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Abstract This paper explores the possibility of using an asymptotic state ob-
server for the real-time reconstruction of insulin blood concentration in
an individual by using only measurements of the glucose blood concen-
tration. The interest in this topic relies on the fact that the glucose
measurements are much more economical and faster then the insulin
measurements. An algorithm providing reliable insulin concentrations
in real-time is essential for the realization of an “artificial pancreas”, an
automatic device aimed to infuse the required amount of insulin into
the circulatory system of a diabetic patient. An important issue for a
good observer design is the determination of satisfactory models of the
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glucose-insulin homeostasis. Different models have been considered and
discussed in this paper. For all models presented an asymptotic state
observer has been constructed and numerical simulations have been suc-
cessfully carried out.
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Introduction
It is well-known that glucose and insulin blood concentrations are two

extremely important variables in a diabetic individual. Unfortunately,
only glucose blood concentration can be easily monitored in real-time,
while the measurement of the insulin concentration is expensive and not
immediate. In many control applications, when not all the variables of
a system can be directly measured, an “asymptotic state observer” is
used, which is an algorithm that processes the available measurements
and provides estimates of all the system variables, with an error that
asymptotically converges to zero. This fact suggests the use of a state
observer for the reconstruction of the insulin blood concentration us-
ing only glucose concentration data. This paper investigates the use
of the observers presented in [13] and [6], that under some conditions
guarantee exponential decay of the estimation error. The design of a
good observer requires the knowledge of a good model of the system
under investigation. The problem of developing satisfactory models of
the glucose-insulin homeostasis has been widely investigated by many
authors in the last two decades (see [7], [16], [10], [9], [2], [5], [11], [15],
[4]). At today the most used model in physiological research on glucose
metabolism is the so called Minimal Model [2], originally proposed for
the interpretation of the glucose and insulin plasma concentrations fol-
lowing the intra-venous glucose tolerance test (IVGTT). In the Minimal
Model two dynamic subsystems can be singled out. The parameters
of each subsystem can be evaluated using glucose and insulin data in
a separate identification procedures. In [7] the authors showed that in
some situations the coupling of the two subsystems does not admit an
equilibrium and the concentration of active insulin in the “distant” com-
partment increases without bounds. For this reason, in this paper two
modifications of the Minimal Model are considered. For each model an
asymptotic state observer is computed and verified through numerical
simulations.
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1. Asymptotic State Observers
Consider a dynamic system described, for t ≥ 0, by nonlinear differ-

ential equations of the form

ẋ(t) = f
(
x(t)

)
+ g

(
x(t)

)
u(t), (1)

y(t) = h
(
x(t)

)
, (2)

where x(t) ∈ X ⊆ Rn is the system state, u(t) ∈ U ⊆ R is the input
function and y(t) ∈ R is the output. f(x) and g(x) are Ck(X ) vector
fields, with k an integer allowing all differentiations needed.

In most applications the input u(t) and the output y(t) of the sys-
tem are the only quantities available through measurements, while the
system state x(t) remains unaccessible. An important issue in systems
and control theory is the problem of state reconstruction through on line
processing of the measured input and output signals. An algorithm that
asymptotically reconstructs the state is called an asymptotic state ob-
server , and is usually described by differential equations. The existence
of an asymptotic observer depends on the observability properties of the
system. A system is said drift-observable if it is such that, when the
input is identically zero, different states produce different outputs (see
[6]). Such property depends only on the pair

(
f(x), h(x)

)
, and claims

the theoretical possibility of the state reconstruction from the measured
output data, when u(t) ≡ 0. A system is said uniformly observable
when different states produce different outputs, for any input function
u(t) (see [12]). This is a rather strong property for nonlinear systems,
and depends on the triple

(
f(x), g(x), h(x)

)
. A weaker property is the

almost-uniform observability, that characterizes systems such that dif-
ferent states produce different outputs, for any constant input (see [13]).
The study of the drift-observability and of the almost-uniform observ-
ability of nonlinear systems is made through the construction of suitable
vector functions that map the system state at a given time t into the
output and its derivatives at the same time t.

