
Computer Science and Information Technology 5(2): 66-73, 2017 http://www.hrpub.org 
DOI: 10.13189/csit.2017.050204 

VUZALIZER: A Max/MSP Object for Real-time 
Generation of RCMC Canons 

Alba Francesca Battista1,*, Nicola Monopoli2, Matteo Nicoletti3 

1Department of New Technologies and Musical Languages, Conservatory «D. Cimarosa» of Avellino, Italy 
2Department of New Technologies and Musical Languages, Conservatory «U. Giordano» of Foggia, Italy 

3Independent Researcher, Italy 

Copyright©2017 by authors, all rights reserved. Authors agree that this article remains permanently open access under the 
terms of the Creative Commons Attribution License 4.0 International License 

Abstract  Regular Complementary Canons of Maximal 
Category (RCMC) or Vuza Canons were introduced to the 
musical world with Dan Tudor Vuza’s seminal papers at the 
pnm Conference in the 1990s. Musicians have always been 
intrigued by canon construction, q.v. the complex polyphony 
of the Flemish composer Josquin Desprez or the contrapuntal 
techniques of Johann Sebastian Bach, whose properties have 
been translated into formal algebraic terms. Nowadays the 
process of building mosaic canons can be implemented using 
programming languages allowing composers to use these 
extremely complex macro-structures. In this paper we will 
discuss our algorithm that allows composers to create and 
directly manage RCMC Canons. In addition, we will 
describe VUZALIZER, a Max/MSP object which generates 
Vuza Canons. 

Keywords  Vuza Canons, RCMC, Max/MSP, 
Spatialization, Mathematica 

1. Introduction
A canon is a recognizable pattern that is repeated with 

different offsets, typically with different instruments or 
simply different voices. This pattern, called motif or inner 
voice, can be modified (i. e. augmented or retrograded). In 
this paper, we will take into account the construction of a 
particular type of canon, the rhythmic one. 

When we study rhythmic canons, we only need to consider 
their rhythmic properties (i.e. the occurrences of musical 
events, regardless of pitch, timbre or dynamics). A rhythmic 
profile acts as a tile that the composer tries to translate 
temporarily in order to construct macro-structures having the 
properties to fill the entire space of the pulse, without silence 
between a rhythmic pulsation and another, and without 
superpower position among the various voices, which are 
therefore mutually complementary. A rhythmic canon of this 

type is also called mosaic since it creates a regular tiling of a 
rhythmic space. 

The geometric properties of these entities, after more than 
twenty years of research, are still a topic of great relevance 
for mathematicians and musicians. 

Musicians have always held a fascination for musical 
canons, q.v. the complex polyphony of the Flemish 
composer Josquin Desprez or the contrapuntal techniques of 
Johann Sebastian Bach, whose properties have been 
translated into formal algebraic terms. Olivier Messiaen was 
maybe the first theorist and composer who introduced and 
studied the concept of rhythmic canon. In some of his 
compositions, for example Visions de l'Amen (1943) for two 
pianos or Harawi (1945) for piano and voice, the use of 
rhythmic canons anticipates some formal features of mosaic 
music, although he did not give a formalization of this 
compositional process. 

From a mathematical point of view, the construction of 
rhythmic canons is formalized in terms of factorizations of 
finite cyclic groups as the sum of two subsets, as we will later 
observe a concept of which Messiaen, like many other 
composers of the Twentieth century, was probably unaware 
of. An exception is surely the composer and engineer Iannis 
Xenakis who used mathematical tools for the development 
and the formal organization of the compositional material. 

Nowadays the situation is different thanks to the 
development of music informatics. In fact, the process of 
building mosaic canons can be implemented using 
programming languages allowing composers to access 
extremely complex macro-structures that can be taken as a 
basis for formal architectures of original musical 
compositions. 

2. Rhythmic Canons
As we said, a canon is a contrapuntal compositional 

technique or texture that employs a melody with one or more 
imitations of the melody played after a given duration. If we 



 Computer Science and Information Technology 5(2): 66-73, 2017 67 
 

choose a motif 𝐴𝐴, transformations 𝜏𝜏𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼 , that may be 
only offsettings (viz. translations in time), a canon is the 
reunion 𝐶𝐶  of the transforms ⋃𝑖𝑖∈𝐼𝐼𝜏𝜏𝑖𝑖(𝐴𝐴) . If a motif is 
identified with its characteristic function 1𝐴𝐴 ∶ 𝐷𝐷 → {0,1} , 
with 𝐷𝐷  which is a subset of integers 𝑍𝑍 , then the 
superimposition of all its copies appears as a sum: 𝐶𝐶 =
∑ 1𝜏𝜏𝑖𝑖(𝐴𝐴)𝑖𝑖  [1]. 

