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Abstract

We prove various properties of varieties of special linear systems on double coverings of
hyperelliptic curves. We show and determine the irreducibility, generically reducedness and singular
loci of the variety W r

d for bi-elliptic curves and double coverings of genus two curves. Similar results
for double coverings of hyperelliptic curves of genus h ≥ 3 are also presented.
c© 2005 Elsevier B.V. All rights reserved.

MSC: 14H50

1. Introduction

In the articles [2] and [3], the variety of pencils on a double covering X of a general
curve C (in the sense of Brill–Noether) has been studied extensively. In this paper, we
treat double covering of a very special curve, i.e. when the base curve C of a double
covering π : X → C is a hyperelliptic curve. Denoting by W r

d (X) the subscheme of
the Picard variety Picd(X) consisting of line bundles of degree d of dimension at least
r + 1, we study and determine the dimension, number of irreducible components and their
properties (e.g. generically reducedness) and possibly the singular locus of the irreducible
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components of the variety of special pencils W r
d (X) almost completely when the genus of

the base curve C is low. We also present similar results for double coverings of hyperelliptic
curves of genus h ≥ 3. Specifically, the following is a partial list of results which will be
proved in subsequent sections.
(i) If X is hyperelliptic, W r

d (X) is irreducible and singular exactly along W r+1
d (X); see

Proposition 2.4.
(i) If X is bi-elliptic, W r

d (X) is irreducible and singular exactly along W r+1
d (X) for every

d 6= g − 1 and r ≥ 0; see Proposition 2.6.
(iii) A double covering X of a curve of genus two does not carry a base-point-free and
complete g2

g−1. Furthermore W 2
g−1(X) is irreducible; see Theorem 2.10.

(iv) A double covering of a hyperelliptic curve of genus h ≥ 3 does not carry a birationally
very ample gr

g−2h+r ; see Proposition 3.4.
The organization of this paper is as follows. In Section 2, after mentioning a few basic

facts such as the Castelnuovo–Severi inequality, we treat hyperelliptic curves and bi-elliptic
curves in some detail. We then proceed further to consider a double covering of a curve
of genus two. After proving the non-existence of a base-point-free and complete net of
degree g − 1, we determine the minimal degree of a plane model as well as the primitive
length of the double covering of genus two. In the last section, we treat double covering of
a hyperelliptic curve of genus h ≥ 3.

For all the notations and conventions used but not explained, we refer the reader to [1].
Unless otherwise stated, every curve considered in this paper is smooth irreducible and
projective defined over the field of complex numbers. Throughout X is always a smooth
projective curve of genus g.

2. Double coverings of low genus curves

We first recall the so-called Castelnuovo–Severi inequality and its immediate
consequence which we shall make use of quite often.

Proposition 2.1 (Castelnuovo–Severi, [1, p. 336]). Let X be a curve of genus g which
admits a morphism πi : X −→ Ci of degree ki where Ci is a curve of genus hi for
i = 1, 2. If (π1, π2) : X −→ C1 × C2 is birational onto its image then

g ≤ (k1 − 1)(k2 − 1) + k1h1 + k2h2.

As a simple application of the Castelnuovo–Severi inequality, we make a note of the
following regarding certain base-point-free pencils on a double covering.

Corollary 2.2. Let π : X → C be a double covering of a curve C of genus h. Then any
base-point-free pencil of degree d ≤ g − 2h is a pull-back from C via π .

We will also use the following simple fact [4, Lemma 2.2.1] several times.

Lemma 2.3. Let f : X → C be a non-trivial covering of smooth curves and gr
d (r ≥ 1)

a base-point-free linear series on X which is not induced by C. Let p1, . . . , pr−1 be r − 1
general points of X. Then the base-point-free part of the pencil gr

d(−p1 − · · · − pr−1) on
X is not induced by C.
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We now start with the case when the genus of the base curve C is zero, i.e. X itself is
hyperelliptic.

Proposition 2.4. Let X be a hyperelliptic curve of genus g ≥ 2. Then W r
d (X) is irreducible

and generically reduced of dimension d − 2r for d ≤ g and r ≥ 1. Furthermore,

SingW r
d (X) = W r+1

d (X).

Proof. Since any complete gr
d with d ≤ g is of the form |rg1

2 + p1 + · · · + pd−2r | where
no two of the pi ’s are conjugate under the hyperelliptic involution, we have

W r
d (X) = {rg1

2} + Wd−2r (X)

which is irreducible of dimension d − 2r .
We now show that SingW r

d (X) = W r+1
d (X), from which the generically reducedness of

W r
d (X) follows easily; note that no irreducible component of W r

d (X) is entirely contained
in W r+1

d (X). Take L ∈ SingW r
d (X) \ W r+1

d (X). We may write L as rg1
2 ⊗ O(p1 +

· · · + pd−2r ) where no two of the pi ’s are conjugate under the hyperelliptic involution.
We recall the following well-known description of the Zariski tangent space to W r

d (X) at
L ∈ W r

d (X) \ W r+1
d (X):

TL W r
d (X) ∼= coker µ0, (2.4.1)

where

µ0 : H0(X, L) ⊗ H0(X, K L−1) → H0(X, K )

is the natural cup product map. Let l = r + 1 = h0(X, L) and i = g − d + r . Since
L ∈ SingW r

d (X), we have dim TL W r
d (X)  dim W r

d (X) = d − 2r . By (2.4.1), we have

dim TL W r
d (X) = g − li + dim ker µ0 ≥ d − 2r + 1, (2.4.2)

and hence

dim ker µ0 ≥ li − l − i + 2. (2.4.3)

Fix a basis {s1, . . . , sl} of H0(X, L), set Wh := span{s1, . . . , sh} for h = 1, . . . , l and let

µ0,Wh : Wh ⊗ H0(X, K L−1) → H0(X, K )

be the restriction of µ0 to the subspace Wh ⊗ H0(X, K L−1). By noting that

dim ker µ0,Wh − dim ker µ0,Wh−1 ≤ i

for h = 3, . . . , l, we have

dim ker µ0,Wl − dim ker µ0,W2 ≤ i(l − 2)

and hence

dim ker µ0,W2 ≥ dim ker µ0 − i(l − 2) ≥ li − l − i + 2 − i(l − 2) (2.4.4)
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by (2.4.3). On the other hand, by the base-point-free pencil trick

dim ker µ0,W2 = h0(X, K ⊗O(−2rg1
2 − p1 − · · · − pd−2r ))

= g − 2r − (d − 2r) = g − d

since p1, . . . , pd−2r were chosen so that no two of the pi ’s are conjugate under the
hyperelliptic involution. Therefore (2.4.4) becomes a numerical absurdity, showing that
SingW r

d (X) \ W r+1
d (X) = ∅ and hence SingW r

d (X) ⊂ W r+1
d (X). By a theorem of

Mayer [8, Lemma 6], one knows W r+1
d (X) ⊂ SingW r

d (X); see also [1, Proposition 4.2(ii),
p. 189]. �

Remark 2.5. The fact that SingW r
d (X) coincides with W r+1

d (X) for a hyperelliptic curve
was stated without proof in [8, bottom line p. 164]. We presented an easy (and perhaps
standard) proof just for the convenience of the reader.

