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A B S T R A C T

Classification of very high resolution imagery (VHRI) is challenging due to the difficulty in mining complex
spatial and spectral patterns from rich image details. Various object-based Convolutional Neural Networks
(OCNN) for VHRI classification have been proposed to overcome the drawbacks of the redundant pixel-wise
CNNs, owing to their low computational cost and fine contour-preserving. However, classification performance
of OCNN is still limited by geometric distortions, insufficient feature representation, and lack of contextual
guidance. In this paper, an innovative multi-level context-guided classification method with the OCNN (MLCG-
OCNN) is proposed. A feature-fusing OCNN, including the object contour-preserving mask strategy with the
supplement of object deformation coefficient, is developed for accurate object discrimination by learning si-
multaneously high-level features from independent spectral patterns, geometric characteristics, and object-level
contextual information. Then pixel-level contextual guidance is used to further improve the per-object classi-
fication results. The MLCG-OCNN method is intentionally tested on two validated small image datasets with
limited training samples, to assess the performance in applications of land cover classification where a trade-off
between time-consumption of sample training and overall accuracy needs to be found, as it is very common in
the practice. Compared with traditional benchmark methods including the patch-based per-pixel CNN (PBPP),
the patch-based per-object CNN (PBPO), the pixel-wise CNN with object segmentation refinement (PO), semantic
segmentation U-Net (U-NET), and DeepLabV3+(DLV3+), MLCG-OCNN method achieves remarkable classifi-
cation performance (> 80 %). Compared with the state-of-the-art architecture DeepLabV3+, the MLCG-OCNN
method demonstrates high computational efficiency for VHRI classification (4–5 times faster).

1. Introduction

Very high resolution images (VHRI;< 1 m) are increasingly avail-
able from optical sensors (e.g. WorldView-3, GeoEye-1, QuickBird and
Gaofen-2). The fine contextual information and complex spatial char-
acteristics that these images convey offer rich spatial details for ad-
vanced land cover analysis (Chen et al., 2019a; Vetrivel et al., 2018).
On the other side, in addition to known challenges for classification
(e.g. intra-class spatial or spectral heterogeneity, and vice versa inter-
class similar spatial or spectral patterns; Zhao and Du, 2016), VHRI
introduce new ones for image interpretation. For example,

identification of small rectangular parcels of glass as a distinct class is
difficult because pixels and objects belonging to glass can be assigned to
building class if they are located on building roofs (e.g. skylights) or,
alternatively, to car class if the pixels belong to car window. Conse-
quently, the high intra-class variability and low inter-class disparity,
plus the semantic diversity, make VHRI classification challenging.

From pixel statistical analysis methods (Ichoku and Karnieli, 1996),
scholars moved to object-based image analysis (OBIA) to segment
images into “meaningful” objects (superpixels) with relatively discrete
spatial pattern, high interior homogeneity and discreteness. Most of
object-based image classification (OBIC) approaches follow a
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“segmentation-classification” mode. First segmentations, such as Multi-
Resolution, Mean-Shift, and Quadtree-Based approaches, are per-
formed. Then, during the classification stage, hand-crafted features of
segmented objects are fed into supervised or unsupervised classifiers.
Although OBIC overcomes the salt-and-pepper effect that is common in
per-pixel approaches (Chen et al., 2019a), the manually-designed rule
set of hand-crafted features fails to achieve a satisfactory performance
on VHRI, because the hand-crafted features are limited in representing
rich textural features and understanding complex geometric details.

Deep learning proves very promising for land use and land cover
classification (Luus et al., 2015; Weng et al., 2017; Zhang et al., 2018a),
scene classification (Castelluccio et al., 2015), change (Zhang et al.,
2016) and object detection (Cheng et al., 2016; Zhang et al., 2018c).
Multi-layer artificial Convolutional Neural Network (CNN) allows au-
tomatic extraction of high-level features from labeled images. By means
of convolutional kernels at multi-levels operating over upper-level
feature maps, high-level features are extracted hierarchically through
the network. The back-propagation strategy helps CNN adjust its net-
work parameters automatically. The high generalization capacity of
CNN outstands other machine learning algorithms and makes CNN the
most mature and widely used deep learning framework (LeCun et al.,
2015).

CNN-based land cover classification often follows a patch-based
strategy (Lv et al., 2018; Zhang et al., 2018a). The patch-based strategy
applies a moving window with a fixed size on each pixel to generate
overlapping patches (Nguyen et al., 2013; Marmanis et al., 2016;
Sharma et al., 2017). Then patches are fed into a CNN, which is com-
posed of two functional parts. The first part of the CNN consists of
multiple stacked convolutional and pooling layers that are used for
feature extraction. The second part is usually implemented by a stack of
fully connected layers with the SoftMax layer at the end to generate a
probability distribution over different classes. Alternative algorithms
have been used at the second part such as SVM (Agarap, 2017),
XGBoost (Ren et al., 2017), and forest random (Richmond et al., 2015).
Owing to its deep feature extraction ability, patch-based CNN exhibits
superior performance in extracting high-level features than methods
based on hand-crafted features (Othman et al., 2016). In addition, a
variety of multi-scale CNNs have been presented to overcome the lim-
ited perception field of single-scale patches. They were proven to be
more effective than the single-scale CNN (Hu et al., 2015; Zhao et al.,
2015; Alhichri et al., 2018; Wu et al., 2019a, 2019b). However, fine
tune of patch size is tricky in “object segmentation - patch generation -
patch prediction - object labeling” processes (e.g. Lv et al., 2018). If the
patch size is too large, more than one object can be observed in a single
patch, which leads to noise disturbance. Conversely, if the size is too
small, the distinguishable characteristics of objects may not be cap-
tured. Consequently, a better choice is to feed objects straightforwardly
into CNNs to overcome the limited representation ability of patches
(Zhang et al., 2018d). However, objects must to be reshaped in different
shapes and scales into the same size, because CNN requires a fixed size

of input images. This operation causes the loss of object shape and scale
information. Furthermore, relationships of the surrounding neighbors
(i.e. contextual information) should also be considered for accurate
object classification. Therefore, further investigations are needed to
minimize the loss of shape and scale information during the data pre-
processing stage and the incorporation of contextual information.