In the most cases musical canons in the classical sense 
have nil to n notes for each beat. However, it is possible to 
create more interesting types of canons; we distinguish 
them in coverings and packings. The first type is a canon, in 
which each available beat features one or more notes, 
(∀𝑡𝑡 ∈ 𝐷𝐷,𝐶𝐶(𝑡𝑡) ≥ 1). The second one is a canon where there 
is never more than one note for each possible beat 
(∀𝑡𝑡 ∈ 𝐷𝐷,𝐶𝐶(𝑡𝑡) ≤ 1). Considering the entire problem from a 
mathematical point of view, it is interesting to define it 
requesting one and only one note per beat; this is called 
tiling (i.e. a mosaic with copies of one motif) eventually 
allowing deformations. We can write our problem as: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∩ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∶ ∀𝑡𝑡 ∈ 𝐷𝐷,𝐶𝐶(𝑡𝑡) = 1 (1) 

2.1. How to Define a Rhythmic Canon 

Let 𝐺𝐺  be a finite cyclic group 1 , and 𝑆𝑆,𝑅𝑅  two 
non-empty subsets of 𝐺𝐺. If each element 𝑔𝑔 ∈ 𝐺𝐺  can be 
expressed uniquely in the form 𝑔𝑔 = 𝑠𝑠 + 𝑟𝑟 with 𝑠𝑠 ∈ 𝑆𝑆 and 
𝑟𝑟 ∈ 𝑅𝑅 then the equation  

𝐺𝐺 = 𝑆𝑆⨁𝑅𝑅                  (2) 

is called a factorization of 𝐺𝐺 [2]. A rhythmic canon of 𝐺𝐺 
is a factorization of 𝐺𝐺 in two subsets. The subset 𝑆𝑆 is 
called the inner voice or motif, while 𝑅𝑅 is called the outer 
voice. If 𝐺𝐺 is the cyclic group 𝑍𝑍𝑁𝑁 = {0,1,2, … ,𝑁𝑁 − 1}, the 
set 𝑆𝑆 can be seen as a tile of the line 𝑍𝑍𝑁𝑁 and we said that 
𝑆𝑆 tiles 𝑍𝑍𝑁𝑁 with 𝑅𝑅 or that 𝑅𝑅 tiles with 𝑆𝑆, since if (𝑆𝑆,𝑅𝑅) 
is a rhythmic canon, also (𝑅𝑅, 𝑆𝑆) is a rhythmic canon. We 
can say that tiling the line is the same as finding a 
decomposition of the generic cyclic group 𝑍𝑍𝑁𝑁. 

A non-empty set 𝑆𝑆 is periodic if there is an element 𝑔𝑔 of 
𝐺𝐺 such that 𝑆𝑆 + 𝑔𝑔 = 𝑆𝑆 and 𝑔𝑔 ≠ 0 (the identity element of 
𝐺𝐺). In 1948, the Hungarian mathematician György Hajós 
hypothesized that in a factorization of 𝑍𝑍𝑁𝑁 in two factors, one 
of the factors had to be periodic. This conjecture is false, and 
the counterexamples are exactly Vuza Canons. 

3. Vuza Canons 
A factorization of a cyclic group is said to be trivial if at 

least one of its factors is periodic. In the 1950s, Hajós proved 
that it is not necessary for one of the two subsets to be 
periodic. From 1941 to 1957, mathematicians such as 
Nicolaas Govert de Bruijn, László Rédei and Hajós himself 
showed several examples of groups for which this is true. 

1 A cyclic group is a group which should be generated by a single element 
𝑔𝑔, which is called generator. This group is an Abelian one. 

In the 1990s, Dan Tudor Vuza published four articles 
devoted to the formalization of a particular class of rhythmic 
canons: RCMC canons [3]. 

Let's start with some definitions. 
Definition 1. Let 𝐺𝐺  be an Abelian group. A 

k-factorization of 𝐺𝐺 is a factorization in the direct sum of k 
of its elements. 

A k-factorization of 𝐺𝐺 = 𝐴𝐴1 ⊕ 𝐴𝐴2 ⊕ …⊕𝐴𝐴𝑘𝑘 is periodic 
if exists an index 𝑖𝑖 ∈ {1,2, … 𝑘𝑘} so that 𝐴𝐴𝑖𝑖 is periodic. 