We next turn to the case of a bi-elliptic curve, i.e. when the base curve C of the double
covering is an elliptic curve.

Proposition 2.6. Let π : X → C be a bi-elliptic curve of genus g ≥ 6. Then the following
holds.

(i) For any d ≤ g − 2,

W 1
d (X) = π∗W 1

2 (C) + Wd−4(X),

which is irreducible of dimension d − 3. Furthermore, W 1
d (X) is generically reduced and

SingW 1
d (X) = W 2

d (X).

(ii) For d = g − 1, W 1
g−1(X) is reducible and every irreducible component is generically

reduced.

(iii) For d = g, W 1
d (X) is irreducible of dimension g − 2 with the singular locus W 2

g (X)

which is isomorphic to W 1
g−2(X).

(iv) For r ≥ 2 and g − d + r ≥ 2,

W r
d (X) = π∗W r

r+1(C) + Wd−2r−2(X),

which is irreducible and generically reduced. Moreover, if d ≤ g − 2, then

SingW r
d (X) = W r+1

d (X).

Proof. The only statements which may possibly be non-trivial (or not previously known)
are the statement (i) about the singular locus of W 1

d (X) for d ≤ g−2 and the statement (iv).
Indeed, the first statement of (i) is an immediate consequence of the Castelnuovo–Severi
inequality. The fact that W 1

g−1(X) is reducible with at least two irreducible components,
a component, say B, containing a base-point-free pencil and the other one consisting of
pencils with non-empty base locus, is due to J. Harris [1, Exercise F, p. 372]. For a
base-point-free and complete L ∈ B, dim TL W 1

g−1(X) > dim W 1
g−1(X) if and only if

ker µ0 ∼= H0(X, K L−2) 6= 0, i.e. L is a theta characteristic. Since there are only finitely
many theta characteristics, B is generically reduced. For the generically reducedness of the
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component Σ := π∗W 1
2 (C) + Wg−5(X), see Remark 2.7(ii). The statement (iii) follows

from Riemann–Roch formula and the Riemann–Kempf singularity theorem; cf. [1, p. 241].
(i) We suppose that there exists L ∈ [SingW 1

d (X)]\W 2
d (X), which should be of the form

L = π∗g1
2 ⊗ O(p1 + · · · + pd−4) where no two pi ’s are conjugate under the bi-elliptic

involution; cf. Corollary 2.2. In the same way as in the proof of Proposition 2.4,

dim TL W 1
d (X) = ρ(d, g, 1) + dim ker µ0  dim W 1

d (X) = d − 3,

and hence

dim ker µ0 = h0(X, K L−2(∆)) = h0(X, K − 2π∗g1
2 − ∆)

= h0(X, K − π∗g3
4 − ∆)  g − d − 1,

where ∆ = p1 + · · · + pd−4. Therefore it follows that

h0(X, 2π∗g1
2 ⊗O(p1 + · · · + pd−4))

= h0(X, π∗g3
4 ⊗O(p1 + · · · + pd−4))  4. (2.6.1)

Let E the base-point-free part of the complete linear series

D := |π∗g3
4 ⊗O(p1 + · · · + pd−4)| = gα

d+4, (α ≥ 4)

and let φE be the morphism induced by E . In the case d = 4, D = gα
8 (α ≥ 4) and X

is hyperelliptic by Clifford’s theorem. But this is a contradiction since X cannot be both
hyperelliptic and bi-elliptic by the Castelnuovo–Severi inequality. We now assume d ≥ 5.
Since |E − π∗g3

4 | 6= ∅, the morphism induced by π∗g3
4 (which is just π ) factors through

φE and hence deg φE | deg π . If deg φE = 2 then φE (X)
bir
∼= C whence E is induced by

π . Therefore there exists a pair among {p1, . . . , pd−4} which is in the same fiber of π , a
contradiction. Hence φE = 1 and E is birationally very ample. By Lemma 2.3, for general
q1, . . . , qα−1 ∈ X , the complete series E(−q1−· · ·−qα−1) is a pencil which is not induced
by π . If D has a base point, or α ≥ 5, or d ≤ g − 3,

deg |E(−q1 − · · · − qα−1)| ≤ g − 2

which should be induced by π by the Castelnuovo–Severi inequality, which is a
contradiction. Therefore, we are left with the case D being base-point-free, d = g − 2
and α = 4. In this case, we have

|K −D| = g1
g−4 = |π∗g1

2 + r1 + · · · + rg−8|

for some r1, . . . , rg−8 ∈ X by the Castelnuovo–Severi inequality. HenceD = |K −π∗g1
2 −

r1 − · · · − rg−8| and therefore for a general fiber p + p′
= π−1(s), we have

h0(X,D − p − p′) = h0(X, K − π∗g1
2 − r1 − · · · − rg−8 − p − p′)

= h0(X, K − π∗g2
3 − r1 − · · · − rg−8)

≥ h0(X, K − π∗g2
3) − (g − 8) = (g − 4) − (g − 8) = 4,

which in turn implies thatD = E induces a morphism of degree t ≥ 2, a contradiction to E
being birationally very ample. What we have shown so far is that [SingW 1

d (X)]\W 2
d (X) =

∅ and hence SingW 1
d (X) = W 2

d (X).
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(iv) We treat the cases g − d + r = 2 and g − d + r ≥ 3 separately.
If g − d + r = 2 and r ≥ 2, we have d ≥ g. By (i), we have

K − W r
d (X) = W 1

2g−2−d(X) = π∗W 1
2 (C) + W 1

2g−d−6(X),

hence W r
d (X) is irreducible of dimension 2g − d − 5 = d − 2r − 1. The closed sublocus

π∗W r
r+1(C) + Wd−2r−2(X) ⊂ W r

d (X) is also of dimension d − 2r − 1, and it follows that
W r

d (X) = π∗W r
r+1(C) + Wd−2r−2(X).

