phases that

could be derived from its observation. We will recall them here as they will serve as

graded positions along the process axis in the nominal productivity framework. The

35
three phases of maturity of a process were the process definition, the process

implementation, and the process enforcement. To be complete, we need to add one more

phase which represents the absence of processes. We obtain the following grading:

1. undefined processes

2. defined processes

3. implemented processes

4. enforced processes

3.THEORITICAL EXPERIMENTS WITH THE NOMINAL PRODUCTIVITY

FRAMEWORK

Now that we have defined the possible input values and the working constraint of

our visualization model, we will redraw the framework with labeled input positions:

Figure 11 : Nominal Productivity Framework with Labeled Input

36
The next step is to conduct some theoretical experiments by simulating a software

engineering environment and plotting its coordinates as inputs into the framework and

observe the difference in nominal productivity obtained between that environment and

another one.

For brevity stake, we have selected 13 simulations that we will draw and analyze in this

paper, but the reader is invited to conduct more experimentation of their own by

themselves to explore more possibility with the framework.

Later in this thesis, we will call on industry and academia experts to help us understand

why this productivity decreases or increases from one environment to the other.

One callout is that the framework can be used at any scope of the software engineering

environment development. We can use this to assess the nominal productivity of the

environment for a given task, a set of deliverables in some initiatives, or an entire project.

The scoping details will help better position the input along the framework axis and

obtain more accurate visualization. For example, just a portion of the team could

participate in a particular part of the project so, we would not use the entire team

coordinates in assessing the nominal productivity for that portion of the project. We will

recalibrate the inputs.

Also, the framework is better utilized when we can propose several simulations and see

which one works the best for the case in study. A single simulation by itself does not

really give much insight.

37

Figure 12: Simulation 1: Software Engineering Environment with low-skilled People, enforced Processes, and safe

Tools.

Figure 13: Simulation 2: Software Engineering Environment with low-skilled People, enforced Processes, and sharp

Tools.

38

Figure 14: Simulation 3: Software Engineering Environment with medium-skilled and good personality/organization fit

People, implemented Processes, and safe Tools.

Figure 15: Simulation 4: Software Engineering Environment with medium-skilled and good personality/organization fit

People, implemented Processes, and sharp Tools.

39

Figure 16: Simulation 5: Software Engineering Environment with medium-skilled and good personality/organization fit

People, implemented Processes, and smart Tools.

Figure 17: Simulation 6: Software Engineering Environment with medium-skilled good personality/organization fit

People, defined Processes, and smart Tools.

40

Figure 18: Simulation 7: Software Engineering Environment with low-skilled People, undefined Processes, and safe

Tools.

Figure 19: Simulation 8: Software Engineering Environment with low-skilled People, undefined Processes, and sharp

Tools.

41

Figure 20: Simulation 9: Software Engineering Environment with medium-skilled and strong personality/organization

fit People, enforced Processes, and smart Tools.

Figure 21: Simulation 10: Software Engineering Environment with medium-skilled and good personality/organization

fit People, defined Processes, and smart Tools.

42

Figure 22: Simulation 11: Software Engineering Environment with highly skilled and good personality/organization fit

People, implemented Processes, and smart Tools.

Figure 23: Simulation 12: Software Engineering Environment with medium skilled weak personality/organization fit

People, implemented Processes, and smart Tools.

43

Figure 24: Simulation 13: Software Engineering Environment with highly skilled strong personality/organization fit

People, undefined Processes, and sharp Tools.

As we said before, a single simulation by itself does not yield much understanding

on how people, processes, and tools affect the nominal productivity of a software

engineering environment; we need to analyze two or more simulations side by side to see

how the nominal productivity varies as the states of the inputs change. Let’s compare a

few environments and attempt to justify the productivity change with the understanding

we acquired from the contextual discussion on software engineering productivity intrinsic

inputs.

For brevity, we will not analyze all the possible point combinations, but we will

emphasize on the key ones to help start the analysis of this framework. Also, since this is

an experimental framework, we would like for other researchers to evaluate it with other

assumptions and preconditions.