The following two square maps can be defined for system (1)–(2)

Φ(x) def=




h(x)
Lfh(x)

...
Ln−1

f h(x)


 , Ψ(x, u) def=




h(x)
Lf+guh(x)

...
Ln−1

f+guh(x)


 , (3)

where Lk
fh(x) denotes the k-th order repeated Lie derivative of the func-

tion h(x) along the field f(x), and in the same way, Lk
f+guh(x) denotes
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repeated Lie derivative of h(x) along f(x) + g(x)u, with u constant pa-
rameter. Formally

L0
fh(x) = h(x), L0

f+guh(x) = h(x),

Lk+1
f h(x) =

∂Lk
fh

∂x
f(x), Lk+1

f+guh(x) =
∂Lk

f+guh

∂x

(
f(x) + g(x)u

)
,

(4)
Recall that the observation relative degree of a triple

(
f(x), g(x), h(x)

)
in a set Ω ⊆ Rn is an integer r ≤ n such that

∀x ∈ Ω, LgL
k
fh(x) ≡ 0, k = 0, 1, . . . , r − 2,

∃x ∈ Ω : LgL
r−1
f h(x) 6= 0.

(5)

The observation relative degree is said full or maximal if it is equal to
n. Quite obviously, when u = 0 the two maps (3) coincide, so that
Φ(x) = Ψ(x, 0). Moreover, it is not difficult to show that if the relative
degree is maximal it follows that Ψ(x, u) = Φ(x). Let z(t) be the vector
made of the output and its derivatives up to order n− 1, i.e.

z(t) =




y(t)
ẏ(t)

...
y(n−1)(t)


 . (6)

It can be easily checked that when u(t) ≡ 0 or the relative degree is
maximal it is z(t) = Φ(x(t)), while if u(t) ≡ ū it is z(t) = Ψ(x(t), ū).
The map Φ(x) is named drift-observability map. The drift-observability
property in an open set Ω ⊆ Rn implies that in Ω there exists the inverse
map x = Φ−1(z). This means that when u(t) ≡ 0 or when the relative
degree is full the state can be reconstructed from the knowledge of the
output, at least from a theoretical point of view. In the same way,
the uniform-observability in Ω × U implies the existence of the inverse
x = Ψ−1(z, ū), forall x ∈ Ω and ū ∈ U . This means that the state can
be reconstructed from the knowledge of the output and of the constant
input ū.

Let Q(x) and Q̄(x, u) denote the Jacobians

Q(x) def=
∂Φ(x)

∂x
, Q̄(x, u) def=

∂Ψ(x, u)
∂x

. (7)

Drift-observability of the system (1)–(2) in a set Ω implies nonsingularity
of Q(x) in Ω, and allows the construction of the asymptotic observer
presented in [6], described by the differential equation

˙̂x(t) = f
(
x̂(t)

)
+ g

(
x̂(t)

)
u(t) + Q−1

(
x̂(t)

)
K

(
y(t)− h

(
x̂(t)

))
. (8)
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Almost-uniform observability in a set Ω × U implies invertibility of
Q̄(x, u) for all (x, u) ∈ Ω × U , and allows the construction of the fol-
lowing asymptotic observer

˙̂x(t) = f
(
x̂(t)

)
+ g

(
x̂(t)

)
u(t) + Q̄−1

(
x̂(t), u(t)

)
K

(
y(t)− h

(
x̂(t)

))
, (9)

presented in [13]. In both observers (8)-(9) the constant vector K is the
observer gain, and is a design parameter. In [6, 13] it is shown that,
under suitable assumptions, there exists a choice for K such that (8) or
(9) are exponential observers for system (1)-(2), i.e. there exist positive
constants µ and α such that

‖x(t)− x̂(t)‖ ≤ µ e−αt‖x(0)− x̂(0)‖, t ≥ 0. (10)

In the case of observer (8) the convergence is guaranteed if the system
has relative degree n and the input u(t) is bounded. If the system rel-
ative degree is smaller than n, (8) is still an exponential observer for
(1)-(2), provided that the amplitude of the input u(t) satisfies a specific
bound (for more details see [6]). For systems with generic relative degree
(9) is an exponential observer provided that the input derivative satis-
fies a specific bound (slowly varying input, for more details see [13]). A
strategy for the choice of the gain vector K is described in the conver-
gence proofs reported in [6, 13]. In particular, K should be chosen such
to assign eigenvalues to the matrix Ab − KCb, where (Ab, Cb) define a
Brunowski pair of dimension n.

In this paper the state observers (8) and (9) are applied for the recon-
struction of the blood insulin concentration through on-line processing
of the measured blood glucose concentration (the system output y(t)).