In this paper, a multi-level context-guided classification method
with object-based convolutional neural network (MLCG-OCNN) is
proposed. Objects with fine boundary and high internal compactness
are firstly segmented as functional units by means of semantic-free
segmentation. Instead of extracting features from patches to represent
objects, MLCG-OCNN utilizes objects and context patches as inputs. A
deep CNN fusing high-level features from independent spectral pat-
terns, geometric characteristics, and object-level contextual informa-
tion is developed for per-object classification. An object-as-analysis unit
perspective is adopted, wherein object-level features can be best re-
tained. The object geometric characteristics are kept, by combining the
object mask strategy with an object deformation coefficient that mea-
sures the distortion of objects and proves effective to achieve contour-
preserving results with high accuracy. Finally, a conditional random
field (CRF) graph model is employed to explore the contextual in-
formation of neighboring pixels to further improve the classification
results. The effectiveness and computational efficiency of the MLCG-
OCNN method are compared with 5 benchmark methods: Patch-based
per-pixel CNN (PBPP), Patch-based per-object CNN (PBPO), Object-
based CNN (PO), semantic segmentation U-Net (U-NET), and
DeepLabV3+ (DLV3+).

2. Methodology

Fig. 1 shows the three-step process of MLCG-OCNN method. Step 1:
VHRI is segmented into objects by a semantic-free segmentation algo-
rithm. Step 2: the per-object classification is run by means of context-
guided object-based CNN (OCNN). Specifically, contour-preserving
objects are clipped from images according to a mask policy. Object-
oriented context patches are then produced by means of masking
windows with flexible sizes on each object. At the same time, the object
deformation coefficient is derived during the object resize operation,
and then it is used as a supplement of geometric characteristics for
object discrimination. Finally, the deep independent object features and
contextual information (i.e. the features extracted from context pat-
ches) are fused in the proposed OCNN. Step 3: the per-object classifi-
cation output is further processed by means of Conditional Random
Field (CRF) for per-pixel refinement with pixel-level contextual gui-
dance.

2.1. Image segmentation

For patch-based object classification methods, since CNN requires a
fixed size for input images, patches holding different proportions of

Fig. 1. Workflow of MLCG-OCNN method: (1) image segmentation, (2) object-based convolutional neural network (OCNN) with object-level contextual guidance, (3)
pixel-level contextual guidance by means of Conditional Random Field (CRF).
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backgrounds have negative impacts on object classification results
(Chen et al., 2019a). Algorithms (e.g. SEEDS: Superpixels extracted via
energy-driven sampling; Van et al., 2015), that segment images into
objects with similar sizes and shapes, were adopted in existing object-
based classification studies (Lv et al., 2019). However, these algorithms
produce too many fragmented objects. Large objects are broken into
pieces with similar sizes, ignoring their geometric boundaries or in-
tegrity as functional units. Continuously distributed areas such as long
strips of roads and large areas of building roofs are cut into fragmented
pieces, which result in the loss of object-level geometric information.
MLCG-OCNN method discards the patch-based strategy and takes the
object integrity as a priority. In this paper, we use Multi-resolution
segmentation (MRS; Baatz and Schäpe, 2000), given that it produces
results with meaningful objects (Neubert et al., 2008). The effect of
different segmentation scales on classification results has been in-
tentionally tested.

2.2. OCNN with object-level contextual guidance

After the image segmentation, a feature-fusing Object-based CNN
(OCNN) is developed for per-object classification. The proposed OCNN
receives three inputs, i.e. two images representing the labeled object
and the context patch, respectively, and 1-D vector representing the
object deformation coefficient (Fig. 2).

2.2.1. Object cropping
The minimum bounding rectangle (MBR) mask policy has been used

widely to crop objects from images. A cropped image patch usually
contains both the object and the background. A mix of different pro-
portions of object and background have a negative effect on object
feature extraction. A large proportion of an object in a patch contains
more object pixels, while a small proportion of an object in a patch
contains more background pixels that result in an excessive attention on
the surrounding environments. Moreover, cropped patches generated
by the mask policy are hard to provide geometric characteristics (i.e.,
shape and scale) of objects for object discrimination. Therefore, we
propose an object boundary mask policy to crop fine contour-preserving
objects from images. Patches are firstly masked by object MBR. Then,
pixels falling inside the object boundary keep their original spectral
values, while pixels falling outside the object boundary are assigned to
zero value.

2.2.2. Object deformation coefficient
The object-level geometric characteristics are crucial for object

discrimination, especially for inter-class objects having similar interior
texture patterns while showing different shapes and sizes. For example,
it is difficult to discriminate asphalt-covered roofs from asphalt-covered
roads in terms of the spectral textures. The problem can be solved if
geometric characteristics are taken into consideration. Although both
roads and roofs are covered by grey-smoothed asphalt surfaces, roads
can be easily discriminated based on their strip shape, while objects
with approximately square shape are more likely to be roofs.

The loss of object geometric information during the resizing op-
eration is not yet addressed in the literature. Therefore, MLCG-OCNN
includes the object deformation coefficient. Assuming that MBR de-
fining the original shape of an object O has a length ofO _BB l and a width
of O _BB w, CNN accepts input images with the specific size of
(Input Obj_ l, Input Obj_ w). Usually Input Obj_ l is equal to Input Obj_ w. The
object O is resized from (O _BB l, O _BB w) to (Input Obj_ l, Input Obj_ w) by
means of the resizing function. The deformation coefficient (C _O x,
C _O y) for the object O is defined as follows:

=C C O Input Obj O Input Obj( _ , _ ) ( _ / _ , _ / _ )O x O y BB l l BB w w (1)

2.2.3. Object-level contextual guidance
Although the combination of deep features extracted from the fine

contour-preserving object and the object deformation coefficient is ef-
fective for discriminating independent objects, it mainly focuses on
features within object boundaries while it ignores the neighboring in-
formation of the objects. For instance, both car windshield windows
and building roof windows have strong light reflectivity and high
transparency, and they also have similar interior spectral textures and
geometric characteristics. Training a CNN fed with these cropped
images will lead to a poor classification performance.

In MLCG-OCNN, the object-oriented context patch is an image patch
describing both the object and its surrounding environment. Fixed size
windows are commonly used to crop context patches (Zhang et al.,
2018b; Zhao et al., 2017; Fu et al., 2018; Lv et al., 2018). However,
fixed window size has similar problem as the independent object
cropping, i.e. the changing proportion of objects and their backgrounds.
To overcome these shortcomings, we introduce the object-oriented
context patch into the CNN for object-level contextual guidance. Win-
dows with flexible sizes are used. Sizes of context patches are de-
termined by corresponding objects in order to maintain the same re-
ception field with objects. The size of each object context patch varies
from object to object. Using a Minimum Bounding Box (MBB) for the
object O, (O _BB x, O _BB y) is the central point of the MBB, and O _BB l and
O _BB w denote the length and width of the MBB, respectively. Then, the

Fig. 2. Feature-fusing OCNN with object-level contextual guidance.
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contextual patch (O _Cont x , O _Cont y, O _Cont l, O _Cont w) for the object O is
defined as follows:

=O O O O( _ , _ ) ( , )Cont x Cont y BB BBx y (2)

= × ×O O O S O S( _ , _ ) ( , )Cont l Cont w BB re BB rel w (3)

where (O _Cont x , O _Cont y) is the central point and O _Cont l and O _Cont w are
the length and width of the context patch. Sre controls the size of the
reception field of the context patch. Small Sre produce small context
patches containing poor neighboring information; high Sre produce
context patches with large reception fields. However, too large Sre
produce highly overlapping context patches, which hamper the classi-
fication performance and incur a huge computational cost. In Section
4.3.2 we discuss the effect of Sre for classification result.

