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Abstract 

Basic principles and recent findings of quasi-isotropic approximation (QIA) of a geometrical optics method are presented in a 
compact manner. QIA was developed in 1969 to describe electromagnetic waves in weakly anisotropic media. QIA represents the 
wave field as a power series in two small parameters, one of which is a traditional geometrical optics parameter, equal to 
wavelength ratio to plasma characteristic scale, and the other one is the largest component of anisotropy tensor. As a result, ,, 
,,QIA ideally suits to tokamak polarimetry/interferometry systems in submillimeter range, where plasma manifests properties of 
weakly anisotropic medium. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the ENEA Fusion Technical Unit.  

Keywords: Plasma; Polarimetry 

1. Introduction 

Quasi-isotropic approximation (QIA) of the geometrical optics method was developed in 1969 for the 
description of electromagnetic waves in weakly anisotropic media, and particularly in weakly anisotropic plasma 
[1]. The fact is that in submillimeter and IR bands of electromagnetic spectrum tokamak plasma manifest properties 
of weakly anisotropic medium in a wide range of magnetic fields and electron densities [2]. That is why QIA may 
serve as an ideal instrument of the wave theory, uniformly describing both polarimetric and interferometric 
components of tokamak diagnostics systems. 

This paper presents in Sect. 2 the basic equations of QIA, related to amplitude and phase of an 
electromagnetic wave and to the ray configuration in plasma. Sect. 3 outlines QIA results related to refraction, 
absorption and diffraction of electromagnetic waves. Finally Sect. 3 summarizes the main features of QIA concept 
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related to tokamak plasma polarimetry. 

2. Basic equations of QIA 

2.1. Small parameters of QIA and power series for the wave field 

QIA appeared as a modification of the geometrical optics method for weakly anisotropic media. Traditional 
geometric optics [3-6] represents the wave field as a power series in geometrical optics small parameter LGO λμ = , 
which is the ratio of a wavelength kπλ 2=  ( k  is a wave number) to the characteristics scale of an inhomogeneous 

medium L . Besides GOμ , QIA also uses the second small parameter 0max ενμ ikA = , where ν̂  is an anisotropic 
part of dielectric tensor:  
 νδεε ˆˆˆ 0 +=  (2.1) 

δ  is a unit tensor and δε ˆ
0  is a permittivity tensor of the isotropic background of weakly anisotropic medium. Thus, 

the anisotropic small parameter Aμ  characterizes the degree of anisotropy of a studied medium. Within QIA the two 
small parameters GOμ  and Aμ  are united into a joint small parameter 

 ( )AGO μμμ ,max=  (2.2) 

The amplitude E  of the wave field 
 [ ]ϕikexpEε =  (2.3) 

is presented by a power series in parameter μ :  
 ...2

2
10 +++= EEEE μμ  (2.4) 

Substituting power expansion (2.4) into Maxwell equations and equalling the terms of the power mμ  in the left- and 
right-hand parts of Maxwell equations, we arrive at the equations of subsequent approximations for successive 
approximations ,...,, 210 EEE  

2.2. Eikonal and ray equations, polarization independent phase and transverse nature of the wave field 

A linear system of equations for components of the zeroth order field 0E  will be consistent if the eikonal 
equation for isotropic plasma is satisfied:  

 ( ) 0
2 εϕ =∇  (2.5) 

It means that the phase ϕkS =  of the zeroth order field 0E  does not depend on the anisotropic part ν̂  of the 
permittivity tensor ε̂ , that is the zeroth order field 0E  is identical to that in isotropic medium. As a result, phase S  
of the zeroth order field as well that of total field (2.3) happens to be polarization independent. This property seems 
to be quite important for plasma interferometry. 
The ray pattern corresponding to the isotropic eikonal equation (2.5), also obeys isotropic ray equations [4-6]:  

 
02

1
2

2

d
d

ε
τ

∇=
r

  
(2.6) 

where the increment τd  of the parameter τ  is connected with the elementary arc length σd  by relation 

0dd εστ = . Correspondingly, the eikonal ϕ  is presented by the integral 
 ∫∫ == σετεϕ dd 00  

(2.7) 

along the ray. 
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2.3. Coupled QIA equations for the wave amplitude and energy conservation law 

QIA equations for energy flow and polarization state evolution stem from consistence conditions for the 
first order field equations. It is convenient to present zero order amplitude in the form: 