A k-factorization which is not periodic is said aperiodic. 
Definition 2. Let 𝐺𝐺 be an Abelian group. 
𝐺𝐺 is k-Hajós if each of its k-factorizations is periodic. 
𝐺𝐺 is not k-Hajós if exists at least one of its k-factorization 

which is aperiodic. 
For 𝑘𝑘 = 2, we will simply say of Hajós or non-Hajós. 
Definition 3. Let 𝐺𝐺 be a finite cyclic group and 𝑆𝑆,𝑅𝑅 two 

non-empty subsets of 𝐺𝐺. A Vuza Canon (𝑆𝑆,𝑅𝑅) is a rhythmic 
canon 

𝐺𝐺 = 𝑆𝑆 ⊕ 𝑅𝑅                  (3) 

where neither 𝑆𝑆 nor 𝑅𝑅 is periodic. In other words, a Vuza 
canon is a 2-factorization of a cyclic group. The order 𝑁𝑁 of 
the group is the canon period. 

Now, we are going to enounce some theorems that are 
necessary in order to implement the algorithm for the 
creation of RCMC Canons. The proof of each of them is 
given in many group theory textbooks (e.g. in papers by 
Brujin [4], Amiot [5] and Jedrzedjewski [6]). 

Theorem 1. The following statements are equivalent: 
(i) Vuza Canons only exist for orders 𝑁𝑁 which are not 

in the form 

𝑝𝑝𝛼𝛼(𝛼𝛼 ≥ 1), 𝑝𝑝𝛼𝛼𝑞𝑞(𝛼𝛼 ≥ 1), 𝑝𝑝2𝑞𝑞2,𝑝𝑝𝛼𝛼𝑞𝑞𝑞𝑞(𝛼𝛼 = 1,2), 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (4) 

where 𝑝𝑝, 𝑞𝑞, 𝑟𝑟, 𝑠𝑠 are different primes. 
(ii) Vuza Canons only exist for orders 𝑁𝑁 of the form 

𝑁𝑁 = 𝑛𝑛1𝑛𝑛2𝑛𝑛3𝑝𝑝1𝑝𝑝2               (5) 

where 𝑝𝑝1, 𝑝𝑝2  denote different primes, 𝑛𝑛𝑖𝑖𝑝𝑝𝑖𝑖 ≥ 2  for 𝑖𝑖 = 1,2 
and 𝑛𝑛1𝑝𝑝1 and 𝑛𝑛2𝑝𝑝2 are coprime. 

This first theorem shows some of the essential conditions 
to find a period for a Vuza Canon. 

Theorem 2. Let 𝐺𝐺 be a finite cyclic group and 𝑆𝑆,𝑅𝑅 two 
non-empty subsets of 𝐺𝐺 . The following statements are 
equivalent. 
(i) The sum 𝑆𝑆 + 𝑅𝑅 is direct and is equal to 𝐺𝐺. 
(ii) 𝐺𝐺 = 𝑆𝑆 + 𝑅𝑅 and |𝐺𝐺| = |𝑆𝑆||𝑅𝑅|. 

Theorem 3. Let 𝑝𝑝1, 𝑝𝑝2  denote different prime numbers, 
and 𝑛𝑛1,𝑛𝑛2,𝑛𝑛3  be positive integers such that the product 
𝑛𝑛1𝑝𝑝1 is coprime with 𝑛𝑛2𝑝𝑝2, then the pair (𝑆𝑆,𝑅𝑅) defined by 

𝑆𝑆 = 𝐴𝐴 + 𝐵𝐵                (6) 

𝑅𝑅 = (𝑈𝑈 + 𝑉𝑉′ + 𝐾𝐾1) ∪ (𝑈𝑈′ + 𝑉𝑉 + 𝐾𝐾2)      (7) 

is a Vuza Canon of 𝑍𝑍𝑁𝑁  with 𝑁𝑁 = 𝑛𝑛1𝑛𝑛2𝑛𝑛3𝑝𝑝1𝑝𝑝2  if 𝑅𝑅  is a 
non-periodic subset of 𝑍𝑍𝑁𝑁 and: 

 

                                                           



68 VUZALIZER: A Max/MSP Object for Real-time Generation of RCMC Canons  
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝐴𝐴 = 𝑛𝑛1𝑛𝑛3𝑝𝑝1𝐼𝐼𝑛𝑛2
𝐵𝐵 = 𝑛𝑛2𝑛𝑛3𝑝𝑝2𝐼𝐼𝑛𝑛1
𝑈𝑈 = 𝑛𝑛1𝑛𝑛2𝑛𝑛3𝑝𝑝1𝐼𝐼𝑝𝑝2
𝑉𝑉 = 𝑛𝑛1𝑛𝑛2𝑛𝑛3𝑝𝑝2𝐼𝐼𝑝𝑝1
𝑈𝑈′ = 𝑛𝑛2𝑛𝑛3𝑝𝑝1𝐼𝐼𝑝𝑝2
𝑉𝑉′ = 𝑛𝑛1𝑛𝑛3𝑝𝑝1𝐼𝐼𝑝𝑝1

𝐾𝐾1 = {0}
𝐾𝐾2 = {1,2, …𝑛𝑛3 − 1}

           (8) 

All these conditions (8) permit to set all the parameters 
once we find the five numbers 𝑛𝑛1,𝑛𝑛2,𝑛𝑛3, 𝑝𝑝1, 𝑝𝑝2. 