If g − d + r ≥ 3 and r ≥ 2, we may argue as follows. Given L ∈ W r
d (X) and general

p1, . . . , pr−1 ∈ X , L(−p1 − · · · − pr−1) ∈ W 1
d−r+1(X), where d − r + 1 ≤ g − 2,

and hence L(−p1 − · · · − pr−1) is induced by π by the Castelnuovo–Severi inequality.
Therefore L is also induced by π by Lemma 2.3 and we have

W r
d (X) = π∗W r

r+1(C) + Wd−2r−2(X),

which is irreducible of dimension d − 2r − 1.
To determine the singular locus of W r

d (X), we take L ∈ [SingW r
d (X)] \ W r+1

d (X). We
may write L = π∗gr

r+1 ⊗O(p1 + · · · + pd−2r−2) where no two of the pi ’s are conjugate
under the bi-elliptic involution. Let l = r + 1 = h0(X, L) and i = g − d + r . By (2.4.1),
we have

dim TL W r
d (X) = g − li + dim ker µ0 ≥ d − 2r, (2.6.2)

and hence

dim ker µ0 ≥ li − l − i + 1. (2.6.3)

Fix a basis {s1, . . . , sl} of H0(X, L) such that s1, s2 has no common zeros other than
p1, . . . , pd−2r−2. Set Wh := span{s1, . . . , sh} for h = 1, . . . , l, and let

µ0,Wh : Wh ⊗ H0(X, K L−1) → H0(X, K )

be the restriction of µ0 to the subspace Wh ⊗ H0(X, K L−1). By noting that

dim ker µ0,Wh − dim ker µ0,Wh−1 ≤ i

for h = 3, . . . , l, we have

dim ker µ0,Wl − dim ker µ0,W2 ≤ i(l − 2)

and hence

dim ker µ0,W2 ≥ dim ker µ0 − i(l − 2) ≥ li − l − i + 1 − i(l − 2) = g − d (2.6.4)

by (2.6.3). Note that dim ker µ0,W2 6= 0 by the assumption d ≤ g − 1. By the projection
formula and the Riemann–Hurwitz relation for double coverings, unless d = 2r + 2 =

g − 1, one has

h0(X, 2π∗gr
r+1) = h0(C, π∗(π

∗(2gr
r+1) ⊗OX )) = h0(C, 2gr

r+1 ⊗ π∗OX )

= h0(C, 2gr
r+1 ⊗ (OC ⊕OC (T )))

= h0(C, 2gr
r+1) + h0(C, 2gr

r+1 ⊗ T ) = 2r + 2,

where T is a divisor such that 2T ∼= −R with R the branch divisor of π .
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Let F the base-point-free part of the complete linear series

G := |2π∗gr
r+1 ⊗O(p1 + · · · + pd−2r−2)| = gβ

d+2r+2.

Claim: β = 2r + 1. Suppose β ≥ 2r + 2 and let φF be the morphism induced by F . Since
|F − 2π∗gr

r+1| = |F − π∗g2r+1
2r+2 | 6= ∅, the morphism induced by π∗g2r+1

2r+2 (which is equal
to π ) factors through φF and hence deg φF | deg π . If deg φF = 2 then φF (X) ∼=

bir C
whence F is induced by π . Therefore there exists a pair among {p1, . . . , pd−2r−2} which
is in the same fiber of π , a contradiction. Hence φF = 1 and F is birationally very ample.
By Lemma 2.3, for general q1, . . . , qβ−1 ∈ X , the complete series F(−q1 − · · · − qβ−1)

is a pencil which is not induced by π . If G has a base point, or β ≥ 2r + 3, or d ≤ g − 3,

deg |F(−q1 − · · · − qβ−1)| ≤ g − 2

which should be induced by π by the Castelnuovo–Severi inequality, a contradiction.
Therefore, we are left with the case G being base-point-free, d = g − 2 and β = 2r + 2.
In this case, we have

|K − G| = g1
g−2r−2 = |π∗g1

2 + r1 + · · · + rg−2r−6|

for some r1, . . . , rg−2r−6 ∈ X by the Castelnuovo–Severi inequality. Hence G = |K −

π∗g1
2 − r1 − · · · − rg−2r−6| and therefore for a general fiber p + p′

= π−1(s), we have

h0(X,G − p − p′) = h0(X, K − π∗g1
2 − r1 − · · · − rg−2r−6 − p − p′)

= h0(X, K − π∗g2
3 − r1 − · · · − rg−2r−6)

≥ h0(X, K − π∗g2
3) − (g − 2r − 6) = 2r + 2,

which in turn implies that G = F induces a morphism of degree t ≥ 2, a contradiction to
F being birationally very ample, thereby finishing the proof of the Claim.

On the other hand, by the base-point-free pencil trick and the Claim,

dim ker µ0,W2 = h0(X, K ⊗O(−2π∗gr
r+1 − p1 − · · · − pd−2r−2)) = g − d − 1.

Therefore (2.6.4) becomes a numerical absurdity, showing that SingW r
d (X)\W r+1

d (X) = ∅

and hence SingW r
d (X) ⊂ W r+1

d (X). By a theorem of Mayer [8, Lemma 6], one knows
W r+1

d (X) ⊂ SingW r
d (X); see also [1, Proposition 4.2(ii), p. 189]. �

Remark 2.7. (i) In general, SingW r
d (X) may not be equal to W r+1

d (X) for a given curve
X . It has been known that SingW r

d (X) = W r+1
d (X) for r = 0, for an hyperelliptic curve

X or for a general curve X of genus g. Proposition 2.6 adds bi-elliptic curves to the list of
such curves (at least for d 6= g − 1).

(ii) It seems worthwhile to remark that on a bi-elliptic curve X , W 1
g−1(X) has the

singular locus which does not coincide with W 2
g−1(X). Note that there is a unique

irreducible component of W 1
g−1(X) whose general member has a base point, namely

Σ := π∗W 1
2 (C) + Wg−5(X), and we may describe the singular points of W 1

g−1(X) in
Σ as follows. By the identification (2.4.1) for the Zariski tangent spaces to W r

d (X),

L := π∗g1
2 ⊗O(p1 + · · · + pg−5) = π∗g1

2 ⊗O(∆) ∈ SingΣ \ W 2
g−1(X)
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if and only if

h0(X, K L−2(∆)) = h0(X, K − 2π∗(g1
2) − ∆) > 0.

Therefore, for a given g1
2 ∈ W 1

2 (C) = Jac(C),

π∗g1
2 ⊗O(p1 + · · · + pg−5) = π∗g1

2 ⊗O(∆)

is singular if and only if ∆ ∈ Xg−5 fails to impose independent conditions on the complete
series |K − 2π∗(g1

2)|, and the collection of such divisors ∆ becomes a degeneracy locus
of certain bundle maps; cf. [1, Chapter VIII]. Therefore we deduce that

[SingW 1
g−1(X)] ∩ Σ \ W 2

g−1(X) =

{|π∗E + ∆′
+ p|; E ∈ W 1

2 (C),∆′
∈ Xg−6 \ X1

g−6 and |K − 2π∗E − ∆′
| ≥ p}.