44
Comparison 1: Env 1 vs Env 2

In this scenario, we start with an environment with low-skilled people, enforced

processes, and safe tools. We observe that the nominal productivity greatly decreases as

we switch from safe tools to sharp tools, everything else being equal.

From the earlier discussion, we recall that safe tools are tools that dictate how a task

should be completed and the user is just a trigger for the tools. In this scenario where we

have low skilled people it makes sense that the productivity is far greater when we offer

them safe tools versus sharp tools which offer more control but require more expertise to

do things right.

45
Comparison 2: Env 3 vs Env 4

In this scenario, we start with an environment with people with medium skills and good

personality/organization fit, implemented processes, and safe tools. We observe that the

nominal productivity decreases considerably as we switch from safe tools to sharp tools,

everything else being equal.

Once more, we see that when the people’s skillset is limited, safe tools are the most

suited to achieve greater productivity.

46
Comparison 3: Env 5 vs Env 6

In this scenario, we start with an environment with people with medium skilled and good

personality/organization fit, implemented processes, and smart tools. We observe that the

nominal productivity does not change significantly as we switch from implemented

processes to defined processes, everything else being equal.

As opposed to the two previous experiments where we made big jumps, this time we

made a slight variation along one axis. We see that nominal productivity does not

respond much to weak stimulus along a single axis. This goes hand in hand with what we

explained earlier that productivity is not a continuous function, but it has discrete level

like a threshold function.

47
Comparison 4: Env 7 vs Env 8

In this scenario, we start with an environment with people with low skills, undefined

processes, and sharp tools. We observe that the nominal productivity remains very low as

we change sharp tools against safe tools, everything else being equal.

Software engineering is a creative dripline, people with low skillet would typically be

less productive, unless a large amount of handholding is invested in terms of both process

and tooling.

48
Comparison 5: Env 11 vs Env 12

In this scenario, we start with an environment with people with high skills and good

personality/organization fit, implemented processes, and smart tools. We observe that

nominal productivity does not significantly change as we swap the previous group of

people to medium skilled hard personality people, everything else being equal. This is an

interesting situation; we would expect a big jump in productivity shifting averagely

skilled people to highly skilled people, but the problem is highly skilled people tend to

prefer less guidance and perform better in an open environment. The high-level of

process and the controlled tooling in this environment imposes the upper bounds for

productivity.

49
Comparison 6: Env 7 vs Env 12

In this scenario, we start with an environment where everything is kept to a minimum

(people with low skills, undefined processes and safe tools) and another environment

with everything around the average (averagely skilled people, safe tooling, implemented

processes). We observe a much greater nominal productivity in the later situation. This

again shows how productivity behaves like a does have a threshold function and certain

minimum must be met in terms of people, process and tools to realize any significant

productivity.

50
Comparison 8: Env 1 vs Env 12

In this scenario, we compare an optimized environment with highly skilled people,

minimal process and sharp tools against another environment aiming to keep everything

around the average (averagely skilled people, safe tooling, implemented processes). We

observe a much greater nominal productivity in the first situation.

This suggests that if the appropriate tunings are made to create the optimal environment,

the productivity is significantly greater than in the average environment.

For brevity, we will not analyze all the possible combinations, but we emphasized

some key ones to help start the evaluation of this framework. Also, since this is an

experimental framework, we would like for other researchers to evaluate it with other

assumptions and preconditions. Nonetheless, we have conducted research involving this

framework in representing productivity of which findings will be discussed in the next

sessions.

51
RESEARCH FINDINGS

1. WHAT ARE THE INTRINSIC FACTORS OF PRODUCTIVITY?

We have conducted research with experienced software engineering practitioners

to determine the intrinsic factors of productivity. Here is what they say:

Figure 25 : Contributions Weight to Productivity Across Factors

We mentioned earlier in the discussion that skillset, personality, and organization are

attributes of people in context of software engineering. We can tally the weight of all

those three factors under people, which amounts to 38.72%.

During the coursework for the MSc In Software Engineering, we learned that people,

process, and tools are the greatest factors of productivity in software engineering.