Keep in mind that 𝐼𝐼𝑗𝑗 is a set defined as 𝐼𝐼𝑗𝑗 = {0,1, … 𝑗𝑗 − 1}; 
e.g. if 𝑛𝑛1 = 𝑗𝑗 = 3, than 𝐼𝐼𝑛𝑛1 = {0,1,2}. 

Theorem 4. Let 𝑝𝑝1, 𝑝𝑝2 be different prime numbers, and 
𝑛𝑛1,𝑛𝑛2,𝑛𝑛3 be positive integers such that the product 𝑛𝑛1𝑝𝑝1 is 
coprime with 𝑛𝑛2𝑝𝑝2 and 𝑛𝑛1𝑝𝑝1 is coprime with 𝑛𝑛3𝑝𝑝2. Let 𝐻𝐻 
be the subgroup 𝐻𝐻 = 𝑝𝑝2𝐼𝐼𝑛𝑛1𝑛𝑛2𝑛𝑛3  of 𝑍𝑍𝑁𝑁  with 𝑁𝑁 =
𝑛𝑛1𝑛𝑛2𝑛𝑛3𝑝𝑝1𝑝𝑝2 , and 𝐾𝐾  be a complete set of cosets 2 
representatives for 𝑍𝑍𝑁𝑁  modulo 𝐻𝐻  such that 𝐾𝐾 = 𝐾𝐾1 ∪ 𝐾𝐾2 ; 
then the pair (𝑆𝑆,𝑅𝑅) defined by 

𝑆𝑆 = 𝐴𝐴 + 𝐵𝐵                  (9) 
𝑅𝑅 = (𝑈𝑈 + 𝑉𝑉′ + 𝐾𝐾1) ∪ (𝑈𝑈′ + 𝑉𝑉 + 𝐾𝐾2)         (10) 

is a Vuza Canon of 𝑍𝑍𝑁𝑁 if 𝑅𝑅 is a non-periodic subset of 𝑍𝑍𝑁𝑁 
and: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐴𝐴 = 𝑛𝑛1𝑝𝑝1𝑝𝑝2𝐼𝐼𝑛𝑛2
𝐵𝐵 = 𝑛𝑛2𝑛𝑛3𝑝𝑝2𝐼𝐼𝑛𝑛1
𝑈𝑈 = 𝑛𝑛1𝑛𝑛2𝑝𝑝1𝑝𝑝2𝐼𝐼𝑛𝑛3
𝑉𝑉 = 𝑛𝑛1𝑛𝑛2𝑛𝑛3𝑝𝑝2𝐼𝐼𝑝𝑝1
𝑈𝑈′ = 𝑛𝑛2𝑝𝑝2𝐼𝐼𝑛𝑛3
𝑉𝑉′ = 𝑛𝑛1𝑝𝑝2𝐼𝐼𝑝𝑝1

               (11) 

This last set (11) is the one we implemented in our 
algorithm. 

4. Implementation of the Algorithm 
In this section we discuss our algorithmic implementation 

of Vuza Canons [7]. We used a programming language 
called Mathematica developed by Stephen Wolfram, which 
has a powerful and intuitive management of lists and a 
myriad of already implemented features, some of which were 
fundamental to the implementation of this algorithm. 

The program takes as input a value called targetNumber 
that establishes the maximum value within which good 
periods for Vuza Canons are generated. Then the good 
period list is created and displayed as output, the user 
chooses a good period, which is stored in a variable named 
chosenPeriod, the algorithm generates all the quintuples (the 
five numbers 𝑛𝑛1,𝑛𝑛2,𝑛𝑛3, 𝑝𝑝1, 𝑝𝑝2) related to the chosen period, 
the user chooses the preferred quintuple, which is stored in a 

2 If G is a group, and H is a subgroup of G, and g is an element of G, then 
gH = {gh : h an element of H }  is the left coset of H in G with respect to g, 
and Hg = {  hg : h an element of H }  is the right coset of H in G with respect to 
g. For abelian groups, left cosets and right cosets are always the same. 

list called chosenQuintuple, and, finally, R and S are 
generated. 

 
Figure 1.  A concise flowchart of the algorithmic implementation 

Below it is a detailed description of the algorithm. 
The first step is to use a function we called genPrimes that 

generates prime numbers from 2 up to targetNumber (as 
clarified above, targetNumber is a user-specified value that 
influences the number of generated good periods). The 
generated prime numbers are stored in a list called 
primeNumbers. 