( )bnAA bn ΓΓΓE +==0  (2.8) 

where Γ  is a unit vector: 1=Γ  and A is the amplitude of the electric field. Differential equations of a complex 
vector Γ  evolution in weakly anisotropic media were written down first in a pioneer paper [1] and then reproduced 
in a review paper [7], in the book [8], on electrodynamics of waves in weakly anisotropic media, as well as in short 
sections on QIA approach in the books [4-6] and in successive publications [9-11]. Here we make use of consistency 
conditions, presented in the form [7-10]  
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(2.9) 

where κ  is a ray torsion. In a cold plasma without dissipation, equations (2.9) could be written in the form  
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(2.10) 

Here 3,2,1Ω  are the components of the vector Ω  introduced in [12] and widely used in plasma polarimetry [13]. ⊥Ω  

with 0Ω  are auxiliary parameters: ||
2

0||
2
2

2
1 sin αΩ=Ω+Ω=Ω⊥ , where ||α  is the angle between the ray propagation 

direction and the magnetic field vector. The parameters 1Ω  and 2Ω , quadraticly related to the magnetic field 0B , 
characterize the Cotton-Mouton effect, and 3Ω , linearly related to the magnetic field 0B , corresponds to the Faraday 
phenomenon. Starting from Eqs. (2.10) evolution equations for other variables representing polarization state of e-m 
beam were obtained in the following publications: Stokes vector [14], angular variables sets ( )χψ ,  [15] or ( )δα,  
[16], complex polarization angle (CPA) [15] or complex amplitude ratio (CAR) [16]. Using the proper form of a 
permittivity tensor ε  it is also possible to rewrite Eqs. (2.9) for any weakly anisotropic and weakly inhomogeneous 
medium (e.g. medium where dissipation [14] or relativistic effects play an important role [17]).  
 It follows from (2.8) and (2.9) that a squared modulus of amplitude (2.8) satisfies energy flux conservation 
law in the from 

( ) 02
0 =⋅∇ pA  (2.11) 

where p  is the ray “momentum”. Equation (2.11) can be presented also as energy conservation in the narrow ray 
tube of cross section ad  [4-6]: 

0d2 =aA  (2.12) 

3. Other aspects of QIA 

3.1. Account for diffraction 

The ability of the geometrical optics method to describe diffraction phenomena for the Gaussian beam was 
revealed in the paper [18] on complex geometrical optics (CGO). A modern form of CGO for Gaussian beams, 
developed in [19,20], deals with a complex eikonal along the central ray of the Gaussian beam  

2
2
1 ρσϕ Bc +=  (3.1) 
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where ρ  is a distance between the observational point and the central ray, and B  is a complex curvature of the 
Gaussian beam: the real part of B characterizes the curvature of the phase front, whereas the imaginary part 
describes the beam width. The complex parameter obeys a nonlinear equation of Riccati type:  
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where the parameter α  for an axially symmetric medium is given by 
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A solution of Eq. (3.2) determines the evolution of the beam width and phase front curvature along the ray. 
 Advantages of CGO approach can be united with AVT equations for angular parameters evolution. The 
idea of such a “marriage” was suggested and put forward in the paper [21]. Thus, a combination of QIA and CGO 
enables the description of both polarization and “diffraction” states along the ray. 
 It is worth noticing that a diffraction of the Gaussian beam does not affect the polarization state, because all 
the components of the electrical vector change proportionally to the common amplitude, with amplitude ratios 
remaining unchanged. 

4. Conclusions 

 The paper deals with the basic principles of the quasi-isotropic approximation of geometrical optics, which 
describes the propagation of electromagnetic waves in weakly anisotropic plasma. In the submillimeter range of an 
electromagnetic spectrum, where tokamak plasma manifests properties of weakly anisotropic medium, QIA provides 
all essential information on the ray structure, amplitude and phase behaviour as well as on polarization evolution in 
polarimetry/interferometry systems of modern tokamaks. Using a proper form of the permittivity tensor, the 
presented method can be easily applied to any other weakly anisotropic medium, e.g. dissipative, relativistic plasma. 
Finally, a simple combination of QIA and complex geometrical optics is suggested which enables to account of 
diffraction effects for electromagnetic beams of Gaussian profile. 
 Thus QIA serves as an adequate electrodynamical basis for tokamak polarimetry/interferometry systems, 
which play an important role in plasma diagnostics. 
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