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Abstract. In this paper we present a general construction of frames, which allows one
to ensure that certain families of functions (atoms) obtained by a suitable combination of
translation, modulation, and dilation will form Banach frames for the family of L2-Sobolev
spaces onR of any order. In this construction a parameter α ∈ [0, 1) governs the dependence
of the dilation factor on the frequency parameter. The well-known Gabor and wavelet frames
(also valid for the same scale of Hilbert spaces) using suitable Schwartz functions as building
blocks arise as special cases (α = 0) and a limiting case (α → 1), respectively. In contrast to
those limiting cases, it is no longer possible to use group-theoretical arguments. Nevertheless,
we will show how to constructively ensure that for Schwartz analyzing atoms and any
sufficiently dense but discrete and well-structured family of parameters one can guarantee
the frame property. As a consequence of this novel constructive technique, one can generate
quasicoherent dual frames by an iterative algorithm. As will be shown in a subsequent
paper, the new frames introduced here generate Banach frames for corresponding families
of α-modulation spaces.
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1. Introduction and motivations

The theory of frames or stable redundant nonorthogonal expansions, introduced
by Duffin and Schaeffer [12], plays an important role in wavelet theory [9,10]
as well as in Gabor analysis [36,25]. Many relevant contributions, among them
[1,5,6,10,9,19–21,42–45], describe Gabor and wavelet analysis as two parallel
theories with similar but different structures and typically different applications.
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We shall propose a general construction of suitably structured frames and its
application to present a unified theory for L2-Sobolev spaces of Gabor and wavelet
frames, usually treated separately. We intend our results to be a further answer
to the theoretical need of a common interpretation and framework and to define
more general intermediate time-frequency tools for applications. To fix notations,
consider the following unitary operators on L2(R) of modulation, translation, and
dilation, respectively:

Mω( f )(t) = e2πiω·t f(t), (1)

Tx( f )(t) = f(t − x), (2)

Da( f )(t) = |a|−1/2 f(t/a). (3)

In particular, we shall study families of functions given by:

[π(x, ω, ηα(ω))g] = MωTx Dηα(ω)−1 g, for (x, ω) ∈ R2, (4)

where ηα(ω) = (1 + |ω|)α, for α ∈ [0, 1], and the corresponding flexible Gabor-
wavelet transform:

Vα
g ( f )(x, ω) = 〈 f, MωTx Dηα(ω)−1 g〉, ∀(x, ω) ∈ R2. (5)

We shall show that for suitable discrete sampling of (4), one can generate Banach
frames for L2-Sobolev spaces Hs(R) once g is sufficiently well localized in the
time-frequency plane. One can easily verify that for α = 0 the family (4) is just
a Gabor family, while for α → 1 the family tends to the situation encountered in
the wavelet context, in a very natural (geometric) sense.

Cordoba and Fefferman [7], Folland [28], and Holschneider and Nazaret [42]
introduced such families and transforms as new time-frequency tools to study
certain pseudodifferential operators. Moreover, L2-Sobolev spaces are both mod-
ulation spaces [14,17,36] whose natural atomic decompositions provide (Banach)
Gabor frames as well as Besov spaces [34,47,46], for which wavelet expansions
are atomic decompositions. Hence, L2-Sobolev spaces appear to be natural com-
mon spaces for which one can develop an intermediate theory. Furthermore, they
are special instances of the more general family of α-modulation spaces [13,35]
for each α ∈ [0, 1]. Although interesting group-theoretical approaches in gener-
alizing Gabor and wavelet frames are presented in [1,2,41,43,44], as a matter
of fact, classical unified (coorbit-space) theories [19–21,37] cannot be applied to
generate discrete flexible (parametric) Gabor-wavelet frames. Our approach over-
comes these difficulties. We mention, however, that a recent generalization of the
coorbit-space theory [8] may open up an alternative approach.

In approximation theory, one might use the parameter α as a tuning parameter
in analyzing signals. In audio signal encoding, for example, one can use different
bases to model different components of signals. The nonlinear approximation of the
transient component (shock waves) is very effective using wavelet decompositions,
but the tonal component (harmonic or stationary signal) is much better represented
by Gabor type frames (or by local Fourier bases) [11]. Presently it is claimed that
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possible hybrid versions of Gabor and wavelet expansions can achieve better and
more efficient representations of signals. In particular, the almost complementary
quality and capability of approximation of Gabor and wavelet expansions has been
shown in [11]. This is a further motivation to investigate possible intermediate
frames, to introduce more flexible tools of approximation.

The paper is organized as follows. Section 2 lists the elementary properties
of frames and a few notational conventions. In Section 3 we briefly recall the
coorbit-space theory and the unified approach to Gabor and wavelet Banach frames
developed by Feichtinger and Gröchenig [19–21,37]. We explain why it cannot
be applied directly to derive any intermediate theory and time-frequency tool. In
Section 4 we collect the relevant tools and technical results we need. The concept of
admissible coverings of Rd and BAPUs (bounded admissible partitions of unity),
decomposition spaces, in particular Wiener amalgam spaces, and results on series
expansions for band-limited functions are presented. In Section 5 we introduce
a new constructive technique to generate admissible (discrete) coverings from
certain continuous coverings of the real line. In particular, each interval of an
admissible covering is identified by a function P, parameterizing the position of
the interval, and a function S, governing the size of the interval. Next we study how
to check the Bessel condition for a family of functions of the type (4) associated
to such admissible coverings. Finally, we state the definition of α-admissibility for
an analyzing function g. In Section 6 we combine the results and tools established
in Sections 4 and 5 to give unified sufficient conditions for the existence of flexible
Gabor-wavelet (discrete) frames for L2-Sobolev spaces.

The main result can be formulated as follows.

Theorem 1. Let α ∈ [0, 1), s ∈ R+, and g ∈ Hs(R) be α-admissible. Denote by

Pα( j) = sgn( j)
(
(1 + (1 − α) · b · | j|) 1

1−α − 1
)

and
Sα( j) = b · (1 + (1 − α) · b · (| j| + 1))

α
1−α

position and size functions, respectively, where sgn(·) is the sign function. Then,
for all b > 0 and all sufficiently small values a > 0, the set of functions

{
g j,k

α,a,b = MPα( j)Ta·Sα( j)−1·k DSα( j)−1 g
}

j,k∈Z (6)

has the property that any f ∈ Hs can be written as the unconditionally convergent
series in Hs(R)

f =
∑

j∈Z

∑

k∈Z
c j,k
α,a,b( f )g j,k

α,a,b , (7)

‖ f ‖2
Hs �

∑

k, j

∣∣c j,k
α,a,b( f )

∣∣2 (1 + (1 − α) · b · | j|) 2s
1−α , (8)

for a suitable set of linear functionals c j,k
α,a,b. In particular, the renormed sequence

{(1 + (1 − α) · b · | j|) s
α−1 · g j,k

α,a,b} j,k∈Z is a frame, while {g j,k
α,a,b} j,k∈Z is a Banach

frame for Hs(R). Thus, the space Hs(R) can be interpreted as a generalized coorbit
space with respect to (4).
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The strategy of the proof has already been introduced in [29] and applied for
the Gabor frames case only in [30]. It is essentially inspired by the fundamental
works of Frazier and Jawerth [34] and Feichtinger [17], and it works as follows:

• Decompose the space into suitable subspaces of band-limited functions.
• Construct a local family of atoms of translates for each subspace.
• Show that the union of these local families is a Bessel sequence.
• The global system so built is a frame.

Then, one can apply a perturbation result to extend the frame property to larger
classes of generating atoms. In fact, under suitable decay-smoothness conditions
on g (α-admissibility), one starts to construct a local family of atoms by translates
of a band-limited approximation gρ of g, which generates global frames. Then, by
means of the Neumann series inversion of certain synthesis operators, one proves
that the frame property applies also for g.