2. The Minimal Model
There are two main experimental procedures currently in use for the

estimation of the insulin sensitivity in a subject: the euglycemic hyper-
insulinemic clamp (EHC) [8] and the intra venous glucose tolerance test
(IVGTT) [2]. With respect to the EHC, the IVGTT is easier to execute
and provides more informations. The test consists of injecting I.V. a
bolus of glucose and frequently sampling the glucose and insulin plasma
concentrations afterwards, for a period of about three hours. The phys-
iological model most used in the interpretation of the IVGTT is known
as the Minimal Model [2]:

Ġ(t) = −(
p1 + X(t)

)
G(t) + p1Gb, G(0) = p0 (11)

Ẋ(t) = −p2X(t) + p3

(
I(t)− Ib

)
, X(0) = 0 (12)

İ(t) = p4

[
G(t)− p5

]+
t− p6

(
I(t)− Ib

)
, I(0) = p7 + Ib (13)
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where [·]+ denotes the positive part of its argument, and

G(t) [mg/dl] is the blood glucose concentration at time t [min];

I(t) [µUI/ml] is the blood insulin concentration;

X(t) [min−1] is an auxiliary function representing insulin-excitable
tissue glucose uptake activity, proportional to insulin concentration
in a “distant” compartment;

Gb [mg/dl] is the subject’s baseline glycemia;

Ib [µUI/ml] is the subject’s baseline insulinemia;

p0 [mg/dl] is the theoretical glycemia at time 0 after the instanta-
neous glucose bolus;

p1 [min−1] is the glucose “mass action” rate constant, i.e. the
insulin-independent rate constant of tissue glucose uptake, “glu-
cose effectiveness”;

p2 [min−1] is the rate constant expressing the spontaneous decrease
of tissue glucose uptake ability;

p3 [min−2(µUI/ml)−1] is the insulin-dependent rate of increase
in tissue glucose uptake ability, per unit of insulin concentration
excess over baseline insulin;

p4 [(µUI/ml)−1(mg/dl)−1min−2] is the rate of pancreatic release
of insulin after the bolus, per minute and per mg/dl of glucose
concentration above the “target” glycemia;

p5 [mg/dl] is the pancreatic “target glycemia” (pancreas produces
insulin as long as G(t) > p5);

p6 [min−1] is the first order decay rate constant for plasma insulin;

p7 = µUI/ml is the theoretical plasma insulin concentration at
time 0, above basal insulinemia, immediately after the glucose bo-
lus.

Parameters p0, p1, p4, p5, p6 and p7 are usually referred to in the liter-
ature as G0, SG, γ, h, n and I0, respectively, while the insulin sensitivity
index SI is computed as p3/p2.

The Minimal Model was conceived as composed of two parts. The first
one, made of eq.’s (11)-(12), describes the time course of plasma glucose
concentration as a function of the circulating insulin, treated as a forcing
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function, known from measurements. The second part consists of eq. (13)
and describes the time course of plasma insulin concentration accounting
for the dynamics of pancreatic insulin release in response to the glucose
stimulus regarded as a forcing function, known from measurements. In
this way the problem of model parameter fitting can be separated into
two separate subproblems. However, some stability problems of the
Minimal Model have been revealed in [7]. The main reason of instability
is a term in the third equation that linearly grows with time.

The injection into the bloodstream of a subject of a bolus of glucose
during the IVGTT induces an impulsive increase in the plasma glucose
concentration G(t) and a corresponding increase of the plasma concen-
tration of insulin I(t), secreted by the pancreas. These concentrations
are measured during a three hour time interval beginning at the bolus
injection. Note that in eq. (13) the positive part of G(t)− p5 multiplies
the time t to model the hypothesis that the effect of circulating hyper-
glycemia on the rate of pancreatic secretion of insulin is proportional
both to the hyperglycemia and to the time elapsed from the glucose
stimulus [16]. However the multiplication by t in (13) introduces an ori-
gin for time, making the model non stationary and binding the model
to the IVGTT experimental procedure.

