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Structural determinants of unexpected agonist activity in
a retro-peptide analogue of the SDF-1a N-terminus
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Abstract We have synthesised two retro-peptide analogues of
the stromal cell derived growth factor 1 (SDF-1a) segment
known to be critical for CXCR4 receptor binding, corresponding
to the sequences HSEFFRCPCRFFESH and HSEFFRGGG-
RFFESH. We have assayed the ability of these peptides to acti-
vate extracellular signal-regulated kinase 1/2 phosphorylation in
cells over expressing the SDF-1a receptor, finding that the first
variant was able to serve as an agonist of CXCR4, whereas
the second one was inactive. Finally, by comparing representa-
tive solution structures of the two peptides, we have found that
the biological response of HSEFFRCPCRFFESH may be as-
cribed to a b-b-type turn motif centred on Phe4–Phe5.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The homeostatic CXC chemokine stromal cell derived

growth factor 1 (SDF-1a) is the only known endogenous ago-

nist for CXCR4, a receptor highly expressed in human malig-

nant melanoma, malignant breast tumours and metastases,

also shown to be an HIV-1 co-receptor [1]. Binding and activa-

tion assays indicate that the 29–39 N-terminus fragment near

the transmembrane region of CXCR4 is required for activation

by SDF-1a, whereas the 1–28 amino terminus segment of

CXCR4 is neither necessary nor sufficient for activation [2].

As concerns the SDF-1a, the N-terminal lysine (and, possibly,

proline at position 2) residue(s) seems to be required for SDF-

1a activity [3]. The RFFESH sequence, located in the loop re-

gion of SDF-1a at positions 12–17, is necessary for optimal

binding, but not sufficient for receptor activation [3]. This se-
Abbreviations: CALIBA, calibration of NOE distance constraints;
DYANA, dynamics algorithm for NMR applications; ECL, en-
hanced chemiluminescence; ERK1/2, extracellular signal-regulated
kinases 1/2; MOLMOL, MOLecule analysis and MOLecule display;
SDF-1a, stromal cell derived growth factor 1; TSSA, torsion space
simulated annealing
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quence is involved in the initial docking step of a process lead-

ing the N-terminal residues KPVSLSYR at positions 1–8 to

interact with the more buried receptor site. In a model pro-

posed for binding of SDF-1a to CXCR4, dimeric SDF-1a first

interacts with endothelial-cell-surface glycosaminoglycans and,

thereafter, with dimeric CXCR4 receptor [4].

On this basis, we have modelled the SDF-1a/CXCR4 inter-

action by the 1–17 N-terminal segment of human SDF-1a
(KPVSLSYR-CPC-RFFESH), SDF-1{1–17}, and the 29–39

fragment of CXCR4 (FREENANFNKI), CXCR4{29–39}

[5], respectively, showing that these peptides bind with a disso-

ciation constant (Kd) in the micromolar range. Aiming to inhi-

bit the chemotactic response of the CXCR4 receptor, we have

used SDF-1{1–17} as a template to further synthesise two N-

terminal analogues of SDF-1a. Namely, we kept the sequence

claimed to be responsible for binding to CXCR4 [3,5],

RFFESH, and replaced the segment supposed to be indispens-

able for receptor activation [3], KPVSLSYR, with the

RFFESH-derived retro-peptide, thus obtaining the analogue

of sequence HSEFFR-CPC-RFFESH, SDF-1{H–H}. More-

over, we substituted the CPC moiety, which makes SDF-1a
a CXC-type chemokine, with three glycines, thus obtaining

the analogue corresponding to the sequence HSEFFR-GGG-

RFFESH, SDF-1{HG3H}. This work reports on the struc-

ture–activity relationships of these peptides.
2. Materials and methods

2.1. Peptide synthesis
The N-terminal analogues of SDF-1a, SDF-1{1–17}: KPVSLSYR-

CPCRFFESH, SDF-1{H–H}: HSEFFRCPCRFFESH and SDF-
1{HG3H}: HSEFFRGGGRFFESH, were synthesised by standard
Fmoc solid phase peptide synthesis, purified by RP-HPLC and charac-
terised by MALDI-TOF mass spectrometry, as described elsewhere [5].
Concerning the CPC sequence in SDF-1{H–H}, we have verified that
the cysteine thiol groups were in reduced form even after strong oxidis-
ing treatment.