The α-admissibility condition essentially involves only the upper frame bound
condition (Bessel condition) of the system, while the lower bound condition, typ-
ically harder to check, is automatically fulfilled by a quite large class of analyzing
functions as a consequence of the general and unified construction. This result
is an improvement over earlier contributions, for example [5,9,41], where it was
necessary to check the lower bound condition, separately, for Gabor or wavelet
frames and it is a generalization of the results of [3, Section 3.6]. Moreover, since
the developed technique is constructive, we provide a method to calculate suitable
coefficients {c j,k

α,a,b( f )} j,k by means of the choice of (approximated) dual families.
A constructive technique for deriving explicit formulas of suitable time-frequency-
scale sampling points (xα

j,k, ω
α
j ) for family (4) to define the corresponding discrete

frames is also presented. Hence, our approach should be distinguished from those
results, see, for example, [41] Theorem 7.1 and [19–21], where the points were
required to be just sufficiently dense. The construction is also generalizable to
describe irregular Gabor and wavelet frames [32].

The present paper is the third of a series [29,30] on constructive methods to
generate structured Banach frames for function spaces. We have also developed
([31, Chapter 5]) the extension of these expansions as Banach frames for all classes
of α-modulation spaces as a generalization of the known coorbit-space theory.
These results will be detailed in a subsequent paper [32], and they will make use
of the present L2-Sobolev theory, combined with a novel generalization [33] of the
theory of localization of frames recently developed by Gröchenig [38].

2. Preliminaries

Definition 1. A sequence { fn}n∈N in H is a frame for the Hilbert space H if there
exist two positive constants A, B > 0 such that

A · ‖ f ‖2 ≤
∑

n∈N
|〈 f, fn〉|2 ≤ B · ‖ f ‖2, ∀ f ∈ H. (9)

The upper bound in condition (9) is also known as the Bessel condition for the
sequence { fn}n∈N, and whenever it holds, the sequence { fn}n∈N is called a Bessel
sequence.
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Condition (9) ensures that the frame operator S : H→ H given by

S f =
∑

n∈N
〈 f, fn 〉 fn (10)

is an invertible operator. This implies that

f = SS−1 f =
∑

n∈N

〈
f, S−1 fn

〉
fn . (11)

The sequence {S−1 fn}n∈N is again a frame and is called the canonical dual frame
with frame operator S−1. For a frame the coefficient functionals {cn}n∈N such that

f =
∑

n∈N
cn( f ) fn (12)

are in general not unique. Typically many dual Bessel sequences { f̃n}n∈N inH exist
such that for all f ∈ H

f =
∑

n∈N
〈 f, f̃n 〉 fn . (13)

Such redundancy of a frame can play an important role in practical problems where
robustness and error tolerance are fundamental as, for example, denoising, irregular
sampling problems [22–24], pattern matching, data transmission, and communi-
cation. We refer the reader to [6] for a recent book on frames and nonorthogonal
expansions and to [3,8,37,38] for the more general notion of Banach frame.

We write R+ for the nonnegative reals. For a given function or tempered
distribution f , we denote the Fourier transform of f by f̂ or F f . Moreover, f is
called band-limited if spec( f ) := supp( f̂ ) ⊂ Ω, for some Ω compact subset ofRd .
We write S = S(Rd ) for the Schwartz space. If B(Rd) is a Banach space of functions
on Rd , sometimes we write simply B instead of B(Rd). For positive quantities F
and G, we will write F � G whenever F(x) ≤ C · G(x), for some universal
constant C > 0 and for all arguments x. If F � G and G � F, then we will write
F � G. By convention we write ws for the weight function ws(x) = (1 + |x|2)s/2

and L p
s := L p

ws , the space of functions f such that f ·ws ∈ L p, and in the following
discussion we assume s ≥ 0. Let us also denote by A the regular Banach algebra
A := F L1 and, finally, by M the space of bounded measures, the topological dual
space of the continuous function space C0.

3. The coorbit-space theory: Gabor and wavelet frames

A number of interesting papers in the field suggest a parallel description of Ga-
bor and wavelet decompositions. Let us mention just a few names here, such as
Christensen [6,5], Daubechies [9,10], and Triebel [47]. Inspired by the work of
Grossmann et al. [39], Feichtinger and Gröchenig have presented a unified group-
theoretical approach in [19–21,37]. In those works one can switch between the
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Gabor and the wavelet context by exchanging the reduced Heisenberg group for
the affine ax + b group.

Let us recall their approach and then introduce a common presentation for these
two types of coherent frames. In the sequel G is some (Hausdorff) locally compact
group.

Definition 2. A strongly continuous representation of G onH is a mapping π from
G into the bounded linear operators on H for which

(i) π(xy) = π(x)π(y), for all x, y ∈ G.
(ii) For all f ∈ H, the mapping x �→ π(x) f is continuous from G to H.

We further say that
(iii) π is unitary if all the operators {π(x)}x∈G are unitary.
(iv) π is irreducible if the only closed subspaces of H that are invariant under all

the operators {π(x)}x∈G are {0} and H.
(v) π is integrable if there exists g ∈ H\{0} such that

∫

G
|〈π(x)g, g〉|dµ(x) < ∞,

where µ is the Haar measure on G. The set of all g ∈ H for which the above
integral is finite will be denoted by A or Aπ .

Definition 3. Let X be a locally compact space. A sequence of open, relatively
compact subsets O = {Ωi}i∈I ⊂ X is called an admissible covering of X if

(C1) (Covering) X =⋃∈I Ωi;
(C2) (Uniformly locally finite) supi∈I #{ j ∈ I : Ω j ∩ Ωi �= ∅} ≤ N < ∞.

Theorem 2. Let π be an irreducible, unitary, and integrable representation of G
on H. Then, there exists subspace B ⊂ A, which is dense in H, such that for all
g ∈ B\{0} there exists a relatively compact subset Ω of G with nonvoid interior
with the following property: for any admissible countable covering {x jΩ} j∈I of G
there exists a bounded operator

Λ : H→ l2(I ), Λ f = {λ j( f )} j∈I

for which

f =
∑

j∈I

λ j( f )π(x j)g, ∀ f ∈ H. (14)

Moreover, {π(x j)g} j∈I is a frame for H.

This theorem is just a special case of the general Feichtinger–Gröchenig theory,
based on a discretization of convolutions and iterative approximations of a repro-
ducing formula. To a large class of Banach function spaces Y (including weighted
L p-spaces) one can associate a sequence space Yd and a Banach space Coπ(Y )

(coorbit space) such that the result holds with H replaced by Coπ(Y ) and l2(I )
by Yd . In particular, Theorem 2 can be applied to obtain Gabor and wavelet frames:
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Examples 1. We collect a few relevant examples of atomic decompositions for
coorbit spaces:

• (Gabor expansions and modulation spaces) ForHred = R×R×T, the (reduced)
Heisenberg group with a suitable group law, and the Schrödinger representation
on L2(R) given for (z, y, x) ∈ Hred by

[π(z, y, x)g](t) = x · Tz Myg(t) = x · e2πiy(t−z)g(t − z), g ∈ L2, (15)

the resulting frames are called Gabor frames and the corresponding coorbit
spaces are Coπ(L p

ws ) = Ms
p,p, belonging to the family of modulation spaces

[17,36].
• (Wavelet expansions and Besov–Triebel spaces) For A f f = R � R+, the affine

group, one can define the representation on L2(R) given for (b, a) ∈ A f f by

[π(b, a) f ](t) = Tb Da f(t) = 1√
a

f

(
t − b

a

)
, f ∈ L2. (16)

Hence wavelet expansions appear by appropriate sampling of the representation.
For the weight function w(b, a) = |a|s, s ∈ R, the corresponding coorbit spaces
are Coπ(L p

w) = Ḃs−1/2+1/p
p,p , the homogeneous Besov spaces [34,46,45].

• (L2-Sobolev spaces) Fractional L2-Sobolev spaces Hs defined by

Hs(R) = { f ∈ S′ : f̂ (ω)(1 + |ω|2) s
2 ∈ L2(R)}, (17)

endowed with the scalar product 〈 f, g〉Hs := 〈 f̂ , ĝ〉L2
ws

, are Hilbert spaces, and

Hs = Ms
2,2 = Ḃs

2,2 = Coπ(L2
ws

), for all s, since they belong to both families.