The application of the observer (8) to the Minimal Model can be
worked out by considering the time t, explicitely appearing in (13), as
an external input, and verifying that the relative degree is 3. Before
deriving the observer equations, it is convenient to put system (11)–(13)
in a suitable form, defining:

x1 = G− p5, (glucose conc. exceeding the target glycemia) (14)
x2 = X + p1, (rate of tissue glucose uptake) (15)
x3 = I − Ib, (insulin conc. exceeding the baseline insulinemia) (16)
y = G− p5. (measured variable: x1) (17)

With these definitions the Minimal Model can be written as

ẋ1(t) = −x2(t)
(
x1(t) + p5

)
+ p1Gb, (18)

ẋ2(t) = −p2

(
x2(t)− p1

)
+ p3x3(t), (19)

ẋ3(t) = −p6x3(t) + p4x
+
1 (t)t, (20)

y(t) = x1(t), (21)

with state domain X and initial conditions x(0):

X =
(
R+

)3
,




x1(0)
x2(0)
x3(0)


 =




p0 − p5

p1

p7


 (22)
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Figure 1. Minimal Model: state observation

The drift-observability matrix of system (18)–(21) is

Q(x) =




1 0 0
−x2 −(x1 + p5) 0

Q3,1(x) Q3,2(x) −p3(x1 + p5)


 (23)

Q3,1 = x2
2 + p2x2 − p3x3 − p1p2 (24)

Q3,2 = (2x2 + p2)(x1 + p5)− p1Gb. (25)

All simulations of the observation algorithm revealed a very good
tracking capability of the observer. Fig. 1 reports simulation results
using a gain vector K that assigns eigenvalues (−1,−1.2,−1.4) to the
matrix Ab−KCb. The values of model parameters used in the reported
simulation are Gb = 87, Ib = 37.9, p0 = 398, p1 = 0.05, p2 = 0.5,
p3 = 10−4, p4 = 10−5, p5 = 150, p6 = 0.05, p7 = 199.

3. The Fisher Model
In this section we investigate the behavior of the observer (9) applied

to the model used by Bergman et al. [1]–[2] and by Fisher et al. [9]–
[10] for the development of control strategies of plasma glucose levels in
diabetic individuals. Two main approaches are currently followed in the
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development of insulin infusion programs: open-loop methods, devoted
to the computation of a predetermined amount of insulin to be deliv-
ered to a patient, and closed-loop methods, often referred to as artificial
beta cells or artificial pancreas. Closed-loop methods require continuous
monitoring of blood glucose levels and can involve quite sophisticated
and costly apparatus. An intermediate approach is followed by semi
closed-loop methods ([5], [9], [10]), based on intermittent blood glucose
sampling. Optimization techniques are used to calculate insulin infusion
programs for the correction of hyperglycemia. The semi closed-loop al-
gorithm proposed in [11] is based on three hourly plasma glucose samples
and combines a single injection with continuous infusion of insulin.

The model of insulin-glucose homeostasis used in the cited works is
a suitable modification of the Minimal Model. In particular, as long as
severe diabetic individuals are being considered, in the third equation of
the Minimal Model the time-varying term that models the stimulus on
the insulin production given by the glucose concentration is removed. In
the first equation a glucose infusion term is introduced, representing the
effect of glucose intake resulting from a meal. The resulting model is as
follows:

Ġ∆(t) = −p1G∆(t)−X(t)
[
G∆(t) + Gb

]
+ P (t), (26)

Ẋ(t) = −p2X(t) + p3I∆(t), (27)

İ∆(t) = −N
[
I∆(t) + Ib

]
+ u(t)/VI , (28)

The same meaning of the parameters used in the Minimal Model is
retained in this model, except that G∆(t) and I∆(t) represent the dif-
ferences of plasma glucose concentration and free plasma insulin con-
centration from their basal values Gb and Ib (i.e. G(t) = Gb + G∆(t),
I(t) = Ib + I∆(t). P (t) and u(t) are the rates of infusion of exogenous
glucose and insulin, respectively, VI is the insulin distribution volume
and N is the fractional disappearance rate of insulin. Note that for dia-
betic patients the basal value of plasma insulin concentration Ib is not a
natural value but should be interpreted as a target value for the insulin
infusion program.

The model parameters p1, p2 and p3 are estimated by Bergman et
al. in [3] in a study of diabetic and normal human subjects. Values
they use for normal subjects are p1 = 0.028, p2 = 0.025, p3 = 0.000013.
For diabetic (glucose resistant) subjects the value of p1 is significantly
reduced and can be set to zero. The other parameters for a subject of
average weight can be set as:

VI = 12 l, N = 5/54 min−1, Gb = 4.5 · 18 mg/dl, Ib = 15 mU/l.
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The value of Ib is typical of free insulin levels of controlled diabetic
subjects under steady-state conditions.
The steady-state in the model corresponds to a constant insulin infusion
rate of u = NVIIb [mU · min−1]. This is consistent with observations
of the infusion rates that are required to maintain steady-state plasma
glucose levels of severe diabetics at the basal values of normal subjects.