By noting that

W 2
g−1(X) = π∗W 2

4 (C) + Wg−9(X)

⊂ {|π∗E + ∆′
+ p|; E ∈ W 1

2 (C),∆′
∈ Xg−6 and |K − 2π∗E − ∆′

| ≥ p}

we finally conclude

[SingW 1
g−1(X)] ∩ Σ =

{|π∗E + ∆′
+ p|; E ∈ W 1

2 (C),∆′
∈ Xg−6 and |K − 2π∗E − ∆′

| ≥ p}

which is easily seen to be irreducible of dimension g − 5 = dim W 1
2 (C) + dim Xg−6.

(iii) For r ≥ 2 and d = g−1 = 2r +2, which somehow occurred in the course of the proof
of the last statement of Proposition 2.6, SingW r

d (X) 6= W r+1
d (X). Indeed, W r+1

2r+2(X) = ∅

since X is not hyperelliptic. Singular points of W r
2r+2(X) are just theta characteristics.

We next consider double coverings π : X → C where g(C) = 2. As for bi-elliptic
curves, many things are known and we collect some of them as follows; [4, Remark (2.4.2)
and Claim in p. 251].

Remark 2.8. Let π : X → C be a double covering of a genus two curve C and assume
g ≥ 11. Then

(1) W 1
d (X) = W 1

6 (X) + Wd−6(X) for 6 ≤ d ≤ g − 4
(2) W 2

d (X) = W 2
8 (X) + Wd−8(X) for 8 ≤ d ≤ g − 2

(3) W r
d (X) = W r

2r+4(X) + Wd−(2r+4)(X) for 2r + 4 ≤ d ≤ g − 1 and r ≥ 3.

For the rest of this section, we will try to make Remark 2.8 a little bit more precise and
look for some possible extensions. For r = 1, one can make the following statement which
is partially based on the above Remark 2.8(1).

Proposition 2.9. Let π : X → C be a double covering of a curve of genus two where
g ≥ 13. Then the following hold.

(i) W 1
g−1(X) is generically reduced and irreducible. Furthermore, a general element in

W 1
g−1(X) is base-point-free.
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(ii) W 1
g−2(X) is reducible with at least three irreducible components, and every component

is generically reduced.

(iii) W 1
g−3(X) is reducible with at least three irreducible components, and every component

is generically reduced.

(iv) For 6 ≤ d ≤ g − 4, W 1
d (X) is reducible with only two irreducible components which

are generically reduced.

Proof. (i) By a result of Teixidor [9], for a curve X of genus g ≥ 5, W 1
g−1(X) is reducible

if and only if X is either (a) trigonal, (b) bi-elliptic or (c) an unramified double covering
of a genus three non-hyperelliptic curve. By the Castelnuovo–Severi inequality a double
covering of a curve of genus two can be neither trigonal (if g ≥ 7), bi-elliptic (if g ≥ 9) nor
an unramified double cover of non-hyperelliptic curves of genus three. Hence W 1

g−1(X) is
irreducible. By using a theorem of Mumford [1, p. 193], it is not hard to see that a general
element of a component of W 1

g−1(X) has no base point unless X is bi-elliptic, trigonal
or a smooth plane quintic; cf. [1, Exercise F-1, p. 373]. Since a double cover of a genus
two curve cannot be such types of curves by the Castelnuovo–Severi inequality as long as
g ≥ 8, we deduce that a general member in W 1

g−1(X) is base-point-free (and complete).

Since a complete and base-point-free pencil L ∈ W 1
g−1(X) is singular if and only if L is a

theta characteristic, W 1
g−1(X) is smooth at general points.

(ii) Note that every irreducible component of W 1
g−2(X) has dimension ρ(g − 2, g, 1) =

g − 6 by a theorem of Mumford. We first identify components of W 1
g−1(X) whose general

element has a base point. Consider two irreducible closed loci

Σ1 := π∗W 1
2 (C) + Wg−6(X) and Σ2 := π∗W 1

3 (C) + Wg−8(X).

Since dim Σ1 = dim Σ2 = g − 6, Σi ’s are components of W 1
g−2(X). A priori there may

exist further components of W 1
g−2(X) whose general element has a base point. Let Σ such

a component. A general element L ∈ Σ has only one base point, otherwise L is either
in Σ1 or Σ2. Therefore Σ is of the form Σ = A + W1(X), where A ⊂ W 1

g−3 is an
irreducible closed locus which is generically base-point-free. By Proposition 3.1, which
we shall prove in the next section, a generically base-point-free component of W 1

g−3 has
dimension ρ(g − 3, g, 1) = g − 8, hence

dim Σ ≤ dim A + 1 ≤ g − 7 � ρ(g − 2, g, 1),

which is a contradiction. Therefore we conclude that

W 1
g−2(X) =

n⋃
j=1

B j ∪ Σ1 ∪ Σ2,

where the B j ’s are irreducible components which are generically base-point-free. The B j ’s
surely exist by [7] and are generically reduced by Proposition 3.1.

(iii) Like the case for d = g − 2, the Castelnuovo–Severi inequality implies W 1
g−3(X) has

exactly two components whose general element has a base point, namely

Σ̃1 := π∗W 1
2 (C) + Wg−7(X) and Σ̃2 := π∗W 1

3 (C) + Wg−9(X)
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and both of them has dimension g −7; note that the irreducible loci Σ̃i cannot be contained
in a bigger irreducible component by a theorem of Mumford [1, p. 193]. By the main result
in [7], there exists a base-point-free and complete g1

g−3 on X . Therefore we also have

W 1
g−2(X) =

n⋃
j=1

B j ∪ Σ̃1 ∪ Σ̃2,

where the B j ’s are irreducible components which are generically base-point-free and
complete. Again the B j ’s are generically reduced by Proposition 3.1.

(iv) By the Castelnuovo–Severi inequality, we have

W 1
d (X) = π∗W 1

2 (C) + Wd−4(X) ∪ π∗W 1
3 (C) + Wd−6(X).

The proof for the generically reducedness of the other components of W 1
d (X) (Σ1 & Σ2

in (ii), Σ̃1 & Σ̃2 in (iii) and those in (iv)) shall be provided in a more general setting in the
next section; cf. Proposition 3.7. �

To improve Remark 2.8 one step further, we will prove a theorem addressing the non-
existence of a base-point-free and complete net of degree g − 1 on a double covering of a
curve of genus two.

Theorem 2.10. A double covering π : X → C of a curve of genus two with g ≥ 11 does
not carry a base-point-free and complete g2

g−1. Furthermore W 2
g−1(X) is irreducible.

Proof. Note that for a double covering X of a curve of genus two, dim W 2
g−1(X) = g − 7

and

Σ0 := π∗W 2
4 (C) + Wg−9(X) = K − π∗W 2

4 (C) − Wg−9(X) (2.10.1)

is an irreducible component of maximal dimension; cf. [5, Corollary 2.3] and [4, Claim (ii)
in p. 251]. By Remark 2.8(2), we also note that Σ0 is the only component whose general
element has a non-empty base locus. Assume the existence of a component of W 2

g−1(X),

say Σ , whose general element is base-point-free. Let g1
4 := π∗g1

2(C) and we choose two
sections s0, s1 ∈ H0(X, g1

4) without common zeros. For a general L ∈ Σ , we consider the
natural map

H0(X, L) ⊕ H0(X, L)
µ
→ H0(X, L ⊗ g1

4),

defined by µ(t0, t1) := s0 · t0 + s1 · t1; ti ∈ H0(X, L).