The Feichtinger–Gröchenig approach does not suggest any way to move from
the Gabor to the wavelet decomposition theory and any possible intermediate time-
frequency tools. In fact, Torresani [43,44] investigated the existence of subgroups
G of the affine-Heisenberg group GaWH = R×R�R+ × T, such that they admit
mixed-square integrable, unitary representations

[π(b, ω, ηG(ω))g] = MωTb DηG (ω)−1 g, for all (b, ω) ∈ R2, (18)

giving as a unique solution ηG(ω) = ηλ(ω) = (1 +λω). For λ �= 0 it gives a trivial
modification of the standard wavelet theory, and for λ = 0 it gives the standard
Gabor theory. Hence the Feichtinger–Gröchenig theory cannot be used to provide
an intermediate theory between Gabor and wavelet decompositions. However,
as we shall show below, an intermediate theory is still possible (see also [41])
with a corresponding coorbit-space theory [31,32] by using the decomposition of
Hilbert space method illustrated in [29] and already used in [30] for generating
Gabor frames only. Such an intermediate theory provides a new flexible tool
that potentially combines the advantages of the two time-frequency techniques to
represent signals and operators in a parametric way.

In the construction of intermediate frames we follow the approach of Cordoba–
Fefferman [7] and Folland [28] for the representation of functions as continuous
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superpositions of modulated, translated, and dilated wave packets. They introduced
such a family of functions to study classes of pseudodifferential operators, which
are generated by the action of a mixed family of operators given by

[π(x, ω, ηα(ω))g] = MωTx Dηα(ω)−1 g, for all (x, ω) ∈ R2, (19)

where ηα(ω) = (1 + |ω|)α, for α ∈ [0, 1], producing a new transform that we wish
to call the flexible Gabor-wavelet transform or α-transform:

Vα
g ( f )(x, ω) = 〈 f, MωTx Dηα(ω)−1 g〉, for all (x, ω) ∈ R2. (20)

Note that, for α = 0, Vα
g is just the short time Fourier transform (STFT) or the

windowed Fourier transform and, for α = 1, Vα
g is just a slight modification of the

continuous wavelet transform (CWT). Further interesting results in this direction
were also proposed by Holschneider and Nazaret in [42], and we briefly assemble
some of them in what follows.

Theorem 3. For g ∈ S(R) define

σ̃α
g (ω) =

∫

R

|ĝ((1 + |ξ|)−α(ω − ξ))|2(1 + |ξ|)−αdξ. (21)

Assume that there exists A > 0 such that

0 < A−1 ≤ σ̃α
g (ω) ≤ A < ∞, for a.e ω ∈ R. (22)

Then

f ∈ Hs(R) if and only if Vα
g f ∈ L2

(1+|ω|2)
s
2
(R2). (23)

In particular, for s = 0, the system {MωTx Dηα(ω)−1 g}ω,x∈R is a continuous frame
[2], and for all f ∈ L2

f =
∫

R2
cω,x( f )MωTx Dηα(ω)−1 g dxdω and ‖cω,b( f )‖L2(R2) � ‖ f ‖L2 .

(24)

A representative function satisfying (22) is the Gaussian.
It can be interesting to the reader to compare the previous theorem with Theo-

rem 1, which can be considered its discrete version. Similar results are reported in
[41] and [1, Proposition 15.2.1].

4. Wiener amalgams, series expansions of band-limited functions

We wish to assemble in this section those tools that we need for a better and self-
contained presentation. For more details we refer the reader to [13,35,15,16,40,23].
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Definition 4. Given an admissible covering O = {Ωi}i∈I of Rd, we call a family
Φ = {ϕi}i∈I in A := F L1 [13, Theorem 4.2] an O-BAPU (bounded admissible
partition of unity) subordinate to O, if Φ fulfills the following properties:

(i) supi∈I ‖ϕi‖A = C0 < ∞;
(ii) supp(ϕi) ⊆ Ωi , ∀i ∈ I;
(iii)

∑
i∈I ϕi(x) = 1.

Definition 5. For a Banach space (B, ‖ · ‖B) continuously embedded in S′, an
O-BAPU Φ = {ϕi}i∈I in A acts boundedly on (B, ‖ · ‖B) if

‖ϕi f ‖B ≤ ‖ϕi‖A‖ f ‖B,∀i ∈ I, f ∈ B.

Definition 6. Given a Banach space (B, ‖ · ‖B) continuously embedded in S′, let
Φ = {ϕi}i∈I ⊂ A be an O-BAPU acting boundedly on (B, ‖ · ‖B) and w a discrete
(weight) strictly positive sequence on I. We define the corresponding decomposition
space as

D
(
O, B, lq

w

)
(Rd ) = { f ∈ S′ : fϕi ∈ B ∀i ∈ I, (‖ fϕi‖B)i∈I ∈ lq

w(I )
}
.

Moreover, one can define the natural norm:

‖ f |D‖ :=
(
∑

i∈I

‖ fϕi‖q
Bw(i)q

)1/q

,

for 1 ≤ q < ∞. The usual modification applies for q = ∞.

With such a norm the space (D(O, B, lq
w), ‖ · |D‖) is a Banach space. If,

in addition to the already mentioned assumptions, the O-BAPU is a Q-BUPU
(bounded uniform partition of unity), i.e., if there exists (xi)i∈I ⊂ Rd such that Ωi =
xi + Q, with Q ⊂ Rd relatively compact, we call D(O, B, lq

w) a Wiener amalgam
space, and we will write W(B, lq

w) := D(O, B, lq
w). Then the definition does not

depend on the particular BUPU Φ taken whenever the weight function w is assumed
submultiplicative, that is, w(x+y) ≤ w(x)w(y) for all x, y ∈ Rd , e.g., ws for s ≥ 0.
Moreover, there exist characterizations of equivalent general decomposition spaces
by means of equivalent coverings, see [13,35]. The properties of Wiener amalgams
with respect to inclusions, Fourier transform, and convolutions were described and
studied by Feichtinger [15,16]. We refer the reader to [40] for further information.

We must also recall and develop some technical tools on expansions of band-
limited functions by translates of a single band-limited function g.

Proposition 1 (Regular case). Given a band-limited function g ∈ L1(Rd ) such
that ĝ �= 0 on a relatively compact set Ω ⊂ Rd, there exists δ0 > 0 such that
for all 0 < δ ≤ δ0 {g(· − δk)}k∈Zd is a local family of atoms [27] (see also [29,
Definition 3]) for L2

Ω(Rd ) := { f ∈ L2 : supp( f̂ ) ⊂ Ω}. This means that for all
f ∈ L2

Ω(Rd )

f =
∑

k∈Zd

ck( f )Tδkg and
∑

k∈Zd

|〈 f, Tδkg〉|2 ≤ B · ‖ f ‖2
2,

for suitable bounded functionals ck such that
∑

k∈Zd |ck( f )|2 ≤ B̃ · ‖ f ‖2
2.
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Proof. It is well known that {δd/2e2πiδkx }k∈Zd is an orthonormal basis for
L2([−1/(2δ), 1/(2δ)]d). For δ > 0 small enough Ω ⊂ [−1/(2δ), 1/(2δ)]d. By
Wiener’s lemma there exists band-limited function g1 ∈ L1 such that ĝ1 · ĝ ≡ 1
on Ω. Hence, for all f ∈ L2

Ω(Rd )

f̂ (ω) = [( f̂ ĝ1
)
ĝ
]
(ω) =

∑

k∈Zd

δd〈 f̂ ĝ1, e2πiδkx 〉e2πiδkω ĝ(ω). (25)

By applying the inverse Fourier transform,

f =
∑

k∈Zd

δd( f ∗ g1)(δk)Tδkg, (26)

where ∗ is the convolution operator. Observe now that, by Young’s inequality,
∑

k∈Zd

δd|( f ∗ g1)(δk)|2 = ‖ f ∗ g1‖2
2 ≤ ‖ f ‖2

2‖g1‖2
1. (27)

Let us denote ck( f ) = δd( f ∗ g1)(δk); then one has
∑

k∈Zd

|ck( f )|2 ≤ (δd‖g1‖2
1

) ‖ f ‖2
2. (28)

In particular,
∑

k∈Zd |〈 f, Tδkg〉|2 = ∑
k∈Zd |〈 f̂ , e2πiδkω ĝ〉|2 ≤ δ−d‖ f ‖2

2‖ĝ‖2∞. By
formula (25) one has that {Tδkδ

dg1}k∈Zd is a dual for the local family of atoms
{Tδkg}k∈Zd (see [29, Remark]). Moreover, by (28) there exists a universal constant
B̃ > 0 depending only on the behavior of ĝ on Ω such that for all 0 < δ ≤ δ0,∑

k∈Zd |ck( f )|2 ≤ B̃‖ f ‖2.