Then, we know from Theorem 1 that a period 𝑁𝑁 
(hereinafter «𝑛𝑛») in order to be a good period must not 
satisfy the following conditions: 
 𝑛𝑛 = 𝑝𝑝𝛼𝛼  or 𝑛𝑛 = 𝑝𝑝𝛼𝛼𝑞𝑞 with 𝑝𝑝 and 𝑞𝑞 prime numbers and 

𝛼𝛼 natural number between 1 and 10 
 𝑛𝑛 = 𝑝𝑝𝑝𝑝𝑝𝑝 with 𝑝𝑝, 𝑞𝑞 and 𝑟𝑟 prime numbers 
 𝑛𝑛 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 and 𝑠𝑠 prime numbers 
 𝑛𝑛 = 𝑝𝑝𝑝𝑝𝑟𝑟2 or 𝑛𝑛 = 𝑝𝑝2𝑞𝑞2  

We need to create a list called checkList, which length is 
related to the length of primeNumbers, containing all the 

 

                                                           



 Computer Science and Information Technology 5(2): 66-73, 2017 69 
 

periods that satisfy the above-mentioned conditions. 
A function named extractPeriods analyzes a range of 

integers from 2 to targetNumber and returns only the integers 
that are not present in checkList; the returned values are all 
the good periods that are equal or less than targetNumber. 

In the next part of the algorithm, the user chooses a good 
period, which is stored in chosenPeriod that must be 
factorized in such a way as to produce quintuples of integers. 

To achieve the goal we use two functions called 
FactorInteger - natively implemented in Mathematica - and 
extendedFact. 

The FactorInteger function gives a list of the prime factors 
of the provided integer, together with their exponents, for 
example FactorInteger [12] returns {{2, 2}, {3, 1}}. After 
that it is possible to transform the list {base, exponent} into a 
list that contains the individual factors without exponents by 
using the extendedFact function, for example extendedFact 
[{2,3}] returns {2, 2, 2}. 

Then we apply the extendedFact function to all the sublists 
provided by the FactorInteger function: in the case of the 
good period n = 72 the FactorInteger function returns the 
list {{2, 3}, {3, 2}} and the function extendedFact, applied to 
the two sublists, returns {2, 2, 2, 3, 3}). 

In order to define which elements of the quintuple are 
n1, n2, n3, p1, p2, it is needed to check that n1p1 is coprime 
with n2p2  and that n1p1  is coprime with n3p2  using the 
CoprimeQ function, natively implemented in Mathematica. 

In addition the following conditions must be met: p1 ≠ p2, 
n1p1 ≥ 2 , n2p2 ≥ 2  and n1 + n2 + n3 ≥ 2. 

Applying the function to all possible permutations of the 
quintuple, the list of the possible good quintuples, sorted this 
way {n1, p1, n2, p2, n3}, will be returned. 

At this point, the user chooses the preferred quintuple, 
which is stored in a list called chosenQuintuple, among those 
previously generated. After that it is possible to calculate S 
and then R (from equation 9 and 10). 

Firstly, we need to generate A and B (denoted in the code 
as a and b) using the Mathematica natively implemented 
function called Table (Table[expr,{i, 0, 5}] generates a list of 
the values of expr when i runs from 0 to 5 with step 1): 

 

The list named 𝑎𝑎 has length 𝑛𝑛2, while the list named 𝑏𝑏 
has length 𝑛𝑛1 ; 𝑎𝑎  is given by the multiplication of an 𝑖𝑖 
variable, ranging from 0 to (𝑛𝑛2 − 1) multiplied by 𝑛𝑛1𝑝𝑝1𝑝𝑝2. 
Something similar happens with the computation of 𝑏𝑏, but in 
this case i ranges from 0 to (𝑛𝑛1 − 1) and is multiplied by 
𝑛𝑛2𝑛𝑛3𝑝𝑝2. 

Then the additions of two values of each element of 𝑎𝑎 
with each element of 𝑏𝑏 are calculated and stored in a list 
called S. 

The previously chosen good period is appended at the end 
of the list and the list is flattened. 

Now we need to calculate the differences between the 
elements contained in the S list using the Mathematica 
natively implemented function Differences in order to obtain 
𝑆𝑆  in its basic form, i.e.: if 𝑆𝑆 = {𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 𝜀𝜀,𝜗𝜗}  with 

𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 𝜀𝜀,𝜗𝜗 ∈ 𝑍𝑍𝑁𝑁 , then its basic form is given by 𝑆𝑆𝐵𝐵 =
{𝛽𝛽 − 𝛼𝛼, 𝛾𝛾 − 𝛽𝛽, 𝛿𝛿 − 𝛾𝛾, 𝜀𝜀 − 𝛿𝛿,𝜗𝜗 − 𝜀𝜀,𝑁𝑁 − 𝜗𝜗}. 𝑆𝑆 represents the 
entry interval of each voice of the canon. 