Claim: h0(X, L ⊗ g1
4) ≥ 5.

Proof of the Claim. If h0(X, L ⊗ g1
4) ≤ 4, then h0(X, L(−g1

4)) = dim ker µ = 2 by the
base-point-free pencil trick. On the other hand, since deg L(−g1

4) = g−5 ≤ g−4, L(−g1
4)

is induced by π by the Castelnuovo–Severi inequality, and hence L(−g1
4) = |g1

6 | + ∆ for
some effective divisor ∆ of degree g − 11. Then we would have L = |g1

4 + g1
6 | + ∆,

contradicting L being base-point-free.
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Now we consider the following two possibilities separately.
(i) h0(X, L⊗g1

4) ≥ 6: In this case, we have h0(X, K L−1(−g1
4)) ≥ 2 by the Riemann–Roch

formula, whereas deg K L−1(−g1
4) = g − 5 ≤ g − 4. Hence by the Castelnuovo–Severi

inequality and Proposition 2.9(iv), we have

K L−1(−g1
4) ∈ W 1

g−5(X) = π∗W 1
2 (C) + Wg−9(X) ∪ π∗W 1

3 (C) + Wg−11(X),

implying

K − Σ − {g1
4} ⊂ π∗W 1

2 (C) + Wg−9(X) ∪ π∗W 1
3 (C) + Wg−11(X).

Since the locus K − Σ − {g1
4} is irreducible, we have either

K X − Σ − {g1
4} ⊂ π∗W 1

2 (C) + Wg−9(X)

or

K − Σ − {g1
4} ⊂ π∗(W 1

3 (C)) + Wg−11(X).

If K X − Σ − g1
4 ⊂ π∗(W 1

3 (C)) + Wg−11(X), then

K − Σ ⊂ π∗(W 1
2 (C)) + π∗(W 1

3 (C)) + Wg−11(X)

⊂ π∗(W 3
5 (C)) + Wg−11(X) ⊂ W 3

g−1(X),

which is impossible; cf. [1, Lemma 3.5, p. 182]. Therefore we must have

K − Σ − {g1
4} ⊂ π∗(W 1

2 (C)) + Wg−9(X),

implying K − Σ ⊂ Σ0 = K − Σ0, which is again a contradiction.
(ii) h0(X, L ⊗ g1

4) = 5: In this case, we have h0(X, L − g1
4) = dim ker µ > 0 and hence

L = g1
4 ⊗O(p1 + · · · + pg−5) and we may assume that h0(X,O(p1 + · · · + pg−5)) = 1;

otherwise L would not be base-point-free by the Castelnuovo–Severi inequality. We also
note that among the points p1, . . . , pg−5, at most one pair of points, say {pg−6, pg−5}, is
in the same fiber of π ; otherwise L is not base-point-free either.

(ii-a) {pg−6, pg−5} is in the same fiber of π : In this case, L = |π∗(g1
3)+p1+· · ·+pg−7|.

For j = 1, . . . , g − 7, we consider the complete linear series

|π∗(g1
2) + pg−6 + pg−5 + p1 + · · · + p j + p̄1 + · · · + p̄ j | = |π∗(g1+ j

3+ j )|,

which is base-point-free. Since no two p j ’s (for j = 1, . . . , g − 7) are in the same fiber of
π , p̄ j is not a base point of the linear series

|L + p̄1 + · · · + p̄ j | = |π∗(g1+ j
3+ j ) + p j+1 + · · · + pg−7|

for each j = 1, . . . , g − 7. Hence we have

dim |L + p̄1 + · · · + p̄ j | > dim |L + p̄1 + · · · + p̄ j−1|,

implying |L + p̄1 + · · · + p̄g−7| = gg−5
2g−8 whose dual is a g2

6 . Since X is neither trigonal
nor bi-elliptic by the Castelnuovo–Severi inequality, we are done with this case.

(ii-b) No two among {p1, . . . , pg−5} are in the same fiber of π : We may use the same

argument as (ii-a) to deduce |L + p̄1 + · · · + p̄g−5| = gg−3
2g−6 whose dual is a g2

4 , a
contradiction. �
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For the variety of linear series of dimension more than one, one may refine Remark 2.8
as follows.

Theorem 2.11. Let π : X → C be a double covering of a curve of genus two and g ≥ 11.
Then

(i) W 2
d (X) = π∗W 2

4 (C) + Wd−8(X) for 8 ≤ d ≤ g − 1
(ii) W r

d (X) = π∗W r
r+2(C) + Wd−(2r+4)(X) for 2r + 4 ≤ d ≤ g and r ≥ 3,

which are irreducible.
Furthermore, W 2

d (X) is generically reduced for 8 ≤ d ≤ g − 1 and W r
d (X) is also

generically reduced for 2r + 4 ≤ d ≤ g − 4 and r ≥ 3, under the assumption g ≥ 12.

Proof. (i) For d ≤ g − 2, it is clear by Remark 2.8(2). By Theorem 2.10 and the fact that
W 2

g−2(X) = π∗W 2
4 (C) + Wg−10(X), we have

W 2
g−1(X) = W 2

g−2(X) + W1(X) = π∗W 2
4 (C) + Wg−9(X).

The irreducibility of those W 2
d (X)’s and W r

d (X)’s is also clear. (ii) is also clear. Again, the
proof for the generically reducedness of W r

d (X) shall be provided in a more general setting
in Proposition 3.7. �

Remark 2.12. Following the notation in [6, Section 2], we set s(r) = s(r, X) the minimal
degree of a complete, base-point-free and simple linear series of dimension r ≥ 2 on a
given curve X .

(i) By Theorem 2.10 and [6, Corollary 2.5], we have s(2, X) = g for the double coverings
of genus two curves; cf. [6, Remark 2.6]. In fact, the linear series |K − π∗g1

2 − p1 − · · · −

pg−6| = g2
g for generically chosen p1, . . . , pg−6 ∈ X gives a plane model of X .

(ii) A double covering X of a curve of genus h ≤ 2 has s(2, X) ≥ g. It would be nice if
one can identify all the curves with s(2, X) ≥ g.