2.2. NMR spectroscopy
Samples were prepared by dissolving the peptide in water (90/10 v/v

H2O/D2O) up to a concentration of 2 mM. The pH was adjusted to 5.0
according to the conditions used in previous studies [6,7]. NMR spec-
tra were acquired at 280 K using a 600 MHz Varian Inova spectrom-
eter or a 500 MHz Bruker DRX spectrometer. 1H–13C spectrum
(HSQC) [8] and 1H TOCSY [9], NOESY [10] and double quantum fil-
tered COSY [11] spectra were used for resonance assignments. NOESY
blished by Elsevier B.V. All rights reserved.
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mixing times were set at 100, 200, 350, and 500 ms in order to deter-
mine NOE build-up rates, which were found to be linear up to
350 ms. 2D-TOCSY experiments were recorded with mixing times of
30 and 70 ms. Sequence specific assignment was obtained by the com-
bined use of TOCSY and NOESY experiments, according to the
standard procedure [12]. Chemical shift values are reported in Tables 1
and 2.

2.3. Structure calculations
Peak integrals were evaluated by use of NMRView, transferred to

the program package dynamics algorithm for NMR applications
(DYANA) 1.0.6 [13], and converted to upper distance limits by using
the calibration of NOE distance constraints (CALIBA) module of
DYANA. Distance constraints were then worked out by the GRID-
SEARCH module (also implemented in DYANA) to generate a set
of allowed dihedral angles. Structure calculation was carried out with
the macro ANNEAL by torsion angle dynamics. Eighty structures
were calculated by torsion space simulated annealing (TSSA), starting
with a total of 10000 MD steps and a default value of maximum tem-
perature. The twenty best structures in terms of target function were
subjected to cluster analysis by best fitting of backbone atoms of resi-
dues from Glu3 to Asp6 with the program MOLecule analysis and
MOLecule display (MOLMOL) [14].
2.4. Western blot analysis
CXCR4 was expressed on human neuroepithelioma CHP100 cells,

according to a previously reported procedure [15,16]. Blots were incu-
bated for 1 h with 5% non-fat dry milk or 3% bovine serum albumin to
block non-specific binding sites and then incubated with specific anti-
bodies. The immunoreactivity was detected with a enhanced chemilu-
Table 1
1H chemical shift values for the peptide SDF-1{H–H}

AA NH aCH bCH

His1 4.10 3.15
Ser2 8.71 4.24 3.59
Glu3 8.56 4.06 1.58/1.66
Phe4 8.16 4.35 2.69/2.80
Phe5 7.97 4.26 2.7
Arg6 8.02 3.95 1.40/1.48
Cys7 8.21 4.39 2.63/2.63
Pro8 4.16 1.67/2.04
Cys9 8.25 4.14 2.61/2.61
Arg10 8.24 3.99 1.39/1.39
Phe11 7.99 4.2 2.7
Phe12 7.9 4.29 2.7
Glu13 8.01 4.05 1.65/1.77
Ser14 8.15 4.11 3.59
His15 7.98 4.27 2.87/3.02

Table 2
1H chemical shift values of the peptide SDF-1{HG3H}

AA NH aCH bCH

His1 4.08 3.11
Ser2 8.68 4.23 3.55/3.55
Glu3 8.47 4.07 1.60/1.65
Phe4 8.11 4.36 2.64/2.75
Phe5 8.04 4.30 2.71
Arg6 8.02 3.92 1.26/1.26
Gly7 7.65 3.61/3.61
Gly8 8.10 3.66/3.66
Gly9 8.10 3.64/3.64
Arg10 7.93 3.93 1.32/1.32
Phe11 8.02 4.28 2.62/2.74
Phe12 7.89 4.25 2.75/2.66
Glu13 7.95 4.04 1.61/1.74
Ser14 8.09 4.07 3.55/3.55
His15 7.99 4.28 2.84/3.00
minescent substrate (ECL). Relative band intensity was evaluated by
densitometry (Scan Jet 4c HP) and software analysis (Jandel, Sigma
Gel).
3. Results