The context patch is then resized to a square area (Input Cont_ l,
Input Cont_ w) defined as follows.

= × ×Input Cont Input Cont Input Obj S Input Obj S( _ , _ ) ( _ , _ , )l w l re w re

(4)

where Input Obj_ l and Input Obj_ w represent the length and width of the
resized object images. Therefore, the context patch for each object can
be wrapped as an input to OCNN for object-level contextual guidance.

2.2.4. Object-based Convolutional Neural Network (OCNN)
A typical CNN is built upon stacked blocks composed by convolu-

tional and pooling layers. Starting from the first convolutional kernel
scanning across patch images, characteristics of the patch image are
abstracted hierarchically as high-level features through a stack of
convolutional-pooling blocks. A nonlinear activation function follows
each convolutional layer to strengthen the non-linearity.
Mathematically, the operation of the convolutional-pooling block is as
follows:

= +−f Pool F f W b( _ ( * ))i i non linear i i i1 (5)

where fi and −fi 1 represent feature maps for the ith and −i 1th con-
volutional-pooling block, respectively. The feature map of the layer −fi 1
is convolved by Wi . Wi denotes weights of the current convolutional
kernel. bi represents biases following the convolution. The non-linearity
function, i.e. F _non linear , is operated over the convolution result to
strengthen the non-linearity. Afterwards, the pooling layer (Pooli) is
applied using the max pooling method. After the feature extraction, a
stack of fully connected layers is attached to the last pooling layer to
learn non-linear combinations of extracted features. The fully con-
nected layer starts with a fixed-length vector as the input, while the
convolutional layer produces outputs in arbitrary sizes by taking input
with arbitrary sizes. Consequently, typical CNNs demand input of
images with a fixed size. To make the proposed OCNN work with da-
tasets with variable inputs, a Spatial Pyramid Pooling (SPP) Layer is
applied to bridge the non-fixed length of features and the fixed length
requirement for input of the fully connected layers. Instead of using a
sliding window over feature maps, SPP employs several spatial bins
with sizes proportional to feature maps for feature pooling. In this way,
the number of the extracted high-level features is fixed.

After the above steps, labeled objects, context patches, and the de-
rived object deformation coefficients are fed into the feature-fusing
OCNN. Built by parallel stacks of convolutional-pooling blocks, the
OCNN allows for multi-input feature extraction and fusion, and learns
object labeling. Parameters and structure of the model are further tuned
empirically, as shown in the experimental section. After the training
phase, the trained OCNN is used for per-object classification. The
classification result is further refined in the following stage using the
pixel-level contextual guidance.

2.3. Pixel-level context-guided classification

The object contour delineation using the traditional image

segmentation method, i.e. MRS, ignores the rich contextual information
among semantics-embedded pixels. For per-object classification results,
contour delineation errors introduced by image segmentation can be
refined at pixel-level. Therefore, the CRF is further introduced for per-
pixel classification refinement.

Suppose that X = {x1, x2, …, xN} is a list of random variables, each
xi corresponds to the pixel at location i in the image, and takes a value
from a category set of = …L l l l{ , , , }k1 2 . N is the total number of pixels
in the image. k is the number of classes for the category set. F =
{ …F F F, , , N1 2 } denotes the observed data sequence for the image, and
Fi represents the spectral feature of pixel i. Then, the conditional
random field (F, X) is formulated by means of a Gibbs distribution. The
pair (F, X) is defined as follows:

= −P XF E XF Z F( ) exp( ( ))/ ( ) (6)

where Z F( ) is a normalizing factor that is computed as follows:

∑= −Z F exp E X F( ) ( ( | ))
x (7)

E(X) in Eq. (6) represents the Gibbs energy. The result is achieved
by finding the minimum value of E(X). The Gibbs energy of pairwise
CRF takes the following form:

∑ ∑= ∅ +E X x φ x x( ) ( ) ( , )
i i i i j i j i j, , (8)

where the unary potentials ∅ = − =(x ) log(P(X x ))i i i i .
=P X x( )i i represents the probability of the pixel i to take the label

of xi.
φ x x( , )i j i j, is the pairwise potentials defined as follows:

= − − − −

+ − −

φ x x μ x x w p p σ I I σ

w p p σ

( , ) ( , )[ exp( ‖ ‖ /2 ‖ ‖ /2 )

exp( ‖ ‖ /2 ) ]

i j i j i j i j α i j β

i j γ

, 1
2 2 2 2

2
2 2

(9)

where Ii and Ij are feature vectors for pixel i and j. pi and pj are pixel
positions. −p p‖ ‖i j

2 and −I I‖ ‖i j
2 denote the spectral distance and

spatial distance between pixel i and j, respectively. w1, w2, σα, σβ and σγ
are weight controlling parameters. The first term in Eq. (9) describes
the degree of adjacent pixels in similar colors belonging to the same
category. μ x x( , )i j is the label compatibility function. If ≠x xi j, then

=μ x x( , ) 1i j ; otherwise, =μ x x( , ) 0i j . This means that adjacent pixels
in similar colors, yet assigned to different classes, should be penalized.
In this way, the first term allows that nearby pixels with the similar
color should have the same label. The second term depends only on the
spatial distance between pixels, and it helps remove isolated regions.

The probability of pixels within an object boundary belonging to
different classes is determined primarily according to the OCNN clas-
sification result. Then, the probability is used as the prior probability in
the unary potentials. By performing the pixel-level context-guided CRF,
the object boundary is finely modified, and the isolated small objects in
the image are removed.

3. Experiments and analysis

3.1. Datasets

Two image pairs containing one training and one testing images
from the following open datasets are used:

• Vaihingen Semantic Labelling dataset (ISPRS, 2013a) with spatial
resolution of 0.09 m. Two sub-scenes (Vai-12 and 13) with a band
combination of red, green and near-infrared were chosen. The
ground reference maps include 5 categories: buildings, trees, low-
vegetation, cars, and roads. The Vai-13 (Fig. 3a) and Vai-12 (Fig. 3b)
images have 2817 × 2557 and 1921 × 2574 pixels and were used
for training and testing, respectively.