It is possible to calculate 𝑅𝑅 using a similar strategy to the 
one used for 𝑆𝑆; 𝑅𝑅  represents the rhythmic pattern of the 
single voice, a pattern that is repeated after a certain entry 
interval contained in the 𝑆𝑆 list. 

Now it is possible to calculate 𝑈𝑈,𝑉𝑉,𝑈𝑈′,𝑉𝑉′ denoted in the 
code as 𝑢𝑢, 𝑣𝑣,𝑢𝑢1, 𝑣𝑣1 as follows: 

 

After that we define 𝐾𝐾1 = 1  and 𝐾𝐾2 = 0 . Then it is 
necessary to compute all the possible additions of two 
elements between each element of 𝑣𝑣1 and 𝑢𝑢 and to add 𝑘𝑘1. 
𝑢𝑢1𝑣𝑣𝑣𝑣2 is then calculated in a similar way, except that the 
value of the constant 𝑘𝑘2 is equal to 0. After that the two 
resulting lists are joined, stored in a list called R, the chosen 
good period is appended and the list is flattened. In order to 
obtain 𝑅𝑅  in the basic form, it is needed to apply the 
Differences function.  

The algorithm is able to calculate all the good quintuples 
with maximum efficiency and then all the good 𝑅𝑅 and 𝑆𝑆 
and it outputs 𝑅𝑅 and 𝑆𝑆 in the absolute and basic (or relative) 
form. It is also important to emphasize that S and R are 
interchangeable and that R can become S and vice versa. 

5. Some Results 
We generated both graphs and sounds. In this section, we 

will show some representations of a Vuza Canon with period 
264 using the quintuple {11, 3, 2, 2, 2}. 

In this case R in the basic form is {1, 3, 19, 22, 43, 4, 41, 22, 
21, 1, 3, 84} and S in the basic form is {8, 8, 8, 8, 8, 8, 8, 8, 2, 
6, 2, 6, 2, 8, 8, 8, 8, 8, 8, 8, 8, 118}. 

In the following figures, it is possible to see the voices of 
the canon on the Y-axes and time, expressed in seconds, on 
the X-axes. 

We are plotting a Vuza Canon, so, we obtain, as we should, 
only one point per X coordinate for each instant. 

 

Figure 2.  Eighteen voices of the Vuza canon with N=264. 

 



70 VUZALIZER: A Max/MSP Object for Real-time Generation of RCMC Canons  
 

In Figure 2, from ninety to one-hundred-twenty seconds, it 
is possible to see eighteen voices playing together. 

In Figure 3, it is possible to see the end of the good period, 
264, for the first voice of the canon. 

 

Figure 3.  The first voice of the Vuza canon with N=264 at its end. 

6. Real-time Sound Spatialization 
New technologies offer many possibilities to composers 

working with the physical movement of sound, such as, for 
instance, trajectories followed by sound events through space, 
continuous modulation on harmonic and dynamic levels, and 
various types of proliferations of sound layers. As Berio 
asserted, «the most interesting possibilities are not these 
situations in themselves, but rather the relationships that are 
established between such physical–acoustic sound mobility 
and the effective mobility of the musical thought». (Giomi, F. 
/ Meacci, M. / Schwoon, K. [8]) 

We agree that computer and sound diffusion technologies 
enable to live new, unusual acoustic spaces, making even the 
closed spaces versatile and accessible. This brings to the 
alteration of the listening perspective and to the creation of a 
multiplicity of sound levels in continuous transformation. 

To reach this aim, we chose Vuza Canons to generate 
patterns for real-time sound spatialization. We have created a 
system that associates RCMC parameters to sound locations 
as sequences of configurations of loudspeakers. It consists of 
a series of engines that operate on the amplitude of the audio 
signal, redirecting it toward a variable number of outputs 
according to the data obtained thanks to the Mathematica 
implementation shown above. 

We use the Max/MSP environment to manage the 
reproduction of sound and its spatialization. As we hear 
sound in the form of power, we have chosen to use the equal 
power panning law, which means that we perceive the 
dynamic level of audio signals as the square of the input 
amplitude. To obtain an equal and smooth panning, a linear 
one, it is necessary to use the inverse of the square operator, 
which is the square root. Obviously, the square root is not a 
linear function but the important point is that we perceive the 
operation imposed on the signal to be linear, as the square is 
neutralized by the square root, rendering a linearly changing 

pan when turning the pan pot linearly. 
The equations we implemented are: 

𝑦𝑦[𝑛𝑛]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 = �𝑥𝑥[𝑛𝑛]             (10) 

𝑦𝑦[𝑛𝑛]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = �1.0 − 𝑥𝑥[𝑛𝑛]         (11) 

where 𝑦𝑦[𝑛𝑛] is the amplitude of the considered speaker of 
𝑥𝑥[𝑛𝑛] input signal. 