3.1. Sequential assignment and secondary structures

The TOCSY spectra show well resolved resonances for al-

most all residues. However, some overlap is observed for the

peptide SDF-1{H–H} which exhibits identical b and aromatic

protons chemical shifts for residues Phe5, Phe11 and Phe12. The

chemical shifts corresponding to the backbone amidic and al-

pha protons for these residues are, on the other hand, not

degenerate (see Table 1), allowing the unambiguous use of

the related NOEs in structural calculations. The Cys7–Pro8

peptide bond was found in trans configuration, as indicated

by the small difference (ca. 5 ppm) of the 13C chemical shifts

between b- and c-carbon atoms of the proline residue.
3JNH–CH coupling constant values are in the range of multi-

ple / angle values for both peptides, and therefore are not in-

cluded in structure calculations. Temperature coefficient

analysis of NHs for both peptides indicates that all amide pro-

tons are exposed to solvent, in accordance with previous find-

ings [6]. NOESY spectra show strong daN(i,i+1) and weak

dNN(i,i+1) sequential effects for both peptides (see Fig. 1). As
cCH dCH Other

4H 7.14/2H 8.36

1.93/2.00
2,6H 6.9
2,6H 6.9

1.27 2.91 eNH 6.98

1.78/1.78 3.53/3.55

1.18/1.18 2.87 eNH 6.92
2,6H 6.9
2,6H 6.9

2.1/2.1

4H 6.99/2H 8.28

cCH dCH Other

4H 7.13/2H 8.33

1.97/1.97
2,6H 6.89
2,6H 7.0/3,5H 6.9

1.38/1.51 2.85/2.85 eNH 6.92

1.11/1.11 2.80 eNH 6.85
2,6H 6.87/3,5H 7.02
2,6H 6.90

2.1/2.1

4H 6.97/2H 8.27



Fig. 1. Regions of 350-ms NOESY spectra. Panels A1/A2 (SDF-1{H–H}) and B1/B2 (SDF-1{HG3H}) show the daN[i,i + 1] and dNN[i,i + 1]
connectivities.
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reported above, overlap of side chains proton resonances of

Phe 5, 11 and 12 of peptide SDF-1{H–H} does not allow the

unambiguous assignment of the NOE effects involving the side

chain protons of these residues, and therefore they have not

been included in the structural analysis. However, we have

avoided problems arising from the massive overlap of signals

by aligning peptides on the basis of their sequence identities

and assigning HN–HN(i,i+1) NOEs according to the pattern

previously found for SDF-1{1–17} [6], in which residues at

positions 5–8 form a b-aR type turn:
SDF-1{1–17}
 KPVSLSYR-CPC-RFFESH
SDF-1{H–H}
 HSEFFR-CPC-RFFESH
SDF-1{HG3H}
 HSEFFR-GGG-RFFESH
Sequential and medium range NOEs for peptides SDF-1{H–

H} and SDF-1{HG3H} are summarised in Fig. 2A and B.

From a preliminary analysis of all spectral parameters, the

presence of both extended and folded regions of the backbone

for both peptides was hypothesised. Observation of fairly

strong daN(i,i+1) effects indicates the prevailing presence of ex-
tended structures, in agreement with the behaviour of chemical

shifts, temperature coefficients and coupling constants. The

presence of dNN(i,i+1) effects, however, shows that a folded

structure (or a family of such structures) is also present and

makes it possible to interpret the observed backbone NOEs

for both SDF-1{H–H} and SDF-1{HG3H} on the basis of a

mixture of folded and extended conformers.

In analogy with previous work on SDF-1{1–17} [6], the dNN

effect between Phe4 and Phe5 in SDF-1{H–H} suggests the

presence of a turn involving residues Glu3, Phe4, Phe5 and

Arg6, with the two aromatic residues occupying the positions

2 and 3. However, it is not possible to classify definitely this

turn as the b-aR type featured by SDF-1{1–17} [6], because

the presence of a daN (2fi 4) effect between Phe4 and Arg6 is

ambiguous, due to overlapped resonances. dNN connectivities

are also observed between Glu3 and Phe4 as well as Arg6 and

Cys7, suggesting a partial fold of the amino terminal part of

the peptide. Moreover, even in our case, there is evidence of

a second local structure involving the small sequence Arg10–

Phe11. This structure may not be univocal, since it is based

on a limited number of interatomic distances of the N-terminal

residues of the sequence, but it is possible to test the validity by



Fig. 3. Stereo view of the backbone clustering analysis for the region
3–6 of SDF-1{H–H} and SDF-1{HG3H}. The mean structure of
residues 2–7 from the major conformational subfamilies is indicated in
bold for SDF-1{H–H} (top, blue) and SDF-1{HG3H} (bottom,
green).