Similarly, the more general translation irregular sampling case is given by the
following theorem.

Theorem 4 (Irregular case). Let Ω ⊂ R
d be a relatively compact set, and

g ∈ L1(Rd ) a band-limited function such that ĝ(ω) �= 0 on Ω. Then there exist
a relatively compact set U0 ⊂ Rd and a constant C = C(g,Ω, U0) > 0 such that
for any subset {yk}k∈Z ⊂ Rd for which {yk + U0}k∈Z is an admissible covering for
R

d there exist linear mappings f �→ ck( f ) such that

f =
∑

k∈Z
ck( f )Tyk g, and

(∑

k∈Z
|ck( f )|p

)1/p

≤ C · ‖ f ‖p, (29)

for every f ∈ L p
Ω(Rd ) = { f ∈ L p(Rd ) : spec( f ) ⊂ Ω} and p ∈ [1,∞).

Proof. [23].

For p = 2 the set {ψ0
k = Tyk g}k∈Z is a local family of atoms forW0 = L2

Ω(Rd )

in the sense of [29, Definition 3]. In particular, the projection of this family onto
L2

Ω(Rd ) is a frame for that subspace. Constant C in (29) depends only on the
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behavior of ĝ on Ω and on the density [23, Definition 2.2] of nodes {yk}k∈Z. In fact,
there exists δ = δ(U0) > 0 such that

C = 1

1 − c(δ,Ω1)‖h‖1
· ‖g1‖1, c(δ,Ω1)‖h‖1 < 1, (30)

where

(1) g1 is a band-limited function g1 ∈ L1, with supp(ĝ1) ⊂ supp(ĝ) and ĝ1 · ĝ ≡ 1
on Ω;

(2) h ∈ L1 is a band-limited function such that ĥ ≡ 1 on supp(ĝ) and Ω1 :=
supp(ĥ);

(3) c(δ,Ω1) := inf ‖oscδ p‖1, oscδ p(x) = (
supz∈Bδ(x) |p(z) − p(x)|), where the

infimum ranges over all functions p ∈ L1, with p̂ ≡ 1 on Ω1.

Remark 1. Observe that ‖h‖1 in (30) is independent of the size |supp(ĝ)|. In fact,
for any band-limited function h ∈ L1 such that ĥ ≡ 1 on Ω and for all band-limited
g ∈ L1 there exists ρ > 0 such that hρ(t) = ρd · h(ρ · t) ∈ L1 is a band-limited
function, ĥρ ≡ 1 on supp(ĝ), and ‖hρ‖1 = ‖h‖1.

Lemma 1. Let U be a relatively compact subset of Rd. Then there exists an in-
creasing function CU(ξ) on R+, CU(ξ) → 0 for ξ → 0 such that, for all constants
δ > 0 and ρ > 0,

c(δ, ρ · U) ≤ CU(δ · ρ). (31)

Proof. Consider some band-limited function p ∈ L1(Rd ) with p̂ ≡ 1 on U . Hence
pρ(x) = ρd · p(ρ · x) is a band-limited function with p̂ρ ≡ 1 on ρ · U and
c(δ, ρ · U) ≤ ‖oscδ pρ‖1. By the mean-value theorem, one has

oscδ pρ(x) ≤ δ · |∇ pρ|#δ (x), (32)

where f #
δ (x) := supz∈Bδ(x) | f(z)| is the local maximal function of f . Observe now

that ∇ pρ(x) = ρd+1 · ∇ p(ρ · x) and

|∇ pρ|#δ (x) = ρd+1 · sup
z∈Bδ(x)

|∇ p(ρ · z)| = ρd+1 · sup
ρz∈Bρ·δ(ρx)

|∇ p(ρ · z)|.

Thus one has

‖oscδ pρ‖1 ≤ δ · ρ · ∥∥∣∣∇ p
∣∣#
δρ

∥∥
1. (33)

Let us choose CU(ξ) = ξ · ‖|∇ p|#ξ‖1.

Remark 2. By the previous lemma, for any ε > 0 and ρ > 0, for the dilation of
a fundamental domain Ω by ρ there exists δ > 0, δ � ρ−1 such that c(δ, ρ ·Ω) < ε.
Hence, a fixed constant C in (30) can be used for all pairs of functions g and
sampling sets {yk}k, as long as the product of maximal gap size of {yk}k and the
size of supp(ĝ) is uniformly bounded.
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In order to develop a constructive approach, we present a method to calculate
a possible dual {ψ̃0

k }k for {ψ0
k }k (also valid for the irregular case).

Remark 3. ([LDA], Local Dual Algorithm). Under the assumptions and notations
of Theorem 4, let Φ = {ϕk}k∈Z be a U0-BUPU associated to {yk +U0}k∈Z. One can
define the discrete measure DΦ f in W(M, l2) by the operator

DΦ : L2 → W(M, l2), DΦ f =
∑

k∈Z
〈 f, ϕk〉L2δyk . (34)

Observe that for all g ∈ W(C0, l2)

〈g, DΦ f 〉 = 〈g,
∑

k∈Z
〈 f, ϕk〉L2δyk〉 =

∑

k∈Z
〈 f, ϕk〉L2 g(yk) = 〈 f,

∑

k∈Z
g(yk)ϕk〉L2 .

(35)

Hence, one can also define

SΦ : W(C0, l2) → L2, SΦg =
∑

k∈Z
g(yk)ϕk, (36)

and 〈g, DΦ f 〉1 = 〈 f, SΦ g〉L2 . Let us consider the convolution operator:

Ch f = f ∗ h. (37)

Denote C∗
h g = h∇ ∗ g = Cg(h∇), where h∇ = h(−x). By the proof of

[23, Theorem 2, formula (64)], one has that the coefficients {ck( f )}k∈Z can be
calculated by means of the Neumann series:

ck( f ) = 〈ϕk,

∞∑

n=0

(Ch(� − DΦ))n f0〉, (38)

where f0 = Cg1 f . Hence, for p = 2, a dual sequence {ψ̃0
k }k∈Z for the local family

of atoms {Tyk g}k∈Z satisfying ck( f ) = 〈 f, ψ̃0
k 〉L2 can be constructed by

ψ̃0
k = C∗

g1

( ∞∑

n=0

(
(� − SΦ)C∗

h

)n
)

ϕk. (39)

This construction can be implemented by the following algorithm:

Ψ 0
k = ϕk, Ψ n+1

k = (h∇ ∗ Ψ n
k

)−
∑

j∈Z

(
h∇ ∗ Ψ n

k

)
(y j)ϕ j, ∀n ∈ N, ∀k ∈ Z,

(40)

1 Here the symbol σ(g) = 〈g, σ〉 is the action of the distribution σ on the function g as an
extension of the bilinear form 〈g, σ〉L2 = ∫

Rd g(x)σ(x)dx when g and σ are both functions.
This notation is in fact the one used in [22,23].
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and

ψ̃0
k = g∇

1 ∗
( ∞∑

n=0

Ψ n
k

)

. (41)

For the regular case, yk = δ · k and ϕk = Tδ·kϕ0 imply

[SΦ, Tδ·k] = [C∗
g1

, Tδ·k] = [C∗
h, Tδ·k] ≡ 0, (42)

where [A, B] = A ◦ B − B ◦ A is the commutator operator of A and B. These
commutator equations, together with (39), imply that

ψ̃0
k = Tδ·kψ̃0

0 , (43)

where

ψ̃0
0 = C∗

g1

( ∞∑

n=0

(
(� − SΦ)C∗

h

)n
)

ϕ0. (44)

In this case we will say that the dual is (locally) coherent because it preserves the
structure of the original local family of atoms.

5. Admissible coverings and α-admissibility

Let us assume in what follows d = 1. The multidimensional theory will be the
subject of subsequent contributions. We want to show how to define suitable
decompositions ([29, Definition 2], [30]) of Hs as a Hilbert space in order to
construct frames derived for sampling of (19) in the time-frequency-scale domain.
This will be done by suitable partitioning of the frequency line and corresponding
decomposition of Hs into suitable subspaces of band-limited functions. For that,
the following technical results are useful.

Lemma 2. Let P, S : R+ → R
+ be two positive nondecreasing (unbounded)

functions, P ∈ C1(R+), such that

dP

dw
(w) = S(w), P(0) = 0. (45)

For all b > 0 and j ∈ N, denote by Ω
P,S
j the interval P(b · j)+[0, b · S(b( j + 1))].