• Potsdam Semantic Labelling dataset (ISPRS, 2013b) with spatial
resolution of 0.05 m. Ground reference major categories of the
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Potsdam dataset include roads, buildings, trees, low vegetation,
cars, and clutters. Images 7–11 and 7–12 with three bands (red,
green and blue), and associated reference maps, containing 6000 ×
6000 pixels were used in the experiment for training (Fig. 4a) and
testing the model (Fig. 4b), respectively.

In terms of data volume, the Potsdam images (each image contains
6000 × 6000 pixels) are larger than the Vaihingen images (the largest
image contains 2817 × 2557 pixels). We intentionally exploit the dif-
ference in data volume (i.e. 6000 × 6000 pixels vs. 2817 × 2557
pixels) to assess the ability of MLCG-OCNN method and the selected
benchmark methods (see Section 4.2.3) in dealing with datasets of
different volumes.

We also intentionally selected subsets of images from two different
datasets, because in practice it is often the case that there is only a
limited number of training samples. While existing methods can
achieve good performance using the full set of images and lots of
training examples, it is still not clear how benchmark methods can
perform in cases with a small set of images and a limited number of
training samples. On one hand, classification performance of the pro-
posed method on small datasets can be exploited. On the other hand,

the assessment of performance gap among different benchmark
methods is more significant if the experiment is carried out on small
datasets, and thus the comparison is more straightforward.

3.2. Parameters and model structures

3.2.1. Segmentation parameters
The image segmentation was initially performed by means of MRS

using eCognition 9 software. Among the three required parameters, i.e.,
shape, compactness, and segmentation scale parameter (SSP), SSP is the
dominant parameter by controlling the average image object size.
Specifically, a small SSP produces small objects with high internal
compactness, while a large SSP results in large objects containing more
pixels. For the object classification, a large number of small objects
containing fewer pixels produced by a small SSP, will hamper the
classification performance and require a high computational cost.
Conversely, a relatively large SSP will result in oversized objects con-
taining pixels belonging to different categories, which will negatively
impact the deep feature extraction. To evaluate the effects of segmen-
tation scale on the proposed OCNN, we employed different scales on
both image pairs. SSPs with values of 20 and 50 were selected for the

Fig. 3. ISPRS Vaihingen image pair (false color composite: red, green, near-infrared bands): (a) Vai-13 and (b) Vai-12 images used for training and testing the model,
respectively.

Fig. 4. ISPRS Potsdam image pair (RGB color composite: red, green and blue bands): (a) 7-12 and (b) 7-11 images used for training model and testing the model.
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Vaihingen images. Two larger SSPs (40 and 100) were employed on the
Potsdam images due to its higher spatial resolution. Initial values of the
shape parameter and the compactness parameter are typically set to 0.1
and 0.5, respectively. Table 1 lists the numbers of segmented objects for
each class in the two training images.

3.2.2. OCNN structure and parameters
Considering the different spatial resolution of the two image pairs,

two OCNN structures are designed: a shallow one for the Vaihingen
images, and a deep one for the Potsdam images.

For the Vaihingen images, the context-guided OCNN is designed to
have three parallelly stacked feature extractors (Fig. 5), where the
Conv_Maxp block represents a combination of convolutional layer, ac-
tivation layer, and max pooling layer. Filters for the convolutional and
max pooling layers are set to 3 × 3 and 2 × 2, respectively. The initial
number of convolutional filters in the first block is 32, and then is
doubled in the next block. ReLU is used at the activation layer. As
shown in Fig. 5, the first feature extractor containing three Conv_Maxp
blocks and one SPP layer is employed for deep contextual information
extraction. For deep object feature extraction, the second feature ex-
tractor consists of a shallow structure with two Conv_Maxp blocks and
one SPP layer. A 3-level SPP is adopted at the end of each deep feature
extractor. While a deep structure is used for the configuration of the
contextual feature extractor, a shallower one is used for the object
feature extractor due to the fact that the input object size is smaller than
the context patch size. The third extractor receives the object de-
formation coefficient as input and includes a flatten layer.

The outputs from the three pipelines are concatenated through a
merging layer for high-level feature fusion, followed by a dropout layer
to avoid over-fitting the model. Finally, the 3-layer fully connected
layers are ended with the Softmax function to generate N outputs,
where N refers to the number of categories.

For the Potsdam images, the OCNN structure differs from the one
displayed in Fig. 5 with regard to the number of the Conv_Maxp blocks
in the two top branches. The contextual feature extractor consists of 4
Conv_Maxp blocks, while the object feature extractor of 3 Conv_Maxp
blocks, because of its larger input image size and higher spatial re-
solution. In order to overcome the unbalanced training samples, a
weight contribution with inverse class frequencies for loss correction is
applied. That is, instances of small classes contribute more, whereas
instances of larger classes contribute less to the final loss. In this way,
losses of small classes are strongly penalized to faster the weights
learning.

Other parameters are optimized empirically. Specifically, the drop
rate of the dropout layer was set to 0.5, neurons of the first two fully
connected layer are set to 100 and 10, respectively. Learning rate is set
to 0.001. Batch sizes for the Vaihingen images and the Potsdam images
in different segmentation scales are tuned according to their training
samples.

3.2.3. Benchmark models and parameters
The proposed MLCG-OCNN method is compared with the following

5 benchmark methods:

1) patch-based per-pixel CNN (PBPP): PBPP utilizes a fixed-size
window sliding over each pixel to generate densely overlapping
patches. These patches are then fed into the CNN for per-pixel
classification. A compromise between the reception field of the
input image patch and the related computational cost should be
considered. After testing different input sizes (i.e. 16 × 16, 32 × 32,
64 × 64, 128 × 128) 16 × 16 and 32 × 32 were selected for the
Vaihingen and Potsdam images, respectively. we processed the
Vaihingen images by means of a CNN with two convolutional layers
and two max pooling layers, and the Potsdam images with three
convolutional layers and three max pooling layers. The rest of the
parameters were tuned through cross-validation;

2) patch-based per-object CNN (PBPO): Based on the per-pixel classi-
fication result, PBPO further improves the performance by masking
object boundary over label pixels. The method works by counting
the occurrence frequencies of each class within one object boundary
and assigns, to the object, the category with the largest frequency.
Firstly, the MRS algorithm was used to segment objects in the image.
Segmentation parameters were set as the same as the proposed
method in Section 3.2.1. Secondly, patch-based per-pixel CNNs were
executed to achieve the per-pixel classification. Finally, the majority

Table 1
Numbers of objects for each class in the Vaihingen and Potsdam training
images.

Class Vaihingen Potsdam

SSP 20 50 40 100

Tree 12159 2543 1315 257
Low-vegetation 12853 2737 1799 366
Car 312 99 2461 768
Building 4184 1024 10355 2203
Road 4218 1027 13807 3020
Clutter 0 0 841 194
Total 33726 7430 30578 6808

Fig. 5. Structure of the context-guided OCNN for the Vaihingen images.

