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Abstract. Let X be a real normed space with unit closed ball B . We prove

that X is an inner product space if and only if it is true that whenever x, y are

points in ∂B such that the line through x and y supports
√

2
2

B then x ⊥ y in

the sense of Birkhoff.

1. Introduction

Several known characterizations of inner product spaces are available in
the literature [1]. This paper concerns a new characterization by means of
orthogonal vectors. Let X be a real normed space (of dimension ≥ 2) and
let SX denote its unit sphere. If x, y ∈ SX , we set:

k(x, y) = inf{‖tx + (1 − t)y‖ : t ∈ [0, 1]}

moreover if x, y ∈ SX then x ⊥ y denotes the orthogonality in the sense
of Birkhoff [1] i.e. ‖x‖ ≤ ‖x + λy‖ ∀λ ∈ R . In this paper we consider
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the following properties

(P1) : x, y ∈ SX x ⊥ y ⇒ k(x, y) =
‖x + y‖

2

(P2) : x, y ∈ SX k(x, y) =
√

2
2

⇒ x ⊥ y

We prove that these properties characterize inner product spaces. The
definition of the constant k(x, y) is suggested by the following result by
Benitez and Yanez [4]:{

x, y ∈ SX k(x, y) =
1
2
⇒ x + y ∈ SX

}
⇔ X is an inner product space.

It is easy to prove that every inner product spaces X satisfies the properties
(P1) and (P2). Moreover from the particular structure of (P1) and (P2) we
can suppose that X is to be a 2-dimensional real normed space.

2. Some preliminary results

We start with some preliminary observations on the constant k(x, y).
If x, y ∈ SX and x ⊥ y we set:

μ(x, y) = sup
λ≥0

1 + λ

‖x + λy‖

and
μ(X) = sup{μ(x, y); x, y ∈ SX x ⊥ y }.

These constants were introduced in [6] and in [6] and [3] the following
results were proved:

μ(X) ≥
√

2 for any space X

and
μ(X) =

√
2 ⇔ X is an inner product space

Let x, y ∈ SX , x ⊥ y, we have

μ(x, y) = sup
λ≥0

1 + λ

‖x + λy‖ = sup
0≤t<1

1 + t
1−t

‖x + t
1−ty‖

= sup
0≤t≤1

1
‖tx + (1 − t)y‖

=
1

k(x, y)
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and so

(1) μ(X) =
1

inf {k(x, y) : x, y ∈ SX x ⊥ y}
From known results on the constant μ [3], [4] we obtain the following results:

inf {k(x, y) :x, y∈SX x ⊥ y}≤
√

2
2

(2)

inf {k(x, y) :x, y∈SX , x ⊥ y}=
√

2
2

⇔ X is inner product space.(3)

Theorem 1. If X fulfills (P1) then X is an inner product space.

Proof. Let x, y ∈ SX with x ⊥ y. From (P1) we have k(x, y) = ‖x+y‖
2 .

We define g : R → R by g(t) = ‖tx + (1 − t)y‖. g is a convex function and
g(1

2 ) ≤ g(t) ∀ t ∈ [0, 1] . So we have g(1
2 ) ≤ g(t) ∀ t ∈ R. Hence

‖x + y‖
2

≤
∥∥∥∥y + t(x − y) +

x + y

2
− x + y

2

∥∥∥∥ =
∥∥∥∥x + y

2
+

2t − 1
2

(x − y)
∥∥∥∥ .

So
||x + y||

2
≤

∥∥∥∥x + y

2
+ λ(x − y)

∥∥∥∥ ∀λ ∈ R

that is equivalent to
x + y ⊥ x − y.

Therefore ∀ x, y ∈ SX x ⊥ y ⇒ x + y ⊥ x − y that is a characteristic
property of inner product spaces [2]. �

3. Main result

To prove our main result we start with the following Lemma

Lemma 2. Let X be a 2-dimensional real normed space and let x be in
SX . Let γ be one of the two oriented arcs of SX joining x to −x. Then
the function y ∈ γ �→ k(x, y) is nonincreasing.

Proof. Let ȳ and y ∈ γ and we suppose that ȳ belongs to the part of
the arc γ joining −x to y. We will prove that

k(x, ȳ) ≤ k(x, y).
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We can suppose ȳ 
= ±x so there exist a, b ∈ R such that y = ax + bȳ.

From the assumption about ȳ we have a ≥ 0 and b ≥ 0 and so

‖y‖ = 1 = ‖ax + bȳ‖ ≤ a + b .

If a + b = 1, then y = ax + (1 − a)ȳ hence x, y and ȳ are collinear and
this implies:

1 = k(x, ȳ) = k(x, y) .

Now we suppose a + b > 1 and k(x, ȳ) > k(x, y). Then there exists
t1 ∈ (0, 1) such that ||t1x + (1 − t1)y|| < k(x, ȳ) ≤ 1. Let

λ =
1

t1(1 − a − b) + a + b
.

It is easy to verify that λ ∈ (0, 1). Let

qλ = λ(t1x + (1 − t1)y)

=
t1

t1(1 − a − b) + a + b
x +

(1 − t1)(ax + bȳ)
t1(1 − a − b) + a + b

=
(t1 + a − at1)

t1(1 − a − b) + a + b
x +

(1 − t1)b
t1(1 − a − b) + a + b

ȳ .

So qλ belongs to the segment joining x to ȳ and

‖qλ‖ = λ‖t1x + (1 − t1)y‖ ≥ k(x, ȳ) > ‖t1x + (1 − t1)y‖ .

So λ > 1. This contradiction implies the thesis. �

Theorem 3. If X fulfills (P2) then X is an inner product space.

Proof. We suppose that X is not an inner product space. So by using
results (2) and (3) there exist x, y ∈ SX , x ⊥ y such that k(x, y) <

√
2

2 .
Let γ be one of the two oriented arcs of SX joining x to −x. Let z1 and
z2 be in γ such that x ⊥ z1 , x ⊥ z2 and the part of γ joining z1 to z2 is
the arc containing all points z such that x ⊥ z and moreover we suppose
that z1 belongs to the part of γ joining x to z2 ; we will write z1 ∈ x̂z2.
Note that y ∈ ẑ1z2. Then using a result by Precupanu [7] we can suppose
that there exists a sequence (xn) such that:

1. xn ∈ x̂z1

2. xn 
= x
3. xn → x

4. xn are smooth.
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Let yn be in γ such that xn ⊥ yn. From the monotony of the Birkhoff
orthogonality it follows that yn ∈ −̂xz2 Let ε be a positive number such
that

k(x, y) + ε <

√
2

2
.

From Lemma 2 and the continuity of the function k(· , y) there exists n̄ ∈ N

such that for n > n̄

k(xn, yn) ≤ k(xn, y) ≤ k(x, y) + ε <

√
2

2
.

Now if we fix n0 > n̄, we have

k(xn0 , yn0) <

√
2

2
; xn0 ⊥ yn0 ; xn0 is smooth .

The continuous function k(xn0 , ·) assumes values between k(xn0 , yn0) <
√

2
2

and k(xn0 , xn0) = 1. So there exists y∗ 
= yn0 , y∗ ∈ x̂n0yn0 , k(xn0 , y
∗) =√

2
2 . From (P2) we have xn0 ⊥ y∗ . But xn0 is a smooth point and so

y∗ = yn0 . This contradiction completes the proof. �
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