In the design of an observer for the model (26)–(28) we assume that
oral glucose infusion starts at t = 0 prior to which plasma glucose and
insulin are at their fasting levels. The term P (t) in (26) represents
the rate at which glucose enters the blood from intestinal absorption
following a meal. In oral glucose tests it is observed that the plasma
glucose level rises from the rest level to a maximum in less than 30 min.
In normal subjects the glucose level falls to the base level after about
2 − 3 hours. A function that produces this kind of desired behavior in
the model (26)–(28) is

P (t) = Be−kt, t ≥ 0, (29)

where B depends on the amount of glucose ingested during the meal,
and k is the rate constant of glucose delivery to the blood circulatory
system. A good value for k in normal subjects is k = 0.05 min−1, while
for a medium meal B = 0.5 mg/(min ·dl). The introduction of the term
(29) in the model (26)–(28) requires an additional differential equation

Ṗ (t) = −kP (t), P (0) = B. (30)

The state space dimension now has dimension n = 4. The state variables
considered for the observer design are

x1(t) = G∆(t) = G(t)−Gb, (31)
x2(t) = X(t), (32)
x3(t) = I∆(t) = I(t)− Ib, (33)
x4(t) = P (t). (34)

With respect to these variable the Fisher Model takes the form (1)–(2)
with

f
(
x
)

=




−p1x1 − x2

[
x1 + Gb

]
+ x4

−p2x2 + p3x3

−n
[
x3 + Ib

]
−kx4


 , g

(
x
)

=




0
0
1
0


 , (35)

h
(
x
)

= x1, U =
u

VI
. (36)
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Figure 2. Fisher Model: state observation (n=4)

For this system the observation relative degree is smaller than 4, the
dimension of the state space. As a consequence, the observer (9) should
be preferred to observer (8). The expressions of the map Ψ(x, u) and
of the Jacobian Q̄(x, u) are quite long and are not reported here due to
lack of space. The values of the parameters used in the simulations are
Gb = 4.5, Ib = 25, p1 = 0.05, p2 = 0.1, p3 = 6.5·10−4, k = 0.05, B = 0.5,
N = 5/54, VI = 12. The set of eigenvalues chosen for the computation
of the observer gain is (−1,−1.05, e+3/4πj , e−3/4πj).

4. Glucose Feedback Model
One disadvantage of the Minimal Model (18)–(21) is its intrinsic non

stationarity, due to the presence of a term that grows linearly with time
in eq. (20) and affects the system stability. We propose a stationary
model with a behavior similar to the Minimal Model:

ẋ1(t) = −x2(t)
(
x1(t) + p5

)
+ p1GB (37)

ẋ2(t) = −p2

(
x2(t)− p1

)
+ p3x3(t) (38)

ẋ3(t) = p4x
+
1 (t)u(t)− p6x3(t) (39)

y(t) = x1(t) (40)
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Figure 3. Output feedback model: state observation

where the auxiliary variable u(t) is computed as

u̇(t) =
ea1y(t)

1 + ea1y(t)
− a2u(t), u(0) = 0. (41)

This model differs from the Minimal Model in the third equation,
where the explicit appearance of time t has been substituted with an
auxiliary variable u that approximates the unit ramp only for high values
of the measured glucose concentration.

For low glucose concentrations, u(t) decays to a steady state value.
The parameters a1 and a2 can be adjusted so to give the desired behavior.
We found a good behavior with a1 = 0.1 and a2 = 1.

From a control system perspective, equations (37)–(41) describe an
output feedback system and therefore we name such model of the insulin-
glucose homeostasis the “Glucose Feedback Model”. This model has rel-
ative degree 3 and therefore admit the observer equation (8). The drift-
observability matrix coincides with (25), because the pair (f(x), h(x)) is
the same of the Minimal Model.

Fig. 3 reports the simulation results using a gain vector K that assigns
eigenvalues (−0.5, 0.5 · e+3/4πj , 0.5 · e−3/4πj) to the matrix Ab −KCb.
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The values of the model parameters are the same used in the simulation
of the Minimal Model.

5. Conclusions and Future Developments
This work explores the use of nonlinear state observers for real-time

monitoring of the insulin blood concentration using only measurements
of blood glucose concentration. Three models of the glucose-insulin
homeostasis have been presented here, on which asymptotic observers
have been constructed. The clinical validation of the proposed observers
using experimental data will be the object of a future research. In future
work, also the delay-differential models presented in [7] will be consid-
ered for state observation, using the observer developed in [14].
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