Fig. 2. Sequential and medium range NOE connectivities. Connectiv-
ities were derived from NOESY spectra at 350 ms mixing time for
SDF-1{H–H} and SDF-1{HG3H} (panels A and B, respectively).
Backbone NOE connectivities are indicated by horizontal lines
between residues, with thickness indicating their relative magnitude.
The first three lines below the amino acid sequence represent torsion
angle restraints for the backbone torsion angles / and w, and for the
side-chain torsion angle v1. For / and w, a m symbol indicates
compatibility with an ideal a-helix or 310-helix; a . symbol indicates
compatibility with an ideal parallel or antiparallel b-strand; a w
symbol encloses conformation of both a and b secondary structure
types; and ad symbol marks a restraint that excludes the torsion angle
values of these regular secondary structure elements. Torsion angle
restraints for v1 are depicted by filled squares of three different
decreasing sizes, depending on whether they allow for one, two or all
three of the staggered rotamer positions.
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internal energy calculations and, most of all, by checking the

consistency with biological activity.

3.2. Structure calculations and analysis

A total of 118 observed NOEs were used for structure calcu-

lations of SDF-1{H–H}. Distance restraints derived from

intra-residue, sequential and medium range NOEs were intro-

duced in SA torsion space calculation performed by DYANA

package. The best twenty structures in terms of RMSD were

selected from 80 structures sampled in TSSA calculations.

An analogous procedure has been employed for calculations

on SDF-1{HG3H}.

Backbone clustering analysis for SDF-1{H–H} in the region

3–6 led to the identification of four structural families. The

most populated one contains 13 structures with a backbone

RMSD of 0.36 ± 0.14 Å for residues 3–6. Fig. 3 (top) illus-

trates, from residue 2 to 7, the bundle of conformers pertaining

to the major subfamily of the SDF-1{H–H} peptide, with the

best fitting of the sequence segment 3–6. A comparison

between the canonical angles for a b-aR type turn with the an-

gles of a representative structure for peptide SDF-1{H–H}

shows a close similarity for all angles except for w of Phe5,

which suggests a b-b type turn (Table 3) [17]. The same cluster

analysis was carried out for SDF-1{HG3H}, leading to the

identification of five structural families. Fig. 3 (bottom) shows

the representative structure of the most populated family of

SDF-1{HG3H} for residues 2–7. Even in this case, the back-

bone best fitting was performed on the segment 3–6 (Table 4).
3.3. Biological assays

Fig. 5 shows that an increased phosphorylation of extracel-

lular signal-regulated kinases 1/2 (ERK1/2) occurred on stim-

ulation of CHP100 cells with 125 nM SDF-1a (440 ± 26% of

control values after 30 min). When cells were stimulated with

either SDF-1{1–17} or SDF-1{H–H} for the same period,

ERK1/2 phosphorylation was activated in a dose-dependent

manner, reaching its maximal value at 250 nM for both com-

pounds (190 ± 23% and 140 ± 13%, respectively; mean of three

different experiments ± S.E.). Instead, the SDF-1{HG3H} pep-

tide was inactive.
4. Discussion

According to previous data [8,11], we have previously eval-

uated the affinity of the SDF-1a-based heptadecapeptide

SDF-1{1–17} for the CXCR4-derived peptide CXCR4{29–

39} [5]. We have then used SDF-1{1–17} as a template to

synthesise two novel N-terminal analogues of SDF-1a, the

pentadecapeptides SDF-1{H–H} and SDF-1{HG3H}, both

retaining the receptor binding motif RFFESH and lacking

the N-terminal KPVSLSYR segment, which was substituted

with the RFFESH-derived retro-peptide. Furthermore, in the

SDF-1{HG3H} sequence, the central CPC segment of SDF-

1{H–H} was replaced by three glycines. By fluorimetric titra-

tions (not shown), we have estimated that even these newly

synthesised peptides bind to CXCR4{29–39}, as expected,

with dissociation constants in the same micromolar range as

that measured for SDF-1{1–17} [5]. Nevertheless, the solution

structures of SDF-1{H–H} and SDF-1{HG3H} at 280 K and

pH 5.0, as determined by NMR spectroscopy and DYANA

structure calculations, are quite different. A comparison be-

tween the N-terminal fragments including the residues at posi-

tions 2–7 underlines differences in both the structural fold of

the backbone and the spatial disposition of side chains. Fur-

thermore, SDF-1{H–H} does not show any antagonist activity

toward the CXCR4 receptor, but behaves as an agonist, like

SDF-1{1–17}, whereas SDF-1{HG3H} is completely inactive.