52
We see from the research results that those are also deemed as intrinsic factors by

experienced practitioners; these three factors are the only one scoring in double digits

with a combined weight of 77.42%.

We conclude that the research results corroborate the idea that people, tools and process

are the intrinsic factors of software engineering productivity.

2. HOW DO PRACTITIONERS SEE INTERACTIONS BETWEEN PEOPLE,

PROCESSES, AND TOOLS AFFECT PRODUCTIVITY IN SOFTWARE

ENGINEERING?

Alongside our first research question, we also wanted to understand how we can

represent productivity as a model of its intrinsic factors. In this paper, we introduced the

nominal productivity framework to help represent productivity as a function of the

interactions between people, process and tools states in each software engineering

environment. Other models could help best represent this function, but we took the

opportunity in this research to evaluate our own framework to learn more from

experienced practitioners.

For this evaluation to be objective, we needed to ensure first that the scenario we have

simulated in the theoretical experiments are valid for an evaluation in real-world

situations.

53
We described some scenarios to experienced practitioners and asked them whether those

matched either something they have witnessed from their experience or would expect

from the expertise in the field.

We summarized the findings in the table below, but a full version of the research

questionnaire and answers are available at https://www.questionpro.com/t/7BqvC1Z06xX

(all numbers in the following are in percentage of answer from the population).

Scenario# Scenario Description Does Scenario

Matches Your

Expectations?

Does Scenario Matches

Your Experience?

Scenario Retained

or Discarded from

framework

evaluation

1 In this scenario, we start with

an environment with low-

skilled people, enforced

processes, and safe tools. We

observe that the nominal

productivity greatly decreases

as we switch from safe tools

to sharp tools, everything else

being equal.

73.34 Agree

16.67 Neutral

10.00 Disagree

23.34 Often/Always

43.33 Sometimes

33.34 Rarely/Never

From these results,

the scenario is

plausible, therefore

retained

2 In this scenario, we start with

an environment with people

54
with average skills and good

personality/organization fit,

implemented processes, and

safe tools. We observe that the

nominal productivity

decreases considerably as we

switch from safe tools to sharp

tools, everything else being

equal.

56.67 Agree

23.33 Neutral

20.00 Disagree

33.33 Often/Always

43.33 Sometimes

23.33 Rarely/Never

From these results,

the scenario is

plausible, therefore

retained.

3 In this scenario, we start with

an environment with people

with low skills, undefined

processes, and sharp tools. We

observe that the nominal

productivity remains very low

as we change sharp tools

against safe tools, everything

else being equal.

60.00 Agree

13.33 Neutral

26.67 Disagree

33.33 Often/Always

40.00 Sometimes

26.67 Rarely/Never

From these results,

the scenario is

plausible, therefore

retained

4 In this scenario, we start with

an environment with people

with average skills and strong

personality/organization fit,

enforced processes, and smart

70.00 Agree

40.00 Often/Always

From these results,

the scenario is

55
tools. We observe that

nominal productivity of this

environment is close to that of

an environment with people

with average skills and good

personality/organization fit,

defined processes, and smart

tools.

23.33 Neutral

6.67 Disagree

50.00 Sometimes

10.00 Rarely/Never

plausible, therefore

retained.

5

In this scenario, we start with

an environment with people

with high skills and good

personality/organization fit,

implemented processes, and

smart tools. We observe that

nominal productivity does not

significantly change as we

swap the previous group of

people to average skilled hard

personality people, everything

else being equal.

60.00 Agree

26.67 Neutral

13.33 Disagree

43.33 Often/Always

23.33 Sometimes

23.33 Rarely/Never

6 In this scenario, we start with

an environment with people

56
with low skills, undefined

processes and safe tools. We

compare it with an

environment with people with

average skills and weak.

personality/organization fit,

implemented processes and

smart tools (this environment

is aiming to keep everything

around the average). We

observe a much greater

nominal productivity in the

later situation.

56.67 Agree

30.00 Neutral

13.33 Disagree

33.34 Often/Always

50.00 Sometimes

16.66 Rarely/Never

From these results,

the scenario is

plausible, therefore

retained.