We applied this algorithm to an octophonic sound system. 
R and S are used to define the active speaker and the 
transition time from one speaker to another. 

The Max/MSP code reads the selected R and S from a text 
file as shown in figure 4. The counter object keeps counting 
using bang messages to read each line of the file. An example 
of the output file produced by Mathematica is shown in 
figure 5. 

 
Figure 4.  Equal power panning with root of the amplitude (top) and dB of 
the root amplitude (bottom). Image from “Introduction to digital signal 
processing” by Tae Hong Park – World Scientific Press 2009. 

 

Figure 5.  From the Max/MSP environment: the code reads R and S from a 
text file 

Then, the R and S array elements are scaled, if necessary, 
and sent to the line_sqrt subpatch that realizes the equal 
panning applied to all the possible transitions between the 
eight speakers. 

 



 Computer Science and Information Technology 5(2): 66-73, 2017 71 
 

 
Figure 6.  An extract from the output text file generated by Mathematica 

 

Figure 7.  A screenshot of the Max/MSP environment. On the left side the implementation of the equal power panning law. 

 



72 VUZALIZER: A Max/MSP Object for Real-time Generation of RCMC Canons  
 

7. about VUZALIZER 
In order to simplify the use of RCMC Canons for all users, 

we created a Max/MSP object that returns real-time output of 
the R and S sets. 

This Max object is built around the previously described 
algorithm. Using this object Max/MSP users can easily 
calculate S and R, for the chosen period, and employ them in 
their works. 

Our project is made up of the following files: 
vuzalizer.maxpat 
vuzalizer_logic.maxpat 
vuzalizer_logic.js 
vuzalizer.db 
We will describe them in order of importance. 

 

Figure 8.  A screenshot of the Max/MSP environment. The vuzalizer 
object returns lists of S and R for the chosen period. 

7.1. vuzalizer.db 

This is the core of the object: a SQLite database containing 
all the good periods - and the corresponding quintuples - up 
to 1000 calculated by our algorithm, but we are going to 
enlarge it in the near future up to 10000 possible canons. 

7.2. vuzalizer_logic.js 

This javascript code takes care of the interaction with the 
database; we need to use javascript to communicate between 
Max/MSP and a SQLite database. The code locates the 
database file on the disk and queries it to extract the data 
requested by the Max/MSP user. Our object reads data from 
the database. 

7.3. vuzalizer_logic.maxpat 

It contains each element of the UI and it takes care of 
managing the connections between the javascript, the UI, the 
inlet and the outlet. It calls vuzalizer_logic.js to query the 
database to populate the umenu. It processes all the data it 
receives to fill the different elements of the UI and format 
them as zl lists, CSV strings or Max/MSP messages. It also 
supports a method to choose the closest good period to a 
user-input number. 

7.4. vuzalizer.maxpat 

This is an example of use of the vuzalizer_logic.maxpat 
inserted as a bpatch (figure 7). It is possible to see the umenu 
already populated with all the good periods (and the 
corresponding quintuple) found in the database. By choosing 
a menu item, the object will output both of the S and R 
strings in the form of two zl lists, two comma separated value 
strings or two sequences of Max/MSP messages. 
Furthermore it is possible to give as input any number in the 
inlet and Vuzalizer will choose the closest good period for 
the user. 

8. Conclusions 
Regular Complementary Canons of Maximal Category 

were presented to the musical world in the 1990s and they are 
still a relevant topic of research. Nowadays RCMC Canons 
can be implemented using a programming language, 
allowing composers to use them with ease. 

The study of Vuza Canons is still an open field of research 
in the domain of formalization and implementation of new 
musical structures. 

In this paper we introduced the RCMC Canons and 
discussed our algorithmic implementation, then we used 
Vuza Canons to generate patterns for real-time sound 
spatialization and, finally, we implemented a Max/MSP 
object that returns real-time output of the R and S sets. We 
intend to continue our research in order to gain insight into 
modulations between different Vuza Canons. 

Acknowledgements 
Mathematica fonts by Wolfram Research, Inc. 

 

REFERENCES 
[1] Fidanza, G. (2008). Canoni ritmici a mosaico. Master’s degree 

thesis 

[2] Szabo, S. and Sands, A. D. (2009) Factoring Groups into 
Subsets. Boca Raton, CRC Press, 2009 

[3] Vuza, D. T. (1991). Supplementary sets and regular 
complementary unending canons. Perspectives of New Music. 

[4] Brujin, N. G. (1953). On the factorization of cyclic groups. 
Indag. Math. 15, pp. 258-264. 

