spaces.

Characterizations of inner product spaces by orthogonal vectors

Marco Baronti and Emanuele Casini

(Communicated by Jürgen Appell)

2000 Mathematics Subject Classification. 46C15, 46B99, 41A65. Keywords and phrases. Orthogonality, Characterizations of inner product

Abstract. Let X be a real normed space with unit closed ball B. We prove that X is an inner product space if and only if it is true that whenever x,y are points in ∂B such that the line through x and y supports $\frac{\sqrt{2}}{2}B$ then $x \perp y$ in the sense of Birkhoff.

1. Introduction

Several known characterizations of inner product spaces are available in the literature [1]. This paper concerns a new characterization by means of orthogonal vectors. Let X be a real normed space (of dimension ≥ 2) and let S_X denote its unit sphere. If $x, y \in S_X$, we set:

$$k(x,y) = \inf\{||tx + (1-t)y|| : t \in [0,1]\}$$

moreover if $x, y \in S_X$ then $x \perp y$ denotes the orthogonality in the sense of Birkhoff [1] i.e. $||x|| \leq ||x + \lambda y|| \ \forall \lambda \in \mathbb{R}$. In this paper we consider

the following properties

$$(P_1): \quad x, y \in S_X \quad x \perp y \Rightarrow k(x, y) = \frac{\|x + y\|}{2}$$
$$(P_2): \quad x, y \in S_X \quad k(x, y) = \frac{\sqrt{2}}{2} \Rightarrow x \perp y$$

We prove that these properties characterize inner product spaces. The definition of the constant k(x, y) is suggested by the following result by Benitez and Yanez [4]:

$$\left\{x,y\in S_X \mid k(x,y)=\frac{1}{2}\Rightarrow x+y\in S_X\right\}\Leftrightarrow X \text{ is an inner product space.}$$

It is easy to prove that every inner product spaces X satisfies the properties (P_1) and (P_2) . Moreover from the particular structure of (P_1) and (P_2) we can suppose that X is to be a 2-dimensional real normed space.

2. Some preliminary results

We start with some preliminary observations on the constant k(x,y). If $x,y \in S_X$ and $x \perp y$ we set:

$$\mu(x,y) = \sup_{\lambda \ge 0} \frac{1+\lambda}{\|x+\lambda y\|}$$

and

$$\mu(X) = \sup\{\mu(x, y); \ x, y \in S_X \ x \perp y\}.$$

These constants were introduced in [6] and in [6] and [3] the following results were proved:

$$\mu(X) \ge \sqrt{2}$$
 for any space X

and

$$\mu(X) = \sqrt{2} \Leftrightarrow X$$
 is an inner product space

Let $x, y \in S_X$, $x \perp y$, we have

$$\mu(x,y) = \sup_{\lambda \ge 0} \frac{1+\lambda}{\|x+\lambda y\|} = \sup_{0 \le t < 1} \frac{1+\frac{t}{1-t}}{\|x+\frac{t}{1-t}y\|}$$
$$= \sup_{0 \le t \le 1} \frac{1}{\|tx+(1-t)y\|}$$
$$= \frac{1}{k(x,y)}$$

and so

(1)
$$\mu(X) = \frac{1}{\inf\{k(x,y) : x, y \in S_X \ x \perp y\}}$$

From known results on the constant μ [3], [4] we obtain the following results:

(2)
$$\inf \{k(x,y): x, y \in S_X \ x \perp y\} \le \frac{\sqrt{2}}{2}$$

(3)
$$\inf \{k(x,y): x, y \in S_X, \ x \perp y\} = \frac{\sqrt{2}}{2} \Leftrightarrow X$$
 is inner product space.

Theorem 1. If X fulfills (P_1) then X is an inner product space.

Proof. Let $x, y \in S_X$ with $x \perp y$. From (P_1) we have $k(x, y) = \frac{\|x+y\|}{2}$. We define $g: \mathbb{R} \to \mathbb{R}$ by $g(t) = \|tx + (1-t)y\|$. g is a convex function and $g(\frac{1}{2}) \leq g(t) \quad \forall \ t \in [0,1]$. So we have $g(\frac{1}{2}) \leq g(t) \quad \forall \ t \in \mathbb{R}$. Hence

$$\frac{\|x+y\|}{2} \le \left\| y + t(x-y) + \frac{x+y}{2} - \frac{x+y}{2} \right\| = \left\| \frac{x+y}{2} + \frac{2t-1}{2}(x-y) \right\|.$$

So

$$\frac{||x+y||}{2} \le \left\| \frac{x+y}{2} + \lambda(x-y) \right\| \quad \forall \lambda \in \mathbb{R}$$

that is equivalent to

$$x + y \perp x - y$$
.

Therefore $\forall x,y \in S_X \quad x \perp y \Rightarrow x+y \perp x-y$ that is a characteristic property of inner product spaces [2].

3. Main result

To prove our main result we start with the following Lemma

Lemma 2. Let X be a 2-dimensional real normed space and let x be in S_X . Let γ be one of the two oriented arcs of S_X joining x to -x. Then the function $y \in \gamma \mapsto k(x,y)$ is nonincreasing.

