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Abstract 

We present a graphene/n-Si Schottky junction for NH3 detection at level of few tens of parts-per-million (ppm). Graphene was 
synthesized by Liquid Phase Exfoliation and transferred onto the Si by drop casting. The Schottky barrier characterization 
towards NH3 was performed by volt-amperometric measurements in the range 10-200 ppm at bias of -3V. The characterization in 
the test chamber simulated environmental conditions by Relative Humidity at 50% and temperature at 295 K. Results suggest that 
the NH3 induces a barrier height modulation with current variations up to 4% for 200 ppm. In environmental conditions, a 
spontaneous restoring is observed for the device. 
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1. Introduction  

Nomenclature 

ppm parts-per-million  
LPE  Liquid Phase Exfoliation 
RH  Relative Humidity  
RT Room Temperature 
C  NH3 concentration 
SBH Schottky Barrier Height  

One of the most promising applications for graphene, with its great reactivity upon different substances, is the 
environmental monitoring of different toxic gases. Up to now, quite a few works on this subject have been produced, 
based on several transduction principles, mostly the drain current variation in thin film transistors [1] and the change 
of the conductivity in chemi-resistors [2, 3, 4]. A Schottky graphene/Si junction has been also proposed for detection 
of liquids and gases [5] where the interaction with the analytes relies on the chemical modulation of both the 
Schottky Barrier Height (SBH) and the sheet resistance of the graphene film, by reaching a detection of NH3 in the 
range of few percent in dry environment. Up to date, no literature data are available on the performances of the 
graphene-based sensors in environmental conditions. Likely, because of the strong reactivity of graphene to many 
substances, the selectivity and the reproducibility of the performances is a topic continuously investigated. 

On these bases, we report our contribute by a study of a graphene/silicon Schottky junction for NH3 detection in 
environment, aimed to investigate the mechanisms involved at standard temperature and humidity conditions.   

2. Methodology  

 We first prepared a basic structure by depositing 250 nm of SiO2 on a n-type Si wafer (ND ≈ 5·1015 cm-3); this 
deposition was masked to leave an area of exposed Si of 4x4 mm2 as cathode of the junction. A top contact of Cr/Au 
(30 nm/120 nm) was e-beam evaporated in an annulus shape on the oxide in order to surround the exposed Si. As 
back contact for the structure, a Ti/Pd/Ag film was realized by e-beam evaporation. The graphene flakes were 
prepared by Liquid Phase Exfoliation (LPE) using as solvent a mixture of 2-propanol and water in which 2.5 mg/ml 
of natural powdered graphite (Sigma-Aldrich, product 332461) were dispersed. After a mild sonication of 150 hours, 
the suspension was centrifuged at 1000 rpm for 45 minutes to separate the thinner flakes. Then, few microlitres of 
the graphene feed solution were drop-casted on the basic structure, so that the graphene covered simultaneously the 
top contact and the silicon, insulated between them by the oxide. I-V data were taken by a Keithley 4200 SCS 
connected to a probe station. The graphene was analyzed by Micro Raman Spectroscopy through a Renishaw inVia 
Reflex apparatus. All Raman spectra were captured in backscattering configuration (λ=514.5 nm) with a 100x 
objective on SiO2/Si substrate [6]. The sensing tests were performed in a Gas Sensor Characterization System 
(Kenosistec) by keeping Relative Humidity (RH) and temperature at constant values of 50% and 295 K [6]. 

3. Results and discussion  

Raman spectra display the typical profile of LPE graphene. The shape and position of the peaks indicate that the 
graphite is exfoliated down to less than five layers, as discussed in detail in ref [6]. The electrical characterizations 
performed on the structure confirmed a rectifying behavior with the formation of a Schottky barrier at the 
graphene/Si interface. In Fig. 1 the test results of repeated cycles are reported at different NH3 concentrations (C). 
The variations of the current device due to the ammonia show a good repeatability between two repeated cycles at 
the same concentration. The device is able to detect 10 ppm of NH3 in air, corresponding to the minimum tested 
concentration. Anyway, and more interestingly, the sensing device shows a restore that is reached spontaneously in 
about 10 min without resorting to annealing or exposure to UV radiation [1, 3, 5]. Starting from the data showed in 
Fig. 1, we calculated the Fermi level variation EF induced in the hetero-junction by the NH3 interaction. For this 
purpose, the saturation current just before the gas inlet can be expressed as:   
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Fig. 1. Current signal after several cycles upon 2 min of exposure to different NH3 concentrations. The device was reverse biased at 3V. The 
measurement was carried out in environmental condition (T=295 K and RH=50%) using synthetic air as carrier.  
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where T is the absolute temperature, A the effective area of the junction, A** the effective Richardson’s constant 
for n-Si substrate, k the Boltzmann constant, V=-3V and n the ideality factor and finally, B(-3V) is the SBH at -3V, 
which depends on bias because of the electrical tunability of the Fermi level in graphene [8]. When the diode is 
exposed towards the NH3, we measure a minimum current  
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where NH3 is the SBH variation due to the ammonia exposure amount. From equations (1)-(2), EF is then 
given by:  
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0
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Because our analysis is based on reverse bias only, the contribution from the series resistance is negligible. In Tab. 1 
both variations of the current signal and EF for different analyte concentrations are reported.  

Table 1: Current signals and Fermi level shift vs NH3 concentration at RH=50%. 

NH3 concentration I0 Imin ΔEF 
(ppm) (μA) (μA) (eV) 
10 106.2 105.4 -1.9E-4 
50 105.7 103.5 -5.3E-4 
100 106.7 103.8 -7.1E-4 
200 107.8 104.0 -9.1E-4 

 
Fig. 2 reports NH3 vs. NH3 concentration, implicitly assuming that NH3 = NH3 (C). This dependence is 
currently still under investigation because of the adsorption mechanisms regulating the doping in the device. Based 
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on previous works [8, 9, 10] a preliminary analysis, not reported here for brevity, leads to suppose the dependence 
on C as  NH3 C0.5. In Fig. 2, the plot represents the empirical fit of the data  NH3 = a Cb. 
 

 

Fig. 2. Curve reporting the SBH variations vs NH3 concentration in the range 10-200 ppm (T=295 K and RH=50%). 

We obtain, for the empirical parameters, the values: a = -8 ± 2 × 10-5 eV ppm-1/2 and b = 0.45 ± 0.05 respectively. To 
confirm the theory subtended, other sensing tests are ongoing by varying the analyte type and RH. 

4. Conclusions  

The diode current at fixed values in reverse bias was investigated for several concentrations of NH3 ranging 
between 10 to 200 ppm. Preliminary measurements suggest that the signal Imin/I0 is related to the concentration of 
analyte the device is exposed to. Further investigations towards other analytes of interest in the field of 
environmental monitoring are ongoing. The device shows a very good recovery which is reached without resorting 
to techniques such as thermal annealing or exposure to UV radiation, contrarily from what is generally reported in 
the literature for solid state sensors which work at RT. 
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