7 In this scenario, we start with

an environment with people

with high skills and strong

personality/organization fit,

undefined processes and sharp

tools. We compare it with an

environment with people with

average skills and weak

personality/organization fit,

implemented processes and

smart tools (this environment

is aiming to keep everything

70.00Agree

30.00 Neutral

10.00 Disagree

43.34 Often/Always

46.67 Sometimes

10.00 Rarely/Never

From these results,

the scenario is

plausible, therefore

retained.

57
around the average). We

observe a much greater

nominal productivity in the

first situation.

Table 1: Scenarios Description Comparisons Against Experience Practitioners' Experience or

Expectations

After validating the scenario with experienced practitioners, we asked them how effective

the nominal productivity framework was at explaining the change in productivity

described in each scenario. The table below captures the essence of their answers.

Scenario# Scenario Description Effective Neutral Not Effective

1 In this scenario, we start with

an environment with low-

skilled people, enforced

processes, and safe tools. We

observe that the nominal

productivity greatly decreases

as we switch from safe tools to

sharp tools, everything else

being equal.

66.67 20.00 13.33

2 In this scenario, we start with

an environment with people

with average skills and good

personality/organization fit,

53.34 26.67 20.00

58
implemented processes, and

safe tools. We observe that the

nominal productivity decreases

considerably as we switch

from safe tools to sharp tools,

everything else being equal.

3 In this scenario, we start with

an environment with people

with low skills, undefined

processes, and sharp tools. We

observe that the nominal

productivity remains very low

as we change sharp tools

against safe tools, everything

else being equal.

50.00 26.67 23.33

4 In this scenario, we start with

an environment with people

with average skills and strong

personality/organization fit,

enforced processes, and smart

tools. We observe that nominal

productivity of this

environment is close to that of

60.00 30.00 10.00

59
an environment with people

with average skills and good

personality/organization fit,

defined processes, and smart

tools.

5

In this scenario, we start with

an environment with people

with high skills and good

personality/organization fit,

implemented processes, and

smart tools. We observe that

nominal productivity does not

significantly change as we

swap the previous group of

people to average skilled hard

personality people, everything

else being equal.

63.33 26.67 10.00

6 In this scenario, we start with

an environment with people

with low skills, undefined

processes and safe tools. We

compare it with an

63.34 26.67 10.00

60
environment with people with

average skills and weak

personality/organization fit,

implemented processes and

smart tools (this environment

is aiming to keep everything

around the average). We

observe a much greater

nominal productivity in the

later situation.

7 In this scenario, we start with

an environment with people

with high skills and strong

personality/organization fit,

undefined processes and sharp

tools. We compare it with an

environment with people with

average skills and weak

personality/organization fit,

implemented processes and

smart tools (this environment

is aiming to keep everything

around the average). We

observe a much greater

66.67 16.67 16.66

61
nominal productivity in the

first situation.

 Table 2: Effectiveness of Nominal Productivity Framework at Explaining Scenarios

We see that the effectiveness of the model was rated at around 60%. While this is not a

concluding number, it shows that we have taken a step in the right direction. More

analysis and refinement will need to be done to the model to improve its effectiveness.

62

CONCLUSION

In this thesis, we have discussed the factors of productivity in software

engineering. We have seen that some factors carry more weight in the way that they

affect productivity. An enriching discussion has been presented to help the reader

understand those heavy weights factors which we call intrinsic factors in context of the

software engineering discipline.

From the master coursework at Kennesaw State University, we learned that the intrinsic

factors of productivity are people, processes, and tools.

In this paper, we introduced the notion of a software engineering environment which

captures the states of people, process and tools in given software development

organization. We also introduced the concept of nominal productivity, which is the open-

circuit voltage of software engineering team. That is the productivity potential that would

have been attained if there were no resistance factors and zero risks during the

development of a given piece of software. The goal of the thesis was to validate the

assumption we learned in school with experienced industry practitioners as to what are

the intrinsic factor of productivity. We also wanted to explore the possibility of

mathematically sensible that expresses production in functions of those factors.