Table 3
Angles and order parameters for the peptide SDF-1{H–H}a

Residue / /S w wS v1 v1S

Ser2 131.1 ± 35.0 0.836 �138.1 ± 71.7 0.561
Glu3 �129.2 ± 102.0 0.359 79.7 ± 15.9 0.965 �47.5 ± 76.7 0.386
Phe4 �111.9 ± 31.8 0.863 60.5 ± 20.1 0.944 �131.8 ± 10.3 0.985
Phe5 �152.4 ± 22.2 0.933 161.7 ± 51.6 0.701 52.3 ± 15.1 0.968
Arg6 �106.0 ± 74.0 0.555 83.0 ± 3.7 0.998 �41.9 ± 60.6 0.574
Cys7 �113.4 ± 74.6 0.536 �132.0 ± 72.0 0.653

a/, w, v1 and S values for residues 2–7, as computed from the structures of the major family identified by clustering residues 3–6.

Table 4
Angles and order parameters for the peptide SDF-1{HG3H}a

Residue / /S w wS v1 v1S

Ser2 117.4 ± 21.4 0.941 150.4 ± 106.6 0.123
Glu3 �124.0 ± 29.6 0.893 �54.1 ± 38.1 0.827 �99.6 ± 30.4 0.8
Phe4 �24.2 ± 44.0 0.769 84.8 ± 13.8 0.975 �44.6 ± 59.6 0.621
Phe5 �87.2 ± 2.7 0.999 149.6 ± 4.8 0.997 �46.8 ± 1.1 1.000
Arg6 64.1 ± 0.1 1.000 67.9 ± 0.0 1.000 �60.5 ± 0.1 1.000
Gly7 �99.6 ± 111.4 0.183

a/, w, v1 and S values for residues 2–7, as computed from the structures of the major family identified by clustering residues 3–6.

Fig. 4. Backbone superposition of SDF-1{H–H} and N-terminal
region of SDF-1a. The solution structure (NMR, blue) of SDF-1{H–
H} (residues 2–7) and the solid-state structure (X-ray, yellow) of the
corresponding N-terminal region of SDF-1a (residues 4–9) are
compared. The superposition is the best fitting of the region compris-
ing residues 2–7.

Fig. 5. Western blot analysis of ERK1/2 phosphorylation in human
CHP100 neuroepithelioma cells. (A) SDF-1{1–17} (lanes 2–4); (B)
SDF-1{H–H} (lanes 5–7); (C) SDF-1a (lane 8). Upper panel: anti
phospho-ERK1/2. Lower panel: anti ERK2 as a control for equal
protein loading.
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By comparing the solution structures of the two analogues and

determining the allowed conformer populations we have iden-

tified conformational differences responsible for the antipodal

biological response. The assignment of HN–HN(i,i+1) connec-

tivities according to those previously found for SDF-1{1–17}

[6] entails that the SDF-1{H–H} structure displays a motif

similar to a turn not stabilised by H-bonding and centred on

the Phe4–Phe5 tract, closely resembling the N-terminal 4–9

fragment in the SDF-1a crystal structure (Fig. 4) [18].

Finally, it is worth noting that the biological behaviour of

SDF-1{H–H} contrasts the view that wild-type Lys1 and

Pro2 are necessary for determining the agonist activity of

SDF-1a related peptides [3], but the recent identification of
two novel agonists of the CXCR4 receptor [19], with a non-na-

tive 1–4 sequence in the N-terminal region, agrees with our

conclusion. Nevertheless, the manner how the insertion of a

bioactive peptide may affect the behaviour of the full-length

chemokine is not plainly predictable. In conclusion, there is

evidence that non-native sequences may be well involved in

recognizing as well as activating the CXCR4 receptor, but

comprehension of structural features underlying the chemo-

kine biological response still needs in-depth studies (see Fig. 5).
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