C. Zhang, et al. Int J Appl  Earth Obs Geoinformation 88 (2020) 102086

6



voting was applied for per-object labeling;
3) object-based CNN (PO): Instead of feeding densely overlapping

patches into the CNN, segmented objects were resized and fed into
the network for discriminating objects. The benchmark OCNNs
consisted solely of the object feature extractor (see Section 3.2.2).
Three fully connected layers containing 100, 10, and 5 neurons were
attached at the end of the feature extractor for the Vaihingen
images, and the number of neurons in the last layer for the Potsdam
images was configured as 6 to match with its 6 major categories.
Input object sizes were optimized as 16 × 16 and 32 × 32 for the
Vaihingen and Potsdam images, respectively;

4) FCN-based U-Net: U-Net (Ronneberger et al., 2015) is proven effi-
cient in many segmentation applications, including satellite images
(Rakhlin et al., 2018). We applied a standard U-Net architecture
consisting of 4 downsampling layers (encoder part) and 4 upsam-
pling layers (decoder part). 4 skip-connections were used to com-
bine contracted features and amplified features to recover the lost
information during the downsampling. To reduce the memory cost
of each training iteration, images were cut into several non-over-
lapping sub-images with the size of 512 × 512 pixels before being
fed into the U-Net. Results of the sub-images were merged for per-
formance assessment. Other parameters were tuned empirically by
referring to the literature;

5) state-of-the-art semantic segmentation architecture DeepLabV3+
(DLV+ 3): DeepLabV3+ is a state-of-the-art semantic segmentation
architecture proposed by Google (Chen et al., 2018a, 2018b). Dee-
pLabV3+ outperforms its predecessors by absorbing a set of key
advanced designs including the Atrous Convolution layer, the
Atrous Spatial Pyramid Pooling layer, and Skip-connections. In this
paper, we used Resnet101 as the backbone of the network. Para-
meter settings of the DeepLabV3+ were configured according to the
open source repository released by Chen et al. (2019a, 2019b).

3.3. Results and discussion

3.3.1. Segmentation scale parameter (SSP)
SSP affects the classification performance by controlling the size of

segmented objects. As mentioned in Section 3.2.1, from the Vaihingen
dataset the SSP value of 20 generates 33726 objects Table 1), each of
them containing averagely 214 pixels. These segmented objects are
then resized into 16 × 16 (256 pixels). Using the SSP value of 50, 7430
objects were generated from the Vaihingen training dataset. The
average number of pixels for objects is 970, which is nearly equal to a
32 × 32 square with 1024 pixels. Therefore, segmented objects were
resized into 32 × 32. Similarly, segmented objects from the Potsdam
dataset were resized into 32 × 32 and 72 × 72, respectively, using the
SPP values of 40 and 100. The sizes of context patches for the two
datasets were set as twice as the size of objects, and the Sre in Eq. (3)
was set to 2.0. Pixel-based overall accuracy (OA) and Kappa coefficient
(kappa) were used to assess the results. Fig. 6 shows the results of
classification using the SSPs on the two testing images. With regard to
the Vaihingen image, moving from the ground reference (Fig. 6a) to the
results obtained with SSP 50, CRF (Fig. 6e), we see that classification
results contain less pixels classified as low vegetation and more pixels
classified as tree. In the Potsdam image, moving from the ground re-
ference (Fig. 6f) to the results achieved with SSP 100, CRF (Fig. 6j), we
see that the last two maps identify trees within the major central
buildings better than the SSP 40 non-CRF (Fig. 6g) and 40, CRF
(Fig. 6h). Results of SSP 40 non-CRF and 40, CRF are better in identi-
fying the surrounding buildings than results in SSP 100 non-CRF
(Fig. 6i) and SSP 100, CRF (Fig. 6j).

Table 2 shows the results of our quantitative assessment. Con-
sidering the Vaihingen image, the image using SSP of 20 outperformed
the one using SSP of 50 by an increase of 1.78 % in OA. The OA of the
image using the SSP value of 20 increased 3.06 % after using the CRF
refinement. CRF led to an improvement of 2.24 % on the image using

the SSP 50. Similarly, for the Potsdam image, the SSP 40 outperformed
the SSP 100 by an increase of 6.12 % in OA, and the gap was then
enlarged to 7.27 % after the CRF refinement. The CRF refinement led to
OA improvement by 1.28 % and 0.13 %, respectively, on the two SSPs
for the Potsdam image. This demonstrates that a low segmentation scale
level (i.e., low SSP) can present a better performance on per-object
classification. Moreover, the boost effect owing to the CRF refinement
was more significant on classification results at a low segmentation
scale. The phenomenon can be explained as follows: 1) the number of
mismatched pixels between the reference image and the segmented
image increases as the SSP becomes higher; 2) when the segmentation
scale becomes higher, small objects are more likely to be absorbed by
large objects in different classes. Thus, features belonging to different
classes are mixed and the classification performance decreases.

3.3.2. Context patch size
Following Eq. (3), to assess the effects of the context patch size, the

parameter Sre is set empirically to values of 2.0, 2.5, 3.0, 3.5, 4.0, 5.0,
where these different values help to perform the comparative experi-
ment. Images using a low SSP can perform better (see Section 4.3.1).
Table 3 shows the results on the Vaihingen and Potsdam testing images
segmented by the SSP of 20 and 40, respectively, and using different Sre

values.
The Vaihingen image with a Sre equal to 2.5 achieved the highest OA

78.93 % with a Kappa coefficient of 0.706. The OA and the Kappa
coefficient dropped slightly as Sre increases. In the Potsdam image, the
highest OA 80.08 % and Kappa coefficient 0.694 were achieved by a Sre
equal to 4.0. The result does not show a distinct correlation between Sre
and the classification performance.

Although it is not clear how each Sre influences the performance of
the OCNN, the fluctuation of the OA and Kappa coefficient for both
testing images at different Sre values is small. Therefore, the size of
context patches may not be a deterministic parameter for the classifi-
cation performance of the OCNN. However, with regard to the com-
putational efficiency, a small Sre is recommended, because it involves a
low volume of input pixels in computation.

3.3.3. Comparison with benchmark methods
MLCG-OCNN was compared with the existing benchmark methods

(see Sections 4.2.3). Segmentation scales for the Vaihingen and
Potsdam datasets were set at 20 and 40, respectively. The size of con-
text patches were tuned twice the object size considering the trade- off
between the computational cost and classification performance.
Classification results are discussed based on visual interpretation and
qualitative assessment of the output classification maps by means of
pixel-based OA, kappa coefficient (Kappa), as well as per-class precision
(Pre) and recall (Recall).