[5] Amiot, E. (2011). Structures, algorithms and algebraic tools 
for rhythmic canons. Perspectives of new music, Vol. 49 No. 2, 
Summer 2011 

[6] Jedrzejewski, F. (2013). On the enumeration of Vuza canons. 

[7] Battista, A. F. / Mollo, C. M. / Monopoli, N. (2015). Rcmc 
canons: not only a problem of cage. Proceedings of 

 



 Computer Science and Information Technology 5(2): 66-73, 2017 73 
 

ICMC2015, ISBN 10-0- 9845274-4-3, 2015 

[8] Giomi, F. / Meacci, M. / Schwoon, K. (2003) Live electronics 
in Luciano Berio’s music, Computer Music Journal 27 (2), 
MIT Press – pp. 30-46 

[9] Amiot, E. (2004) Why Rhythmic Canons are Interesting, in E. 
Lluis-Puebla, G. Mazzola et T. Noll (eds.), Perspectives of 
Mathematical and Computer-Aided Music Theory, EpOs, 
190–209, Universität Osnabrück 

[10] Amiot, E. (2008) Autosimilar Melodies, Journal of 
Mathematics and Music, July, vol. 2, n◦ 3, 157-180 

[11] Amiot, E. (2005) Rhythmic canons and Galois Theory, 
Grazer Math. Ber., 347, 1–25. 

[12] Amiot, E. (2009) New perspectives on rhythmic canons and 
the spectral conjecture , in Special Issue “Tiling Problems in 
Music”, Journal of Mathematics and Music, July, vol. 3, n◦ 2 

[13] Andreatta, M. (2004) On group-theoretical methods applied 
to music: some compositional and implementational aspects, 
in E. Lluis-Puebla, G. Mazzola et T. Noll (eds.), Perspectives 
of Mathematical and Computer-Aided Music Theory, EpOs, 
122–162, Universität Osnabrück 

[14] Andreatta, M. (2007) De la conjecture de Minkowski aux 
canons rythmiques mosaïques, L’Ouvert, n◦ 114, p. 51-61, 
march 

[15] Coven, E., and Meyerowitz, A. (1999) Tiling the integers 
with one finite set, in: J. Alg. (212), 161-174 

[16] Davalan, J.P. (2011) Perfect rhythmic tilings, PNM 

[17] DeBruijn, N.G. (1956) On Number Systems, Nieuw. Arch. 
Wisk. (3) 4, 15–17 

[18] Fripertinger, H. (2005) Remarks on Rhythmical Canons, 
Grazer Math. Ber., 347, 55–68. 

[19] Hajós, G. (1954) Sur les factorisations des groupes abéliens, 
in: Casopsis Pest. Mat. Fys. (74), 157-162. 

[20] Hall, R., Klinsberg, P. (2006) Asymmetric Rhythms and 

Tiling Canons, American Mathematical Monthly, Volume 
113, Number 10, 887-896. 

[21] Johnson, T. (2001) Tiling The Line, proceedings of J.I.M., 
Royan 

[22] Jedrzejewski, F. (2004) A simple way to compute Vuza 
canons, MaMuX seminar 

[23] Kolountzakis, M. (2003) Translational Tilings of the Integers 
with Long Periods, Elec. J. of Combinatorics 10(1), R22 

[24] Laba, I. (2002) The spectral set conjecture and multiplicative 
properties of roots of polynomials, J. London Math. Soc. 65, 
661-671 

[25] Newman, D.J. (1977) Tesselation of Integers, J. Numb. 
THeory 9, 107-11 

[26] Rahn, J. (1980) Basic Atonal Theory, New York, Longman 

[27] Steinberger, J.P. (2009) Tilings of the integers can have 
superpolynomial periods, Combinatorica, 29, 503-509. 

[28] Steinberger, J.P. (2005) Multiple tilings of Z with long 
periods, and tiles with many-generated level semigroups, 
New York Journal of Mathematics, 11, 445-456. 

[29] Swenson, C. (1974) Direct sum subset decompositions of Z, 
Pacific J. Math. 53, 1974, 629-633 

[30] Tangian, A. (2003) Constructing Rhythmic Canons, PNM, 
Vol. 41, no. 2, 66–95 

[31] Tijdeman, R. (1995) Decomposition of the Integers as a direct 
sum of two subsets, in: S éminaire de th ́eorie des nombres de 
Paris, 3D, Cambridge U.P, 261-276 

[32] Szabò, S. (1985) A type of factorization of finite abelian 
groups, Discrete Math. 54, 121–124 

[33] Warusfel (1971) Structures Algébriques finies, Classiques 
Hachette 

[34] Wild, J. (2002) Tessellating the chromatic, Perspectives of 
New Music

 

 