Then O = {ΩP,S
j } j∈N is an admissible covering for R+. We call P the position

function and S the size function of the covering.

Proof. By the mean-value theorem, one has

P(b( j + 1)) − P(b · j) = b · S(b · ξ j),

for some ξ j ∈ ( j, j + 1). Since S is nondecreasing, one has also

P(b( j + 1)) ≤ P(b · j) + b · S(b( j + 1)).
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Moreover, P is also nondecreasing, and then

P(b( j + 1)) ≤ P(b · j) + b · S(b( j + 1))

≤ P(b( j + 1)) + b · S(b( j + 1)) ≤ P(b( j + 2)).

Hence, for all j , Ω
P,S
j intersects Ω

P,S
j+1, but no further successive elements of the

covering and

sup
j∈N

#
{
i ∈ N : Ω

P,S
i

⋂
Ω

P,S
j �= ∅} ≤ 3. (46)

Lemma 3. For all α ∈ [0, 1), the functions

Pα(ω) = (1 + (1 − α)ω)
1

1−α − 1, Sα(ω) = (1 + (1 − α)ω)
α

1−α (47)

are position and size functions. Then, for each fixed constant b > 0, denote

Ωα
j = ((1 + (1 − α) · b · j)

1
1−α − 1

)+ [0, b · ((1 + (1 − α) · b · ( j + 1))
α

1−α
]
.

(48)

Hence Oα = {Ωα
j } j∈N is an admissible covering of R+.

Proof. Consider the functions

P̃(ω) = ω, S̃(ω) = ηα(ω) = (1 + ω)α. (49)

They are position and size functions only for α = 0. In order to generate some
position and size functions, it suffices to show that there exists a positive smooth
parameterizing function h(ω) such that

Pα(ω) = P̃(h(ω)), Sα(ω) = S̃(h(ω)) (50)

satisfy (45). This means that one has to solve the following differential equation:

P̃′(h(ω))h′(ω) = S̃(h(ω)). (51)

In our particular case one has to find h such that

h′(ω) = (1 + h(ω))α. (52)

The general solution of (52) is given by

hC(ω) = (C + (1 − α)ω)
1

1−α − 1. (53)

We should choose C such that Pα(0) = 0 and hence C = 1. One concludes by
using Lemma 2.

Remark 4. Observe that, for α = 0, O0 is a regular covering of positions b · j
and fixed size b. But for α → 1, Oα tends to an exponential covering O1, where
position and size are of the type ebj. In particular, for b = ln(2), O1 is a dyadic
covering of R+. Moreover, up to mirroring, Oα defines an admissible covering for
all R.
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Remark 5. We will say that a couple of functions (P̃,S̃) are an admissible parame-
terization of the frequency axis if there exists a smooth, increasing, and nonnegative
function h such that limx→∞ h(x) = ∞ and

P(ω) = P̃(h(ω)), S(ω) = S̃(h(ω))

are position and size functions. In particular, let us observe that, for α > 1, there
exists no h satisfying the requirements.

The following results, up to suitable modifications, will hold also for more gen-
eral admissible parameterizations of the frequency axis, and equivalent admissible
coverings are defined as in [18, Definition 3.3].

In [6,5,3] sufficient conditions to have Gabor or wavelet L2-frames are pre-
sented separately. In what follows we generalize those sufficient conditions (see
in particular [5, Theorem 5.1]) to check the frame upper bound (Bessel) condition
for a more general class of sequences in L2-Sobolev spaces [3] related to suitable
positions and size functions.

Lemma 4. For ω ∈ R and j ∈ Z, write ξω, j = (ω−P( j))
S( j) . If for some c > 0 and

s ∈ R+, a function g ∈ Hs(R) has the property that, for almost all ω ∈ R,

(B)
∑

j∈Z

∑

k∈Z

∣∣∣∣ĝ(ξω, j)ĝ

(
ξω, j − k

c

)∣∣∣∣

(
1 + |ω|2

1 + |P( j)|2
)s

≤ Bc < ∞; (54)

then the system
{
g j,k

P,S,c = (1 + |P( j)|2)− s
2 · MP( j) DS( j)−1 Tc·kg

}
j,k∈Z (55)

is a Bessel family for Hs with Bessel bound Bc/c.

Proof. We first assume that f ∈ S is band-limited. The general case follows later
by a standard density argument.

[Step 1] For a fixed j ∈ Z one has

∫ S( j)/c

0

∑

k∈Z

∣∣∣∣ f̂

(
ω − S( j)k

c

)
ĝ

(
ξω, j − k

c

)∣∣∣∣

(
1 +

∣∣∣∣ω − S( j)k

c

∣∣∣∣

2)s

dω

=
∫

R

∣∣ f̂ (ω)ĝ(ξω, j)
∣∣(1 + |ω|2)sdω

≤ ‖ f ‖Hs ·
(∫

R

∣∣ĝ(ξω, j)
∣∣2 (1 + |ω|2)sdω

)1/2

� S( j)(1 + S( j))s(1 + P( j))s · ‖ f ‖Hs · ‖g‖Hs .

Therefore, the periodic function

Fj(ω) =
∑

k∈Z
f̂

(
ω − S( j)k

c

)
ĝ

(
ξω, j − k

c

)(
1 +

∣∣∣∣ω − S( j)k

c

∣∣∣∣

2)s
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is in L1[0, S( j)/c], and one can show that it is also in L2[0, S( j)/c]. Moreover:

∫

R

f̂ (ω)ĝ(ξω, j)e
2πimS( j)−1cω · (1 + |ω|2)sdω =

∫ S( j)
c

0
Fj(ω)e2πimS( j)−1cωdω. (56)

By Fourier series, one has also

∑

m∈Z

∣
∣∣∣∣

∫ S( j)
c

0
Fj(ω)e2πimS( j)−1cωdω

∣
∣∣∣∣

2

= S( j)

c

∫ S( j)
c

0
|Fj(ω)|2dω. (57)

[Step 2]

∑

j,k∈Z

∣∣〈 f, g j,k
P,S,c

〉
Hs

∣∣2 =
∑

j,m∈Z
(1 + |P( j)|2)−s · ∣∣〈 f̂ , McmS( j)−1 TP( j)DS( j)ĝ〉L2

ws

∣∣2

=
∑

j,m∈Z
S( j)−1 · (1 + |P( j)|2)−s ·

∣∣∣∣

∫

R

f̂ (ω)ĝ(ξω, j)e2πimS( j)−1cω · (1 + |ω|2)sdω

∣∣∣∣

2

.

By (56) and (57) one has

∑

j,k∈Z

∣∣〈 f, g j,k
P,S,c

〉
Hs

∣∣2

=
∑

j∈Z
c−1 · (1 + |P( j)|2)−s ·

·
∫ S( j)

c

0

∣∣∣∣∣

∑

k∈Z
f̂

(
ω − S( j)k

c

)
ĝ

(
ξω, j − k

c

)(
1 +

∣∣∣∣ω − S( j)k

c

∣∣∣∣

2)s
∣∣∣∣∣

2

dω

≤ c−1
∑

j∈Z
(1 + |P( j)|2)−s ·

∫ S( j)
c

0

∑

l∈Z

∣∣∣∣ f̂

(
ω − S( j)l

c

)
ĝ

(
ξω, j − l

c

)∣∣∣∣×

×
(

1 +
∣∣∣∣ω − S( j)l

c

∣∣∣∣

2
)s∑

k∈Z

∣∣∣∣ f̂

(
ω − S( j)k

c

)
ĝ

(
ξω, j − k

c

)∣∣∣∣×

×
(

1 +
∣∣∣∣ω − S( j)k

c

∣∣∣∣

2
)s

dω

= c−1
∑

j∈Z
(1 + |P( j)|2)−s ·

∑

l∈Z

∫ S( j)
c

0

∣∣∣∣ f̂

(
ω − S( j)l

c

)
ĝ

(
ξω, j − l

c

)∣∣∣∣×

×
(

1+
∣∣∣∣ω− S( j)l

c

∣∣∣∣

2
)s∑

k∈Z

∣∣∣∣ f̂

(
ω− S( j)k

c

)
ĝ

(
ξω, j − k

c

)∣∣∣∣

(

1+
∣∣∣∣ω− S( j)k

c

∣∣∣∣

2
)s

dω

= c−1
∑

j∈Z
(1 + |P( j)|2)−s ·

∫

R

∣∣ f̂ (ω)ĝ(ξω, j)
∣∣(1 + |ω|2)s×
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×
∑

k∈Z

∣∣∣∣ f̂

(
ω − S( j)k

c

)
ĝ

(
ξω, j − k

c

)∣∣∣∣

(

1 +
∣∣∣∣ω − S( j)k

c

∣∣∣∣

2
)s

dω

= c−1
∫

R

| f̂ (ω)|2(1 + |ω|2)s
∑

j∈Z
(1 + |P( j)|2)−s · ∣∣ĝ(ξω, j)