3.3.3.1. Classification performance: the Vaihingen image. Fig. 7 presents
the classification results for visual interpretation. MLCG-OCNN
achieved a good result with high internal compactness and fine
boundary delineation. In particular, MLCG-OCNN outperformed the
other 5 benchmark methods when classifying objects with straight
edges and sharp corners such as roads and buildings. The pixel-wise
method PBPP demonstrated capabilities for high-level feature
extraction, e.g., most roads and buildings were correctly
discriminated. Yet the recall of the car category by PBPP was very
low. Compared with PBPP, object boundaries were refined by PBPO.
Moreover, isolated and misclassified pixels within objects on PBPP
results were rectified by PBPO. MLCG-OCNN also demonstrated a
strong ability to eliminate isolated and misclassified pixels. Moreover,
the recall of the car category on MLCG-OCNN improved significantly in
comparison with PBPP and PBPO. The result of PO was the worst
among all the methods. Semantically consecutive objects were
shattered into pieces and assigned to different classes due to the over-
segmented images. Although over-segmented images were used in
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MLCG-OCNN, much better classification performance was achieved
compared to PO, because multi-level context information was
incorporated. For FCN based methods, U-Net and DLV3+ produced
maps with smooth boundaries and high internal compactness.
Furthermore, U-Net and DLV3+ were more capable to distinguish the
car category compared to PBPP and PBPO. In this regard, MLCG-OCNN
provides similar results as the U-Net. However, U-Net and DLV3+ tend
to smooth the straight edges and round the sharp corners on the road
and building classes (Fig. 7).

Table 4 provides the quantitative assessment of the classification
performance. MLCG-OCNN achieved the highest OA 81.03 % with
Kappa 0.734, compared with PBPP (OA 75.94 % and Kappa 0.664), PO
(OA 64 % and Kappa 0.501), PBPO (OA 76.17 % and Kappa 0.667), U-
Net (OA 78.30 % and Kappa 0.697), and DLV3+ (OA 80.71 % and
Kappa 0.730). The advantages of MLCG-OCNN can be observed

obviously among the conventional pixel-wise and object-wise methods.
Even compared with the state-of-the-art architecture DeepLabV3+ (i.e.
DLV3+), the MLCG-OCNN method gained an OA improvement of 0.32
% and a kappa coefficient improvement of 0.41. Therefore, we can
conclude that the accuracies achieved with DeepLabV3+ and MLCG-
OCNN are comparable.

In terms of classification performance on each class, high precisions
and recalls were achieved by MLCG-OCNN. Compared with PBPP, PO,
PBPO, and U-Net, MLCG-OCNN gained significant increases on preci-
sions of road, building, and car classes. In particular, when compared
with the object-based CNN method, PO, precisions of road and building
classes increased dramatically by 30.57 % and 7.66 %, respectively.
Although precisions of road and building classes achieved with PBPO
are close to MLCG-OCNN, their recalls are low. Moreover, precisions of
the low vegetation and car classes were much lower than the proposed
method by a decrease of 10 % and 40.7 %, respectively. For the se-
mantic segmentation methods, the performance of DLV3+ on different
classes increased slightly compared with U-Net owing to its complex
and deeper architecture. In addition, DLV3+ demonstrated its ad-
vantage in dealing with unbalanced data by achieving a precision of
90.68 % and a recall of 47.46 % on car class, which is higher than the
results of the other methods.

3.3.3.2. Classification performance: the Potsdam image. The Potsdam
images have a higher spatial resolution, much more artificial objects
showing complex spectral variances and small objects augmenting the
complexity of the major classes. Moreover, the image quality of the
Potsdam images is not guaranteed. Straight outlines of buildings were
twisted into irregular curves due to noise disturbance. Since most leaves
of trees were already fallen when the images were collected, features
below the sparse branches such as roads and cars were mixed up with
tree features. This greatly hampered the distinction of the tree class.
Moving cars result in image ghosting and tearing. These issues
increased significantly the complexity of the classification, especially
for the object-based classification method.

As shown in Fig. 8, results with performances similar to the Vai-
hingen image were obtained from MLCG-OCNN and the other bench-
mark methods, except for the PO. Due to the high inter and intra-class

Fig. 6. Classification results using different SSPs: (a-e) the Vaihingen image, and (f–j) the Potsdam image.

Table 2
Overall accuracy (OA) and Kappa coefficient (Kappa) for the two testing images
with different SSPs.

SSP CRF OA Kappa

Vaihingen 20 no 77.70 0.697
yes 80.76 0.732

50 no 75.92 0.667
yes 78.16 0.694

Potsdam 40 no 79.01 0.676
yes 80.29 0.693

100 no 72.89 0.569
yes 73.02 0.566

Table 3
Overall accuracy (OA) and Kappa coefficient (Kappa) for the two testing images
in different Sre values.

Sre 2.0 2.5 3.0 3.5 4.0 5.0

Vaihingen OA 77.13 78.93 78.57 78.22 78.30 77.25
Kappa 0.683 0.706 0.702 0.700 0.700 0.683

Potsdam OA 79.01 78.63 77.65 79.13 80.08 77.56
Kappa 0.676 0.672 0.653 0.672 0.694 0.650
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spectral variations under the super high resolution, over-segmented
objects exhibited complex patterns on high-level features, which re-
sulted in the poor performance of the per-object classification method
(PO). Similar to the experiments on the Vaihingen image, the pixel-wise
method PBPP on the Potsdam image also suffered the salt-and-pepper
effect. In contrast, DLV3+ produced a result with the highest object
integrity than other methods. Although slightly inferior to the DLV3+
in terms of the object integrity, MLCG-OCNN achieved a desirable result
with major objects maintaining fine boundaries. Most roads, buildings,
and low vegetation were accurately discriminated with straight edges.

MLCG-OCNN achieved an OA 80.29 % and a Kappa 0.693, which
are larger than the other methods, PBPP (OA 78.4 % and Kappa 0.667),
PO (OA 67.45 % and Kappa 0.483), PBPO (OA 80.05 % and Kappa
0.691), and U-Net (OA 78.37 % and Kappa 0.743) (Table 5). Different

from the test on the Vaihingen image, DLV3+ demonstrated its su-
periority by achieving OA 83.54 % and Kappa 0.743. DLV3+ provided
the most accurate result with respect to each class. Compared with PO,
MLCG-OCNN achieved remarkable precision improvement on each
class with the highest value equal to 27.62 %. When compared with
PBPP, MLCG-OCNN achieved moderate increases of per-class precision
with the values 0.64 %, 4.64 %, 8.76 %, and 10.38 % on road, building,
car, and clutter classes respectively. The performance gaps on road and
building classes were further narrowed between PBPO and MLCG-
OCNN. Considering building, tree, and low vegetation classes, PBPO
showed slightly better result.