63
After the research, we found that as it relates to people, process and tools being

the intrinsic factors of productivity in software engineering, our assumptions were

supported by experienced practitioners. We also presented them with our first

preliminary version of nominal productivity visualization model that helps explain

productivity shift in function of the interactions between states in people, processes and

tools. We have studied and analyses this model ourselves in this paper, and even ran

some theoretical experiments. We shared those experiments with experienced

practitioners and asked them for their feedback on how the model was effective in

explaining the scenario described in the experiment. The model was deemed effective at

60%.

In closing, we are proud of the effort invested in sharing our knowledge and

discovering more about software engineering productivity. We encourage other students

to continue this research on the nominal productivity framework so we can better

understand productivity to maximize it.

64
Bibliography
Academic Accelerator. (Mar, 2023). extraversion-and-introversion. Retrieved from

https://academic-accelerator.com: https://academic-
accelerator.com/encyclopedia/extraversion-and-introversion

Andreessen, M. (2011). Why Software Is Eating The World. Wall Street Journal, 1.
Brooks, F. P. (1982). The Mythical man-month : essays on software engineering. Boston:

Addison-Wesley Pub. Co.
Bureau of Labor Statistics, U.S. Department of Labor. (2021, Aug 3). Occupational

Outlook Handbook, Software Developers, Quality Assurance Analysts, and
Testers. Retrieved from bls.org: https://www.bls.gov/ooh/computer-and-
information-technology/software-developers.htm

Cain, S. (2013). Quiet: The Power of Introverts in a World That Can't Stop Talking. New
York: Crown.

Dent, F., & Brent, M. (2015). The Leader’s Guide to Coaching and Mentoring. Upper
Saddle River: FT Publishing International.

Firth, R., Mosley, V., Pethia, R., Roberts, L., & Wood, W. (1987). A Guide to the
Classification and Assessment of Software Engineering Tools. CMU SEI.

Gallup. (2013). State of the American Workplace: Employee Engagement Insights for
U.S. Business Leaders . Gallup.

Godfrey, S. C. (1924). The Human Factor in Engineering. Society of American Military
Engineers, 180-183.

Goldberg, L. R. (1990). An alternative "description of personality": The Big-Five factor
structure. Journal of Personality and Social Psychology, 1216-1229.

Loten, A. (2019). America’s Got Talent, Just Not Enough in IT. The Wall Street Journal,
1.

Maese, E., & Robison, J. (2021, Apr 2021). Measuring Productivity Is Less Important
Than Managing It. Retrieved from Gallup:
https://www.gallup.com/workplace/348713/measuring-productivity-less-
important-managing.aspx

Mantei, M. (1981). The effect of programming team structures on programming tasks.
Communications of the ACM, 106–113.

Moritz, T. B. (2021). The 2021 Software Developer Shortage Is Coming. ACM Journal,
39-41.

Orosz, G. (2022, Sep). Can You Really Measure Individual Developer Productivity? -
Ask the EM. Retrieved from The Pragmatic Engineer Blog:
https://blog.pragmaticengineer.com/can-you-measure-developer-productivity/

Pournaghshband, Hassan (2021). Effective Process Creation Guide.

 In Pournaghshband, Hassan (Ed), SWE 6633: Software Project Planning &
Management. Kennesaw State University

Roongkaew, W., & Prompoon, N. (2013). Software engineering tools classification based
on SWEBOK taxonomy and software profile. 2013 Second International
Conference on Informatics & Applications (ICIA). Lodz: IEEE.

65
Sackman, H., Erikson, W. J., & Grant, E. E. (1968). Exploratory experimental studies

comparing online and offline programming performance. Communications of the
ACM, pp 3–11.

Urciuoli, B. (2008). Skills and Selves in the New Workplace. American Ethnologist, 211-
228.

	BUILDING SOFTWARE AT SCALE: UNDERSTANDING PRODUCTIVITY AS A PRODUCT OF SOFTWARE ENGINEERING INTRINSIC FACTORS
	Recommended Citation

	MASTER THESIS - BUILDING SOFTWARE AT SCALE