Recall that a complete and base-point-free linear series gr
d on a given algebraic curve is

called primitive if its residual series is also base-point-free. For a curve of genus g ≥ 4,
there always exists a primitive linear series other than the trivial (zero and canonical) linear
series. Following [4], let the primitive length l(X) of X be the cardinality of the finite set
of integers consisting of Clifford indices of all non-trivial primitive linear series on X . It
has been shown in [4] that the primitive length is an invariant detecting double coverings;
cf. [4, Theorem 3.4.1]. The results we obtained so far in this section determine the primitive
length of a double covering of a curve of genus two.

Corollary 2.13. Let X be a smooth double covering of a genus two curve C where g ≥ 11.
Then

(i) there is no primitive net of degree g − 1;
(ii) X has primitive length 5.

Proof. (i) By Theorem 2.11, W 2
g−1(X) = π∗W 2

4 (C) + Wg−9(X) = π∗ J (C) + Wg−9(X)

and hence every complete net g2
g−1 has non-empty base locus, and hence is not primitive.
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(ii) Remark that for a base-point-free, complete and non-primitive linear series |D|, there
exists p ∈ X such that h0(X, D + p) = h0(X, D) + 1 and |D + p| is birationally
very ample. By a result of [7], there always exists a base-point-free and complete g1

g−3
on X . On the other hand, since there does not exist a birationally very ample and
complete g2

g−2 on X , any base-point-free and complete g1
g−3 is primitive. Likewise, any

base-point-free and complete g1
g−2 (of which we know its existence by [7]) is primitive

by Theorem 2.10. Therefore the primitive linear series gr
d on X are complete pencils

π∗g1
2, π∗g1

3, g1
g−3, g1

g−2, g1
g−1 which have different Clifford indices. �

3. Double coverings over a curve of high genus

In this section we deal with double coverings π : X → C when the genus h of the base
curve C is given arbitrarily. Recall that by the Castelnuovo–Severi inequality for double
coverings (Corollary 2.2), any base-point-free pencil of degree d ≤ g−2h is a pull-back of
the one on the base curve C . Therefore it is quite natural to ask if there exists a base-point-
free pencil of degree d > g − 2h which is not a pull-back from C . This question has been
answered in the affirmative recently in [7] where the dimensions estimate of an irreducible
component containing such pencils has been left open. In the next proposition we show
that any component consisting of base-point-free pencils not a pull-back from C has the
expected dimension. We also determine the components of W r

d (X) and their generically
reducedness. As a by-product, we derive a lower bound of the minimal degree s(2) of a
plane model of the double covering X of a hyperelliptic curve of genus h.

Proposition 3.1. Let π : X → C be a double covering of a curve C which is not
necessarily hyperelliptic and g ≥ 8h − 3. For d ≥ g − 2h + 1, let B be an irreducible
component of W 1

d (X) whose general element is a base-point-free complete pencil not
composed with the involution induced by π . Then B is generically reduced and

dim B = ρ(d, g, 1) = 2d − g − 2.

Proof. The existence of such component B is the main result of [7]. We only give a proof
for the border line case d = g −2h +1; the case d > g −2h +1 is similar. Using the same
notations and conventions as in the proof of Proposition 2.4, we take a general element
L ∈ B ⊂ W 1

g−2h+1(X) and consider the cup product map

µ0 : H0(X, L) ⊗ H0(X, K L−1) → H0(X, K ).

Since L is a base-point-free and complete pencil, we have ker µ0 = H0(X, K L−2) by the
base-point-free pencil trick. If ker µ0 = {0}, then

dim TL W 1
g−2h+1(X) = ρ(g − 2h + 1, g, 1) = dim W 1

g−2h+1(X)

by (2.4.1).
Assume that h0(X, K L−2) > 0. Then we have a finite map

B → W4h−4(X)

L 7→ K L−2
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and hence ρ(g − 2h + 1, g, 1) = g − 4h ≤ dim B ≤ dim W4h−4h(X) = 4h − 4, contrary
to the assumption g ≥ 8h − 3. The generically reducedness is clear. �

Proposition 3.2. Let π : X → C be a double covering of a hyperelliptic curve of genus
h ≥ 3 and g ≥ max{6h, 8h − 3}. Set

Σ1 := π∗W 1
2 (C) + Wd−4(X) & Σ2 := π∗W 1

h+1(C) + Wd−2h−2(X).

Then the following holds.

(i) For any d ≤ g − 2h,

W 1
d (X) = Σ1 ∪ Σ2

and both Σ1 & Σ2 are generically reduced irreducible components of W 1
d (X).

(ii) In the range g − 2h + 1 ≤ d ≤ g − h,

W 1
d (X) =

2⋃
i=1

Σi ∪

α⋃
j=1

B j ,

where the B j ’s are possibly several irreducible components whose general element is base-
point-free. In this case also, all the Σi ’s and the B j ’s are generically reduced irreducible
components of W 1

d (X).

(iii) For d  g − h,

W 1
d (X) = Σ1 ∪

α⋃
j=1

B j ,

and every irreducible component Σ1 and the B j ’s of W 1
d (X) are generically reduced.

Proof. (i) Recall again that no component of W r
d (C) is entirely contained in W r+1

d (X) if
g − d + r ≥ 0; [1, Lemma 3.5, p. 182]. Hence a general element L in any irreducible
component of W 1

d (X) is a complete pencil whose base-point-free part is a pull-back
of a base-point-free and complete pencil M on C by the Castelnuovo–Severi inequality
(Corollary 2.2), i.e. L = π∗M +∆ where ∆ is the base locus of L . Therefore L ∈ Σ1 if M
is special or L ∈ Σ2 if M is non-special. Note that dim Σ1 = d − 4 ≥ dim Σ2 = d − h − 2
and hence the closed loci Σi are indeed the two distinct irreducible components of W 1

d (X)

by semi-continuity.

(ii) In the range g − 2h + 1 ≤ d ≤ g − h, by Proposition 3.1

dim B j = ρ(d, g, 1) = 2d − g − 2 ≤ dim Σ2 = d − h − 2 ≤ dim Σ1 = d − 4.

Hence by semi-continuity, Σ1,Σ2 and the B j ’s are indeed different irreducible components
of W 1

d (X).

(iii) For d  g − h, the closed locus Σ2 cannot be an irreducible component since
dim Σ2 < ρ(d, g, 1), hence W 1

d (X) = Σ1 ∪
⋃α

j=1 B j . In this case the closed locus Σ2
is contained in one of the B j ’s also by semi-continuity.

The generically reducedness of the components of W 1
d (X) follows from Proposi-

tions 3.1 and 3.7. �
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Remark 3.3. For a double covering π : X → C when the base curve C is a general curve
of genus h, it has been shown in [3, Theorem 1.1] that W 1

d (X), d ≥ g −h +1 is irreducible
if the genus g of X is sufficiently high. Proposition 3.2(iii) tells us that we cannot expect
such a phenomenon any more if the base curve C is a special curve.

Proposition 3.4. Let π : X → C be a double covering of a hyperelliptic curve C of genus
h ≥ 3, with g ≥ 6h − 1. Then there does not exist a birationally very ample gr

g−2h+r for
any r ≥ 2.