∣∣2 (1 + |ω|2)sdω

+ c−1
∑

k �=0

∑

j∈Z
(1 + |P( j)|2)−s ·

∫

R

∣∣∣∣ f̂ (ω) f̂

(
ω − S( j)k

c

)∣∣∣∣(1 + |ω|2)s ×

×
∣∣∣∣ĝ(ξω, j)ĝ

(
ξω, j − k

c

)∣∣∣∣

(

1 +
∣∣∣∣ω − S( j)k

c

∣∣∣∣

2
)s

dω

= c−1
∫

R

| f̂ (ω)|2(1+|ω|2)s
∑

j∈Z
(1+|P( j)|2)−s · ∣∣ĝ(ξω, j)

∣∣2 (1+|ω|2)sdω + c−1 R.

We now estimate the second term R. Using Cauchy–Schwarz first on the integral
and then on the sum over k as in the proof of [5, Theorem 5.1], we obtain

R ≤
∫

R

| f̂ (ω)|2(1 + |ω|2)s
∑

k �=0

∑

j∈Z
(1 + |P( j)|2)−s ·

∣∣∣∣ĝ(ξω, j)ĝ

(
ξω, j − k

c

)∣∣∣∣×

× (1 + |ω|2)sdω.

Hence, using property (B) one finally has
∑

j,kZ

∣∣〈 f, g j,k
P,S,c

〉
Hs

∣∣2 ≤ Bc

c
· ‖ f ‖Hs . (58)

This concludes the proof.

On the basis of the previous lemma we give the following definition.

Definition 7. Let Pα( j) = sgn( j)
(
(1 + (1 − α) · b · | j|) 1

1−α − 1
)

and Sα( j) =
b · (1 + (1 − α) · b · (| j| + 1))

α
1−α , where α ∈ [0, 1), and s ∈ R+. A function

g ∈ Hs(R) is called α-admissible with respect to (Pα, Sα) if

(AD1) g ∈ L1 and ĝ �= 0 on Ω = [−1, 1] or g is band-limited, ĝ ∈ L∞ and ĝ �= 0
on spec(g), Ω ⊂ spec(g);

(AD2) g satisfies condition (B) of Lemma 4 for all a ∈ (0, 1]:

σα
g,a(ω) =

∑

j∈Z

∑

k∈Z

∣∣∣∣ĝ
(

ω − Pα( j)

Sα( j)

)
ĝ

(
ω − Pα( j)

Sα( j)
− k

a

)∣∣∣∣

(
1 + |ω|2

1 + |Pα( j)|2
)s

≤ Bg,a < ∞, (59)

for a.e. ω ∈ R;
(AD3) for all ρ, a > 0 and all gρ band-limited approximations of g, i.e., gρ =

g∗γρ, where γ ∈ S is a band-limited function, with γ̂ ≡ 1 on Ω and γρ(t) =
ρdγ(ρ · t), there exist Bgρ,a > 0 and Bg−gρ,a > 0 such that σα

gρ,a(ω) ≤
Bgρ,a < ∞ and σα

g−gρ,a(ω) ≤ Bg−gρ,a < ∞ for a.e. ω ∈ R;

(AD4) If a = a(ρ) = c−1
0 ρ−1, then a−1 · Bg−gρ,a → 0, for ρ → +∞.
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Lemma 5. For s ≥ 0 and α ∈ [0, 1), write (s; α) = 2s
1−α

. Then every function

g ∈ Hs(R) ∩ L1(R) such that |̂g| � ht , with ht(ω) = (1 + |ω|2)− t
2 , t ≥ 2 + (s; α),

and ĝ(ω) �= 0 on Ω, is α-admissible with respect to (Pα, Sα).

Proof. Assume for simplicity b = 1. By assumption ĝ(ω) �= 0 for ω ∈ Ω (AD1).
Let ξω, j = ω−Pα( j)

Sα( j) and, since |̂g| � ht and ht is a symmetric decreasing function,
one has

∑

k∈Z

∣∣∣∣̂g
(

ξω, j − k

a

)∣∣∣∣ ≤ K‖ht‖1 := bg,a < ∞, (60)

where K is uniform with respect to a ∈ (0, 1].
Hence, one also has

σα
g,a(ω) ≤ bg,a ·

∑

j∈Z
|̂g(ξω, j)|

(
1 + |ω|2

1 + |Pα( j)|2
)s

. (61)

By standard analysis and calculations one can check that |̂g(ξω, j)| �
ht((|ω| + 1)1−α − 1 − sgn( j)(1 − α) j). This implies that

sup
ω∈R

σα
g,a(ω) ≤ K1bg,a · sup

ω∈R

∑

j∈Z
ht
(
(|ω| + 1)1−α − 1 − sgn( j)(1 − α) j

)×

×
(

1 + |ω|2
1 + |Pα( j)|2

)s

= K1 · bg,a · sup
ξ∈R

∑

j∈Z
ht (|ξ| − sgn( j)(1 − α) j)

(
1 + |Pα(

ξ

1−α
)|2

1 + |Pα( j)|2
)s

≤ K2 · bg,a · sup
ξ∈R

∑

j∈Z
ht (ξ − (1 − α) j)

(
1 + |Pα(

ξ

1−α
)|2

1 + |Pα( j)|2
)s

(∗).

Observe that ht ∈ W(C0, l1
(s;α)); hence

∑
j∈Z(1+|Pα( j)|2)−sδ(1−α) j ∈ W(M, l∞(s;α))

and
∑

j∈Z

ht (ξ − (1 − α) j)

(1 + |Pα( j)|2)s
=
⎛

⎝
∑

j∈Z
(1 + |Pα( j)|2)−sδ(1−α) j

⎞

⎠ ∗ ht .

Applying standard results concerning the behavior of Wiener amalgams under
convolution and pointwise multiplication [15,16,40] may recall

W
(
M, l∞(s;α)

) ∗ W
(
C0, l1

(s;α)

) ⊂ W
(
C0, l∞(s;α)

)

and
W
(
C0, l∞−(s;α)

) · W
(
C0, l∞(s;α)

) ⊂ W(C0, l∞).

In particular, (1 + |Pα(
ξ

1−α
)|2)s ∈ W(C0, l∞−(s;α)), which implies (AD2):

(∗) ≤ K2bg,a · ‖ht‖W(C0,l1
(s;α)

) = K3 · ‖ht‖1 · ‖ht‖W(C0,l1
(s;α)

) := Bg,a. (62)
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In the same way, one shows that, for gρ, and denoting gρ := g − gρ

sup
ω∈R

σα
gρ,a(ω) ≤ O

(
‖(ht)ρ‖1 · ‖(ht)ρ‖W(C0,l1

(s;α)
)

)
:= Bgρ,a

sup
ω∈R

σα
gρ,a(ω) ≤ O

(
‖hρ

t ‖1 · ‖hρ
t ‖W(C0,l1

(s;α)
)

)
:= Bgρ,a (63)

i.e., (AD3) is valid. Moreover, for a = a(ρ) = c−1
0 ρ−1, one achieves (AD4) as

follows:

a−1 · Bgρ,a = O
(
ρ · ‖hρ

t ‖1 · ‖hρ
t ‖W(C0,l1

(s;α)
)

)
= O(ρ−1) → 0 for ρ → ∞.

Remark 6. If ĝ ∈ W(C0, l∞t ), then |̂g(ω)| � ht(ω). Moreover, F
(
W(F L2

t , l1)
) ⊂

W(F L1, l2
t ) ⊂ W(F L1, l∞t ) ∩ L2

t . Hence, if t ≥ 2 + (s; α), g ∈ W(F L2
t , l1) and

ĝ(ω) �= 0 on Ω, then g is α-admissible with respect to (Pα, Sα).