3.3.3.3. Computational efficiency. Because deep learning techniques
have computational cost of training complex networks and require
significant volumes of training data, we assessed not only the
classification performance, but also the computational efficiency. We
applied three indicators: the volume of training samples, time
consumption on each phase, and the number of network parameters.
Time consumption of each method was decomposed into 3 main
elements: the running time of data loading, the time consumption of
the model training phase and the duration of the model inference
phase.

Tests were implemented on a machine with a NVIDIA P5000 GPU
and 64 GB memory. Table 6 shows the comparison of computational
efficiency among the methods on the Vaihingen image. PO and U-NET
spent almost the same time on the model training and inference phases,
with a total time near to 9 min. Due to the resize operation in the data
preprocessing, PO consumed nearly one minute in the data loading
phase. PBPP has a relatively small number of model parameters, and
spent the least time (4 min) in the model training phase. Whereas in the
model inference phase, the densely overlapping patches covering all

Fig. 7. Comparison of the classification results achieved with MLCG-OCNN and the other five benchmark methods on the Vaihingen image.

Table 4
Quantitative assessment of classification performance on the Vaihingen image
using the precision, recall, Overall Accuracy (OA), and Kappa.

Class PBPP PO PBPO U-NET DLV3+ MLCG-
OCNN

Precision Tree 80.79 69.84 80.57 80.34 78.86 79.63
Recall 77.88 67.35 78.64 80.96 90.79 85.99
Precision Low

vegetation
60.57 50.49 60.79 66.88 77.41 70.79

Recall 73.10 57.40 73.56 72.43 66.95 72.50
Precision Road 88.91 60.00 90.30 85.70 76.42 90.57
Recall 73.76 70.21 72.86 78.98 82.56 80.12
Precision Building 88.44 87.09 89.50 89.79 94.39 94.75
Recall 79.96 64.29 79.62 82.65 81.58 86.35
Precision Car 37.38 17.65 47.52 42.85 90.68 88.22
Recall 79.54 10.57 71.06 36.99 47.46 32.08
OA 75.94 64.00 76.17 78.30 80.71 81.03
Kappa 0.664 0.501 0.667 0.697 0.730 0.734
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pixels in the image were clipped and fed into the model for per-pixel
classification, and thus the highly redundant data increased sig-
nificantly the time consumption, up to 12 min. Since PBPO predicted
the image based on the classification result of the PBPP, the computa-
tional efficiency was the same as the PBPP. DLV3+ spent the longest

time of 1.5 h on the model training phase due to its deep complex ar-
chitecture with the enormous amount of model parameters up to
118,821,805. In contrast, MLCG-OCNN spent only 12 min on the model
training phase and 18 min in total, which is 7.5 and 5 times faster than
DeepLabV3+, respectively.

Table 7 shows the comparison of computational efficiency among
the different methods on the Potsdam image. Again, the object-based
method PO achieved the best computational efficiency with a total
running time of 10.8 min. For PBPP, as the number of predicted pixels
increased from 1921 × 2574 (the Vaihingen image) to 6000 × 6000
(the Potsdam image), the time consumption in the model inference
phase increased dramatically to 120 min. Meanwhile, the running time
during the training stage also increased to 20 min due to the deeper
network operating with a doubled volume of training parameters. Al-
though the number of parameters of U-Net was 15 times larger than the
patch-based methods (PBPP and PBPO), the running time of the model
inference was reduced greatly to 0.08 min, similar to the case (0.05
min), because the fully convolutional networks took an image as model
input. DLV3+ took the longest time during the model training (i.e. 120
min) to reach the desired performance. Comparatively, MLCG-OCNN
lasted in total no more than 30 min, of which 1.8, 21 and 7 min for data
loading, model training, and model inference, respectively. In terms of
the overall time consumption, MLCG-OCNN was 4 times faster than
DeepLabV3 + .

As shown in Table 5 benefiting from the large volume of training

Fig. 8. Classification results of the MLCG-OCNN method and the other five benchmark methods on the Potsdam image.

Table 5
Quantitative assessment of the classification accuracy on the Potsdam image
using the precision, recall, Overall Accuracy (OA), and Kappa.

Class PBPP PO PBPO U-NET DLV3+ MLCG-
OCNN

Precision Clutter 15.04 10.88 9.39 9.70 77.72 25.42
Recall 3.62 1.59 4.07 6.99 2.02 1.66
Precision Road 79.87 68.19 80.18 83.01 82.16 80.51
Recall 89.23 86.02 92.04 87.87 97.32 92.89
Precision Building 80.55 71.53 85.77 88.65 94.62 85.19
Recall 88.33 70.51 89.31 85.78 88.79 92.25
Precision Tree 72.10 43.01 73.71 53.47 97.27 70.63
Recall 24.02 13.69 22.24 31.85 18.99 19.72
Precision Car 71.13 55.47 68.67 68.90 92.21 79.89
Recall 69.99 55.43 64.16 67.95 68.44 67.04
Precision Low

vegetation
70.30 60.40 72.10 58.38 64.95 67.65

Recall 62.14 37.11 65.08 68.58 75.53 58.50
OA 78.40 67.45 80.05 78.37 83.45 80.29
Kappa 0.667 0.483 0.691 0.676 0.743 0.693

Table 6
Comparison of computational efficiency on the Vaihingen image. (Mins is ab-
breviation of minutes).

Method Training
samples

Data
loading
(Mins)

Model
training
(Mins)

Model
inference
(Mins)

Model
parameters

PBPP 112,640 0.1 4 12 226,457
PO 33,726 1 6 2 197,913
PBPO 112,640 0.1 4 12 226,457
U-Net 25 0.1 7 0.05 7,768,198
DLV3+ 25 0.1 90 0.2 118,821,805
MLCG-OCNN 33,726 2 12 4 345,877

Table 7
Comparison of computational efficiency on the Potsdam image.