Proof. By successive projections, we only need to prove the statement for r = 2,
d = g − 2h + 2 and for the complete linear series. Suppose that there is a base-point-free
and complete g2

g−2h+2 = |D| on X . |D| cannot be very ample, otherwise X is a smooth
plane curve of degree g − 2h + 2 of gonality g − 2h + 1 = 4, a contradiction. Therefore
there exists an effective divisor p1 + p2 ∈ X2 such that

|D − p1 − p2| = g1
g−2h ∈ [π∗W 1

h+1(C) + Wg−4h−2(X)]

∪[π∗W 1
2 (C) + Wg−2h−4(X)]

by Proposition 3.2.
(i) First we assume that |D − p1 − p2| ∈ [π∗W 1

h+1(C) + Wg−4h−2(X)]. Then

|D| = |π∗g1
h+1 + p1 + p2 + p3 + · · · + pg−4h |,

where no two among {p1, . . . , pg−4h} are conjugate; otherwise, |D| = |π∗g1
h+1 + p1 +

p2 + p3 +· · ·+ pg−4h | = |π∗g2
h+2 +∆| has the non-empty base locus ∆. For each j such

that 1 ≤ j ≤ g − 4h, we consider

|D + p′

1 + · · · + p′

j | = |π∗g1
h+1 + p1 + · · · + pg−4h + p′

1 + · · · + p′

j |

= |π∗g j+1
h+ j+1 + p j+1 + · · · + pg−4h |,

where p and p′ are in the same fiber of π . Note that p′

j is not a base point of the series
|D + p′

1 + · · · + p′

j |; if so, we have

j + 1 ≤ r(π∗(g1
h+1 + π(p1) + · · · + π(p j ))) ≤ r(D + p′

1 + · · · + p′

j−1 + p′

j )

= r(π∗g j+1
h+ j+1 + p j+1 + · · · + pg−4h) = r(D + p′

1 + · · · + p′

j−1)

≤ r(D) + ( j − 1) = j + 1

and hence p′

j ∈ {p j+1, . . . , pg−4h} contrary to the fact that {p1, . . . , pg−4h} contains no
conjugate pairs. From this, we get

dim |D + p′

1 + · · · + p′

g−4h | = dim |D| + g − 4h = g − 4h + 2

and hence there exits a base-point-free and complete gg−4h+2
2g−6h+2 on X whose residual

series is |K − gg−4h+2
2g−6h+2| = g2h−1

6h−4 . If g2h−1
6h−4 is birationally very ample then by the

Castelnuovo genus bound, g ≤ 6h − 3. Suppose g2h−1
6h−4 induces a multiple sheeted map

α : X → α(X) ⊂ P2h−1. Then

deg α · (2h − 1) ≤ deg α · deg α(X) ≤ 6h − 4
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implies deg α = 2 and deg α(X) ≤ 3h − 2. Therefore, by the Castelnuovo genus bound
again, g(α(X)) ≤ h − 1. On the other hand, by the Castelnuovo–Severi inequality,

g ≤ (deg π − 1) · (deg α − 1) + deg π · g(C) + deg α · g(α(X)) ≤ 4h − 1,

which takes care of case (i).

(ii) We are now left with the case

|D − p1 − p2| = g1
g−2h = |π∗g1

2 + p3 + · · · + pg−2h−2|

∈ π∗W 1
2 (C) + Wg−2h−4(X)

and we set

|D| = |π∗g1
2 + p1 + p2 + · · · + pg−2h−2|.

Note that among {p1, . . . , pg−2h−2}, there exist at most h − 1 pairs of conjugate points;
otherwise, |D| would have non-empty base locus.

If there are exactly (h − 1) pairs of conjugate points among {p1, . . . , pg−2h−2}, then

|D| = |π∗g1
2 + (p1 + p′

1) + (p2 + p′

2) + · · · + (ph−1 + p′

h−1)

+ p2h−1 + · · · + pg−2h−2| = |π∗g1
h+1 + p2h−1 + · · · + pg−2h−2|,

which we treated already in (i). Therefore we may assume that there exist fewer than (h−1)

pairs of conjugate points and we write

|D| = |π∗g1
2 + π∗(r1) + · · · + π∗(rt ) + p2t+1 + · · · + pg−2h−2|, t ≤ h − 2

where no two among {p2t+1, . . . , pg−2h−2} are conjugate. We now claim that

|D + p′

2t+1 + · · · + p′

g−2h−2| ≥ g − 3h − t + 1. (3.4.1)

Suppose |D + p′

2t+1 + · · · + p′

g−2h−2| ≤ g − 3h − t . Then we have

g − 3h − t ≤ dim |π∗(gg−3h−t
g−2h−t )|

= dim |π∗(g1
2 + r1 + · · · + rt + π(p2t+1) + · · · + π(pg−2h−2))|

= dim |π∗g1
2 + π∗(r1) + · · · + π∗(rt ) + p2t+1 + · · · + pg−2h−2

+ p′

2t+1 + · · · + p′

g−2h−2|

= dim |D + p′

2t+1 + · · · + p′

g−2h−2| ≤ g − 3h − t,

hence

dim |π∗(gg−3h−t
g−2h−t )| = dim |D + p′

2t+1 + · · · + p′

g−2h−2| = g − 3h − t.

If this is the case, the morphism defined by |π∗(gg−3h−t
g−2h−t )| is nothing but the double

covering π . On the other hand, since |π∗(gg−3h−t
g−2h−t ) − D| 6= ∅, the birational morphism

defined by |D| factors through the morphism π , which is an absurdity finishing the proof
of (3.4.1). Now we have

|E | := |D + p′

2t+1 + · · · + p′

g−2h−2| = gα
2g−4h−2t with α ≥ g − 3h − t + 1,
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which is clearly base-point-free and birationally very ample. Taking the residual series, we
have |F | := |K − E | = gβ

4h+2t−2, with β ≥ h + t . Let η : X → Pβ be the morphism
defined by the series |F | (which may have non-empty base locus) and let f ≤ 4h + 2t − 2
be the degree of the moving part of |F |.

(i) If η is a birationally morphism onto its image η(X), then we may conclude g ≤ 6h − 2
by using the Castelnuovo genus bound. In fact by an elementary calculation, one ends up
with the following three possibilities where m = [( f − 1)/(β − 1)].

(a) m = 2 ⇒ g(X) ≤ 6h − 5
(b) m = 3 ⇒ g(X) ≤ 6h − 3
(c) m = 4 (in which case t = 0 and β = h) ⇒ g(X) ≤ 6h − 2.