Remark 7. Assume t ≥ 2 + (s; α), g ∈ W(F L2
t , l1), and ĝ(ω) �= 0 on Ω. Then

g is α-admissible with respect to (P′
α, S′

α) (in the sense that (AD1–4) are valid
substituting (P′

α, S′
α) for (Pα, Sα)) whenever P′

α � Pα and S′
α � Sα. In fact,

following the proof of the previous lemma, it will be sufficient to check that

ht(
ω−Pα( j)

Sα( j) ) � ht(
ω−P′

α( j)
S′
α( j) ) uniformly with respect to w and j . Hence, in this case,

we will say that “g is α-admissible” instead of “g is α-admissible with respect to
(Pα, Sα).”

Example 1. By the previous remark it is not hard to show that all g ∈ S(R) such
that ĝ(ω) �= 0 on Ω are α-admissible for any α ∈ [0, 1) and s ≥ 0. Obviously the
Gaussian function g(x) = e−πx2

is an ideal candidate for an α-admissible function
for all s ≥ 0 and α ∈ [0, 1).

6. Proof of Theorem 1

Denote Ω0 = [0, 1]. Let V0 = Hs
Ω0

be the closed subspace of Hs(R) of the band-
limited functions f such that spec( f ) ⊆ Ω0 and b > 0 are a fixed positive constant.
Assume, for example, for j ≥ 0 (for j < 0 is analogous, up to mirroring),

Dα
j = MPα( j)DSα( j)−1, W j = Dα

j (V0) = Hs
Ωα

j
.

Since Oα is an admissible covering of the frequency domain, by application of the
Fourier transform identification of Hs with L2

s , one easily has that (V0, {Dα
j } j∈Z)

is a decomposition of Hs in the sense of [29, Definition 2]. Moreover, for any
BAPU {ϕα

j } j∈Z ⊂ S associated to Oα, one can consider the system of bounded
quasiprojectors P α = {P α

j } j∈Z, in the sense of [29, Definition 4], P α
j mapping Hs

intoW j , given by

P α
j ( f ) = f ∗ F −1ϕα

j , for all f ∈ Hs. (64)
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In fact, 〈P j f, g〉 = 〈ϕα
j · f̂ , ĝ〉 = 〈 f̂ , ϕα

j · ĝ〉 = 〈 f,P j g〉. Hence P α
j = (P α

j )∗.

f̂ = 1 · f̂ = (
∑

j ϕ
α
j ) f̂ =∑ j F (P j f ) implies

∑
j P j = I .

∑

j

∥∥P α
j f
∥∥2 =

∑

j

∫

R

ϕα
j (ω)2| f̂ (ω)|2(1 + |ω|)sdω =

=
∑

j

∫

R

ϕα
j (ω)2 D̂α

j χΩ0(ω)| f̂ (ω)|2(1 + |ω|)sdω ≤

≤
∫

R

K(ω) · | f̂ (ω)|2(1 + |ω|)sdω ≤
(

max
ω∈R K(ω)

)
‖ f ‖2

Hs , (65)

where D̂α
j = T

sgn( j)((1+(1−α)·b·| j|)
1

1−α −1)
D

b·(1+(1−α)·b·(| j|+1))
α

1−α
= F Dα

j and

K(ω) =∑ j D̂α
j χΩ0(ω).

Finally, FP α
j (πW j ( f )) = ϕα

j · D̂α
j χΩ0 · f̂ = ϕα

j · f̂ = FP α
j ( f ). By (AD1) and

Proposition 1 (or Theorem 4), one has that, for all ρ > 1 and 0 < a = a(ρ) =
c−1

0 ρ−1 small enough, {ψ0
k = Takgρ}k∈Z is a local family of atoms for V0, where gρ

is a band-limited approximation of g in the sense of Definition 7 (AD3). Observe
now that the assumptions on Dα

j of [29, Theorem 1] hold if one takes as lower

constant α j = 1
2s minω∈Ωα

j
(1+|ω|2)s and upper constant β j = maxω∈Ωα

j
(1+|ω|2)s.

In fact, for all f ∈ V0

∥∥Dα
j ( f )

∥∥2
Hs =

∫

Ωα
j

∣∣D̂α
j ( f )(ω)

∣∣2(1 + |ω|2)sdω

≤
(

max
ξ∈Ωα

j

(1 + |ξ|2)s
)

·
∫

Ωα
j

∣∣D̂α
j ( f )(ω)

∣∣2dω

=
(

max
ξ∈Ωα

j

(1 + |ξ|2)s
) ∫

Ω0

| f̂ (ω)|2dω

≤
(

max
ω∈Ωα

j

(1 + |ω|2)s
)

· ‖ f ‖2
Hs .

In the same way:

1

2s
·
(

min
ξ∈Ωα

j

(1 + |ξ|2)s
) ∫

Ω0

| f̂ (ω)|2(1 + |ω|2)sdω

≤
(

min
ξ∈Ωα

j

(1 + |ξ|2)s
) ∫

Ω0

| f̂ (ω)|2dω

≤
∫

Ωα
j

∣∣D̂α
j ( f )(ω)

∣∣2(1 + |ω|2)s

= ∥∥Dα
j ( f )

∥∥2
Hs .

Moreover, making use of the fact that

max
ω∈Ωα

j

(1 + |ω|2)s � min
ω∈Ωα

j

(1 + |ω|2)s � (1 + (1 − α)b · | j|) 2s
1−α ,
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one achieves by application of [29, Theorem 1] that for all f ∈ Hs

f =
∑

j∈Z

∑

k∈Z
c j,k
α,a,b,ρ( f )(gρ)

j,k
α,a,b, (66)

‖ f ‖2
Hs �

∑

k, j

∣∣c j,k
α,a,b,ρ( f )

∣∣2 (1 + (1 − α) · b · | j|) 2s
1−α . (67)

Due to condition (AD2), consider the well-defined linear bounded operator

Sρ f =
∑

j∈Z

∑

k∈Z
c j,k
α,a,b,ρ( f )g j,k

α,a,b. (68)

By Lemma 4 and (AD3)

‖(I − Sρ) f ‖2
Hs = ∥∥

∑

k∈Z
c j,k
α,a,b,ρ( f )(gρ)

j,k
α,a,b

∥∥2
Hs

≤ a−1 · Bgρ,a ·
∑

k, j

∣∣c j,k
α,a,b,ρ( f )

∣∣2 (1 + (1 − α) · b · | j|) 2s
1−α

≤ a−1 · Bgρ,a · C · ‖ f ‖2
Hs .

By the proof of [29, Theorem 1] and of Proposition 1 and by Remark 2, constant
C can be chosen uniformly with respect to ρ (perhaps at the cost of increasing the
density of the translation sampling points). Moreover, by (AD4) a−1 · Bgρ,a → 0,
and therefore one has

‖|I − Sρ|‖Hs→Hs ≤ η < 1, for ρ > ρ0 > 0. (69)

Hence Sρ is invertible by using the Neumann series expansion S−1
ρ = ∑∞

n=0(I −
Sρ)

n , and

f = SρS−1
ρ f =

∑

k∈Z
c j,k
α,a,b,ρ

(
S−1

ρ f
)
g j,k

α,a,b. (70)

Furthermore, ‖|S−1
ρ |‖Hs→Hs ≤ 1

1−η
, and one has

∑

k, j

∣∣c j,k
α,a,b,ρ

(
S−1

ρ f
)∣∣2 (1 + (1 − α) · b · | j|) 2s

1−α � ‖ f ‖2
Hs . (71)

This concludes the proof.

Remark 8. Theorem 1 holds for α → 1 (and for exponential coverings), but, in this
case, one should modify the admissibility condition, which becomes a pure wavelet-
type condition, and the proof also should be adapted. Since Theorem 4 works for
irregular nodes {yk}k∈Z and Theorem 1 does not depend on the particular choice
of equivalent covering Oα, up to suitable modifications of (56–57), Theorem 1
can be extended to irregular (Gabor and wavelet) cases where the frame is of
the type {MP′

α( j)Tyk S′
α( j)−1 DS′

α( j)−1 g} j,k∈Z [32]. In fact, the α-admissibility does not
depend on (small) perturbations of Pα( j) and Sα( j) in the sense of Remark 7,
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nor does Theorem 1 depend on the particular choice of equivalent position and
size functions. The multidimensional case can be treated in an analogous way by
suitable geometrical decomposition into coronas of the frequency space centered
in Pα( j) and with width Sα( j) or by suitable stretching of multidimensional regular
coverings by means of the function Pα(ω), see for example [18,13,35,47,46,34].