Proof. Let \bar{y} and $y \in \gamma$ and we suppose that \bar{y} belongs to the part of the arc γ joining -x to y. We will prove that

$$k(x, \bar{y}) \leq k(x, y).$$

We can suppose $\bar{y} \neq \pm x$ so there exist $a, b \in \mathbb{R}$ such that $y = ax + b\bar{y}$. From the assumption about \bar{y} we have $a \geq 0$ and $b \geq 0$ and so

$$||y|| = 1 = ||ax + b\bar{y}|| \le a + b.$$

If a + b = 1, then $y = ax + (1 - a)\bar{y}$ hence x, y and \bar{y} are collinear and this implies:

$$1 = k(x, \bar{y}) = k(x, y).$$

Now we suppose a+b>1 and $k(x,\bar{y})>k(x,y)$. Then there exists $t_1\in(0,1)$ such that $||t_1x+(1-t_1)y||< k(x,\bar{y})\leq 1$. Let

$$\lambda = \frac{1}{t_1(1-a-b)+a+b} \,.$$

It is easy to verify that $\lambda \in (0,1)$. Let

$$\begin{split} q_{\lambda} &= \lambda (t_1 x + (1 - t_1) y) \\ &= \frac{t_1}{t_1 (1 - a - b) + a + b} x + \frac{(1 - t_1) (a x + b \bar{y})}{t_1 (1 - a - b) + a + b} \\ &= \frac{(t_1 + a - a t_1)}{t_1 (1 - a - b) + a + b} x + \frac{(1 - t_1) b}{t_1 (1 - a - b) + a + b} \bar{y} \,. \end{split}$$

So q_{λ} belongs to the segment joining x to \bar{y} and

$$||q_{\lambda}|| = \lambda ||t_1 x + (1 - t_1)y|| \ge k(x, \bar{y}) > ||t_1 x + (1 - t_1)y||.$$

So $\lambda > 1$. This contradiction implies the thesis.

Theorem 3. If X fulfills (P_2) then X is an inner product space.

Proof. We suppose that X is not an inner product space. So by using results (2) and (3) there exist $x,y\in S_X$, $x\perp y$ such that $k(x,y)<\frac{\sqrt{2}}{2}$. Let γ be one of the two oriented arcs of S_X joining x to -x. Let z_1 and z_2 be in γ such that $x\perp z_1$, $x\perp z_2$ and the part of γ joining z_1 to z_2 is the arc containing all points z such that $x\perp z$ and moreover we suppose that z_1 belongs to the part of γ joining x to z_2 ; we will write $z_1\in\widehat{xz_2}$. Note that $y\in\widehat{z_1z_2}$. Then using a result by Precupanu [7] we can suppose that there exists a sequence (x_n) such that:

- 1. $x_n \in \widehat{xz_1}$
- $2. x_n \neq x$
- $3. x_n \to x$
- 4. x_n are smooth.

Let y_n be in γ such that $x_n \perp y_n$. From the monotony of the Birkhoff orthogonality it follows that $y_n \in \widehat{-xz_2}$ Let ϵ be a positive number such that

$$k(x,y) + \epsilon < \frac{\sqrt{2}}{2}.$$

From Lemma 2 and the continuity of the function $k(\cdot,y)$ there exists $\bar{n} \in \mathbb{N}$ such that for $n > \bar{n}$

$$k(x_n, y_n) \le k(x_n, y) \le k(x, y) + \epsilon < \frac{\sqrt{2}}{2}$$
.

Now if we fix $n_0 > \bar{n}$, we have

$$k(x_{n_0}, y_{n_0}) < \frac{\sqrt{2}}{2}; \quad x_{n_0} \perp y_{n_0}; \quad x_{n_0} \text{ is smooth.}$$

The continuous function $k(x_{n_0}, \cdot)$ assumes values between $k(x_{n_0}, y_{n_0}) < \frac{\sqrt{2}}{2}$ and $k(x_{n_0}, x_{n_0}) = 1$. So there exists $y^* \neq y_{n_0}$, $y^* \in \widehat{x_{n_0}y_{n_0}}$, $k(x_{n_0}, y^*) = \frac{\sqrt{2}}{2}$. From (P_2) we have $x_{n_0} \perp y^*$. But x_{n_0} is a smooth point and so $y^* = y_{n_0}$. This contradiction completes the proof.

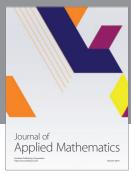
References

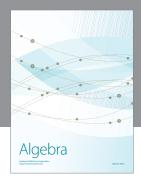
- D. Amir, Characterizations of Inner Product Spaces, Birkhauser Verlag, Basel, 1986.
- [2] M. Baronti, Su alcuni parametri degli spazi normati, B.U.M.I.(5), 18-B (1981), 1065–1085.
- [3] C. Benitez and M. Del Rio, The rectangular constant for twodimensional spaces, J. Approx. Theory, 19 (1977), 15–21.
- [4] C. Benitez and D. Yanez, Two characterizations of inner product spaces, to appear.
- [5] R. C. James, Orthogonality in normed linear spaces, Duke Math. J., 12 (1945), 291–302.
- [6] J. L. Joly, Caracterisations d'espaces hilbertiens au moyen de la constante rectangle, J. Approx. Theory, 2 (1969), 301–311.
- [7] T. Precupanu, Characterizations of hilbertian norms, B.U.M.I.(5), 15-B (1978), 161–169.

Dipartimento di Ingegneria della Produzione e Metodi e Modelli Matematici Università degli studi di Genova Piazzale Kennedy, Pad. D 16129 Genova Italy (E-mail : baronti@dimet.unige.it)

Dipartimento di Fisica e Matematica Università dell'Insubria Via Valleggio 11 22100 Como Italy (E-mail: emanuele.casini@uninsubria.it)

(Received: July 2004)





Submit your manuscripts at http://www.hindawi.com