(ii) Assume that η defines a k-sheeted morphism onto the image curve η(X) of degree
e :=

f
k in Pβ . Since η(X) is non-degenerate,

k · (h + t) ≤ k · deg η(X) ≤ 4h + 2t − 2,

and hence k ≤ 3. Let D := gβ
e be the complete linear series on η(X) (or on its

normalization). Suppose D is special. Then by Clifford’s theorem we have

h + t ≤ β ≤ degD/2 =
f

2k
≤

4h + 2t − 2
2k

,

which is a contradiction. Therefore, D is non-special and we have the upper bound for the
genus j of η(X):

j ≤

{
h − 1 if k = 2
h − 2

3
if k = 3.

Obviously, the morphism η does not factor through π . Therefore, by the
Castelnuovo–Severi inequality we have g ≤ 4h − 1. �

Corollary 3.5. Let π : X → C be a double covering of a hyperelliptic curve C of genus
h ≥ 3 with g ≥ 6h − 1. Set

Σ1 := π∗W r
2r (C) + Wd−4r (X) and Σ2 := π∗W r

r+h(C) + Wd−2r−2h(X).

Then for any d ≤ g − 2h + r and r ≥ 2 we have

(i) W r
d (X) = Σ1 ∪ Σ2. Furthermore, Σ1 and Σ2 are irreducible components of W r

d (X) if
r � h. If r ≥ h, Σ1 ⊂ Σ2 = W r

d (X).

(ii) s(r, X) ≥ g − 2h + r + 1.

Proof. For d ≤ g − 2h + (r − 1), by taking off r − 1 general points, the fact that
W r

d (X) = Σ1 ∪ Σ2 (set theoretically) follows from Proposition 3.2 and Lemma 2.3. For
d = g − 2h + r , W r

d (X) = Σ1 ∪ Σ2 is also obvious by Proposition 3.4. We need to
determine the irreducible components of W r

d (X). Let fi be the degree of the base locus of
a general element of the closed loci Σi . We have f1 = d − 4r , f2 = d − 2r − 2h and
dim Σ1 = d − 4r , dim Σ2 = d − 2r − h.
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(1) If dim Σ1 ≥ dim Σ2 (i.e. in the range h ≥ 2r ) then f1 > f2. Hence by semi-continuity
we see that both Σ1 and Σ2 are irreducible components of W r

d (X).

(2) If dim Σ1 � dim Σ2, i.e. in the range h � 2r there are three possibilities:

(2-a) f1 � f2 ⇔ h � r : since Σ1 ⊂ W r+1
d (X), Σ1 is not a component.

(2-b) f1 = f2 ⇔ h = r : in this case we clearly have Σ1 = Σ2.

(2-c) f1  f2 ⇔ h  r : in this case we cannot use semi-continuity. Instead, we may argue
as follows. Suppose Σ1 ⊂ Σ2. Then for a general choice p1 + · · · + pd−4r ∈ Xd−4r ,

|π∗rg1
2 + p1 + · · · + pd−4r | = |π∗gr

2r + p1 + · · · + pd−4r | = |π∗gr
r+h | + E

for some gr
r+h ∈ W r

r+h(C) and E ∈ Xd−2r−2h . Therefore it follows that gr
r+h =

gr
2r + q1 + · · · + qh−r and hence Xd−4r ⊂ π∗Ch−r + Xd−2r−2h , whereas dim Xd−4r >

dim[π∗Ch−r + Xd−2r−2h], a contradiction.

(ii) follows immediately from Proposition 3.4. �

Remark 3.6. Compared with bi-elliptic curves or double coverings of genus two curves,
Corollary 3.5 do not seem to be optimal. We expect that the same statement would hold in
a wider range of the degree d of the linear series.

Finally we prove the generically reducedness of various components of W r
d (X) for a

double covering of a curve of genus h ≥ 2 which we have been putting off.

Proposition 3.7. Let X be double covering of a hyperelliptic curve C of genus h ≥ 2 with
g ≥ 6h. Set

Σ1 := π∗W r
2r (C) + Wd−4r (X) and Σ2 := π∗W r

r+h(C) + Wd−2r−2h(X).

Then Σ1 and Σ2 are generically reduced for the following cases:

(i) r ≤ h and d ≤ g + r − 2.
(ii) r > h and d ≤ g − 2h.

Proof. We only give a proof for Σ2 because the proof for Σ1 is similar. We take a general
L ∈ Σ2 which may be written as L = π∗gr

r+h ⊗O(p1 + · · · + pd−2r−2h), where gr
r+h is

non-special and p1 + · · · + pd−2r−2h is a general degree d − 2r − 2h effective divisor on
X . Assume that L is singular and let l = r + 1 = h0(X, L) and i = g − d + r . By (2.4.1),
we have

dim TL W r
d (X) = g − li + dim ker µ0 ≥ d − 2r − h + 1, (3.7.1)

and hence

dim ker µ0 ≥ li − l − i − h + 2. (3.7.2)

Fix a basis {s1, . . . , sl} of H0(X, L) such that s1, s2 has no common zeros other than
p1, . . . , pd−2r−2h . Set Wk := span{s1, . . . , sk} for k = 1, . . . , l and let

µ0,Wk : Wk ⊗ H0(X, K L−1) → H0(X, K )

be the restriction of µ0 to the subspace Wk ⊗ H0(X, K L−1). By noting that

dim ker µ0,Wk − dim ker µ0,Wk−1 ≤ i
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for k = 3, . . . , l we have

dim ker µ0,Wl − dim ker µ0,W2 ≤ i(l − 2)

and hence

dim ker µ0,W2 ≥ dim ker µ0 − i(l − 2) ≥ li − l − i − h + 2 − i(l − 2)

= g − d + 1 − h (3.7.3)

by (3.7.2). By using the projection formula and the Riemann–Hurwitz relation for double
coverings, one has

h0(X, 2π∗gr
r+h) = h0(C, π∗(π

∗(2gr
r+h) ⊗OX )) = h0(C, 2gr

r+h ⊗ π∗OX )

= h0(C, 2gr
r+h ⊗ (OC ⊕OC (T )))

= h0(C, 2gr
r+h) + h0(C, 2gr

r+h ⊗ T ) = 2r + h + 1,

where T is a divisor such that 2T ∼= −R with R the branch divisor of π ; note that
deg 2gr

r+h ⊗ T = 2r + 4h − g − 1 < 0 by our numerical data g ≥ 6h, d − 2r − 2h ≥ 0
and d ≤ g − 2h (if r > h).

On the other hand, by the base-point-free pencil trick

dim ker µ0,W2 = h0(X, K ⊗O(−2π∗gr
r+h − p1 − · · · − pd−2r−2h))

= h0(X, K ⊗O(−2π∗gr
r+h)) − (d − 2r − 2h)

= g − 4(r + h) + (2r + h) − (d − 2r − 2h) = g − d − h

since p1, . . . , pd−2r−2h were chosen generically. Therefore (3.7.3) becomes a numerical
absurdity. �
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