6.1. Computing and approximating duals

If g ∈ Hs is an α-admissible band-limited function, then {Tyk g}k∈Z is a local family
of atoms for V0 for any sufficiently small δ > 0, and one considers {ψ̃0

k }k∈Z as
its (local) dual. Then, by [29, Theorem 1] (see also [30]), for any BAPU {ϕα

j } j∈Z
associated to Oα and for all f ∈ Hs

f =
∑

j,k∈Z

〈
f,
(((

Dα
j

)−1)∗
ψ̃0

k

) ∗ F −1ϕα
j

〉
L2 Dα

j Tyk g. (72)

Hence, calculating the local dual, perhaps using the [LDA]-algorithm (Remark 3),
one can completely analyze and recover any Hs function by means of flexible
Gabor-wavelet frames (for all α ∈ [0, 1)!). One example of a band-limited analyz-
ing function g is given by

ĝ(x) =
{

e
1

1−| x
1+ε

|2
, |x| < 1 + ε

0, otherwise
, (73)

which is an α-admissible function (Fig. 1) for every choice of α ∈ [0, 1).

Fig. 1. Real and imaginary part of a band-limited analyzing function

Moreover, a dual frame for {g j,k
α,a,b} j,k∈Z can be provided by

g̃ j,k
α,a,b = (Dα

j ψ̃
0
k

) ∗ F −1ϕα
j . (74)

Hence (74) expresses a dual in a quasicoherent form (with respect to the same family
of operators {Dα

j } j∈Z). If there exists Φ0 such that Sα( j)−1/2 · Dα
j Φ0 = F −1ϕα

j ,
then the dual frame is coherent with respect to the local construction (V0, {Dα

j } j)

and can be written as

g̃ j,k
α,a,b = Dα

j ψ̃
∗
k , (75)
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where ψ̃∗
k = ψ̃0

k ∗Φ0. Moreover, in the regular case (Proposition 1), for all f ∈ Hs,
one has, in the sense of an unconditional convergent expansion,

f =
∑

j,k∈Z
〈 f, Dα

j Tδ·kψ̃∗
0 〉Dα

j Tδ·kg. (76)

When α = 0 or α = 1, there exist always coherent BAPUs (regular and eb-adic
resp.) such that Sα( j)−1/2 · Dα

j Φ0 = F −1ϕα
j , but, in general, one cannot expect

that this will be true for arbitrary α ∈ (0, 1) because no group structure is available
anymore.

If the function g is not band-limited, one can consider for ρ large enough the
dual given by

g̃ j,k
α,a,b,ρ = (S−1

ρ

)∗ ((
Dα

j ψ̃
0
k

) ∗ F −1ϕα
j

)
, (77)

where ψ̃0
k is a dual of the local family of atoms generated by a band-limited

approximation gρ of g and Sρ is the operator defined in (68). Since

(
S−1

ρ

)∗ =
∞∑

n=0

(
I − S∗

ρ

)n
, (78)

one has that
∥∥∣∣I − (S−1

ρ

)∗∥∥∣∣
Hs→Hs ≤ η

1 − η
, (79)

where η is as in (69). Moreover, because of Definition 4(i),
∥∥(g̃ρ)

j,k
α,a,b − g̃ j,k

α,a,b,ρ

∥∥
Hs = ∥∥(I − (S−1

ρ

)∗) ((
Dα

j ψ̃
0
k

) ∗ F −1ϕα
j

) ∥∥
Hs

≤ η

1 − η

∥∥(Dα
j ψ̃

0
k

) ∗ F −1ϕα
j

∥∥
Hs

≤ η

1 − η

∥∥ϕα
j

∥∥
FL1

s

∥∥Dα
j ψ̃

0
k

∥∥
Hs

≤ C0η

1 − η
(1 + (1 − α)b · | j|) s

1−α

∥∥ψ̃0
k

∥∥
Hs . (80)

Hence, up to choosing η > 0 small enough and, as a consequence, ρ large enough,
a dual for the L2-frame (i.e., for s=0) {g j,k

α,a,b} j,k can be approximated by a dual of
the type (74) of a band-limited approximation gρ of g.

Corollary 1. Under the assumptions of Theorem 1 and using the notations of its
proof, for f ∈ L2 the following conditions are equivalent:

(i) f ∈ Hs;

(ii)
∑

j,k |〈 f,
(
(Dα

j ψ̃
0
k ) ∗ F −1ϕα

j

)〉L2 |2 (1 + (1 − α) · b · | j|) 2s
1−α < ∞;

(iii)
∑

j,k |〈 f,
(
(S−1

ρ )∗(Dα
j ψ̃

0
k ) ∗ F −1ϕα

j

)〉L2 |2 (1 + (1 − α) · b · | j|) 2s
1−α < ∞.
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Fig. 2. α-modulation spaces

6.2. L2-Sobolev spaces as α-modulation spaces

Theorem 3 by Holschneider and Nazaret [42] completes the analysis of the charac-
terization of Hs by means of the (continuous) flexible Gabor-wavelet transform Vα

g ,
and it represents the continuous version of Theorem 1. In particular, condition (22)
corresponds to condition (AD2) and the reconstruction formula (24) to formulas
(7–8).

Fractional L2-Sobolev spaces are just particular instances of a more general
class of spaces.

Definition 8. Related to the covering Oα one can fix an Oα-BAPU {ϕα
j } j∈Z in

S(R), and, for 1 ≤ p, q < ∞, s ∈ R and α ∈ [0, 1) (α = 1 as limit case), one can
define the spaces

Ms,α
p,q(R) =

⎧
⎪⎨

⎪⎩
f ∈ S′ :

⎛

⎝
∑

j∈Z

∥∥P α
j f
∥∥q

p (1 + (1 − α)b · | j|) s·q
1−α

⎞

⎠

1/q

< ∞

⎫
⎪⎬

⎪⎭
, (81)

where P α
j is defined as in (64). Endowed with the norm

∥∥ f
∣∣Ms,α

p,q

∥∥ :=
⎛

⎝
∑

j∈Z

∥∥P α
j f
∥∥q

p (1 + (1 − α)b · | j|) s·q
1−α

⎞

⎠

1/q

, (82)

they are Banach spaces. The usual modifications apply for p · q = ∞.
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One can prove that Ms,α
p,q(R) does not depend on the particular value of b > 0,

nor on the particular Oα-BAPU chosen. These spaces, introduced by Gröbner and
Feichtinger in [18,13,35], are called α-modulation spaces, and they appear to be
the right spaces in which to study flexible Gabor-wavelet analysis as generalized
coorbit spaces related to the Stone–Von Neumann representation (19) (restricted
on a suitable homogeneous space, see [1,43,44,8]) as it has been discussed in [31,
Chapter 5] and is detailed in the later paper [32]. In particular, note that

Ms,α
2,2 = Hs, for all s ∈ R and α ∈ [0, 1]. (83)

Hence L2-Sobolev spaces are α-modulation spaces for any exponent s ∈ R and
any α ∈ [0, 1]. Moreover, for α = 0, these spaces are just modulation spaces Ms

p,q
[17,36] (Gabor analysis) and for α → 1 are just Besov–Triebel spaces Bs

p,q [47,
46,34] (wavelet analysis).

7. Conclusion

Theorem 1 can be seen as a unified approach to Gabor and wavelet frames and
introduces new classes of intermediate frames. It gives unified sufficient conditions
for the existence of such frames, which are satisfied by a quite large class of inter-
esting functions. The construction improves the flexibility in the possible choice
of coefficients for the decompositions obtained by duals that depend essentially on
the choice of suitable BAPUs. The duals built in this way are typically nice smooth
functions that are well localized in time and in frequency and show a “quasicoher-
ent” behavior. The calculation of this kind of dual is also possible in the “irregular
case” and can be done iteratively by means of the proposed algorithm.

Acknowledgement. The authors want to thank Karlheinz Gröchenig for his fundamental and
deep hints and Norbert Kaiblinger for the fruitful discussions during the preparation of this
work.
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