Method Training
samples

Data
loading
(Mins)

Model
training
(Mins)

Model
inference
(Mins)

Model
parameters

PBPP 140,625 0.05 20 120 505,124
PO 21,024 0.8 6 4 735,524
PBPO 140,625 0.05 20 120 505,124
U-Net 36 0.1 22 0.08 7,768,198
DLV3+ 36 0.1 120 0.5 118,821,805
MLCG-OCNN 21,024 1.8 21 7 591,072
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samples in the Potsdam dataset, the pixel-wise CNN demonstrates its
strong model generalization ability on the large dataset. However, two
drawbacks of the pixel-wise methods can be observed from the ex-
periments. Firstly, their result suffers from the salt-and-pepper effect,
with blurred boundaries occurring between inter-class objects due to
loss of object level features. Secondly, the prediction of the densely
overlapping patches is quite time consuming (Tables 6 and 7). There-
fore, the object-based CNN has been proposed. Rather than feeding
fixed size patches into the CNN, OCNN feeds directly segmented objects
into the network. However, the poor performance of the per-object
method (PO) in Tables 4 and 5 shows that this method is still not suf-
ficient to use solely the independent object features for discriminating
objects. In the paper, the proposed feature fusion network accepting
multi-inputs is proposed to discriminates objects by learning simulta-
neously object features and their contextual information. The bound-
aries of segmented objects are used for object mask in order to maintain
shape information of objects. To solve the issue of missing scale in-
formation during the resize operation, the object deformation coeffi-
cient is proposed and incorporated into the network. The contextual
guidance of the method is decomposed into two levels: the object-level
and the pixel-level. The object-level context patch is object-dependent,
the size of which is determined by the object size. In this way, the
feature-fusing network achieves an accurate per-object classification
result while maintaining fine object boundaries. The pixel level con-
textual guidance, with the assistance of the CRF, is used furthermore, to
improve the classification performance at the pixel level.

The experimental results on the two image pairs from different
datasets demonstrate the effectiveness of the proposed method.
Specifically, for the image pair with a small number of training samples
(i.e. Vaihingen), the method achieves the best result with OA and Kappa
exceeding benchmark methods (Table 4). This can greatly benefit the
classification in practical scenarios where there are only a limited
number of available training samples. For the Potsdam image pair with
a relatively large number of training samples, the gap of the classifi-
cation performance among the methods was smaller than that on the
Vaihingen image pair due to its larger training samples (Table 5).
MLCG-OCNN outperformed the pixel-wise PBPP, the object-wise PBPO
and PO, as well as the pixel-to-pixel U-Net. Compared with the latest
semantic segmentation method, i.e. DeepLabV3+ from the computer
vision domain, the method in this paper has a slightly lower perfor-
mance, with OA decrease by 3.16 % and Kappa by 0.05. However, the
time consumption on the model training stage for the DeepLabV3+,
due to its deep architecture and massive parameters, was 5 times longer
than that in MLCG-OCNN (Table 7). The traditional pixel-wise CNN (i.e.
PBPP and PBPO) is the most time-consuming on the model inference
phase due to the prediction of densely overlapping patches. In contrast,
MLCG-OCNN reduced remarkably the running time by moving from
per-pixel prediction to per-object prediction. Therefore, the training
time of the proposed feature fusion network is much more acceptable
with less compromise to the classification performance.

It should be noted that the comparison experiments were performed
over two image pairs from the ISPRS datasets. Thus, the overall accu-
racy and the Kappa coefficient reported in the experiments are lower
than the state of art results that used all images in the ISPRS datasets for
model training. The motivation for using small datasets in the experi-
ment is that there are limited annotated images available for model
training in practical scenarios. Manual image labelling is quite labor-
intensive. For example, it takes a remote sensing expert about 2 h to
manually label 25 images (each containing 512*512 pixels). If summed
with the time required for model training, the total time consumption
can be very high in practical usages. It has been acknowledged that
deep learning architectures are highly dependent on training datasets.
If the training dataset is too small, the model may encounter an over-
fitting problem. While if the dataset is too large, time-consumption on
model training can be very high. Therefore, a compromise between
classification performance and computational efficiency has to be

made. In this situation, it is critical for models to maintain their ro-
bustness on small datasets. This has not been tested in the cited studies,
therefore the present paper provides a novel contribution in this regard.
Meanwhile, deep learning with small datasets has also raised interests
from both deep learning and remote sensing societies in recent years
(Liu and Deng, 2016; Pasupa and Sunhem, 2017; Zhao, 2017; Zhu et al.,
2019; Mishra et al., 2019; Wu et al., 2019a, 2019b). In this paper, on
one hand, the proposed object-based classification method is performed
over datasets containing more than 30,000 objects. i.e., a suitable data
volume to avoid model overfitting. On the other hand, we intentionally
explore the classification performance and computational efficiency of
our method and benchmark methods on small datasets, with an effort to
validate model robustness on small datasets, as well as to provide po-
tential guidance for practical usages. Existing FCN-based methods e.g.,
U-Net and DeepLabV3+ require that each pixel is labeled. MLCG-
OCNN instead does not require the training image to be fully labeled,
because it is trained over segmented objects. Labeled objects can be
clipped from the partially labeled images and thus are fed into the
OCNN for classification. When only few images are available, the work
provides a valuable reference on how benchmark methods perform,
compared with the proposed method.

4. Conclusions and future work

To deal with the known challenges of VHRI classification, MLCG-
OCNN is proposed as an effective method with high computational ef-
ficiency. The MLCG-OCNN method consists of an object-level con-
textual guided object-based CNN and is applied to carry out per-object
classification by fusing the high-level features of spectral patterns,
geometric characteristics, and contextual information. Then, with the
help of the CRF, the per-object classification result is further refined by
means of the pixel-level contextual guidance. The method is compared
with 5 benchmark methods including the state-of-the-art network
DeepLabV3 + . The experimental results achieved by processing
images from different datasets demonstrate that the method has a re-
markable performance for VHRI classification, especially when it is
utilized on small datasets. Moreover, it shows a high computational
efficiency on both the model training and inference stages.

MLCG-OCNN contributes to OCNN (currently gaining increasing
attention in the remote sensing society) as follows:

(1) The object contour-preserving mask strategy with the supplement
of object deformation coefficient to complement the high-level
feature extraction. The work suggests a combination of spectral
features with geometric characteristics to discriminate objects.

(2) The incorporation of independent object features with multi-level
contexts to improve VHRI classification. Firstly, the object level
context is used to guide the per-object classification by the OCNN.
Secondly, the pixel-level context is used to refine the classification
result at the pixel level.

(3) The high computational efficiency with competitive classification
performance. On the one hand, the object-as-input network avoids
the time-consuming pixel-wise operation. On the other hand, the
comparatively simple network of moderate parameter volume saves
plenty of time on model training.

It should be noted that the object deformation coefficient might be
insufficient to characterize the object geometric characteristics.
Therefore, further investigations on new features measuring geometric
characteristics are needed to improve the results.

In addition, considering segmented objects in very small sizes, on
the one hand, their geometric characteristics may not be sufficient to
allow object discrimination due to their irregular shapes, and on the
other hand, small objects and the corresponding context patches con-
tain small number of pixels. These two obstacles make it difficult for
OCNN to mine representative deep features for discriminating small
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objects. Therefore, the fusion strategy of merging very small objects
into semantic big objects will be studied to improve the classification
performance on small objects.

Finally, the experiment was intentionally performed over small
datasets with limited training samples. In future work, the full ISPRS
image datasets can be considered.
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