Results 118 patients having meniscal resection (mean age 32 [SD 7], 66% men, mean baseline KOOS₄ score 48.3 [SD 17]), and 24 patients having meniscal repair (mean age 26 (SD 6), 67% men, baseline KOOS₄ score 47.1 [SD 16]) were included. At 52 weeks both groups had improved, but patients having repair experienced less improvement in KOOS₄ scores than patients having resection (adjusted mean difference in change -13.0, 95% CI: -21.1; -4.9, p=0.002). Sensitivity analysis excluding patients having additional surgery in the index knee within the 52 weeks followup (repair: 32%; resection 9%) yielded similar results. Additional subgroup analysis including only patients with nondegenerative longitudinal-vertical tears, displayed even less improvement in the repair group compared with the resection group (adjusted mean difference in change -22.9, 95% CI: -32.5; -13.2, p<0.001).

Conclusion In this prospective cohort, patients having meniscal repair experienced less improvement after 1 year than patients having meniscal resection.

10 RECOMMENDED CORE OUTCOME DOMAINS FOR TENDINOPATHY DERIVED FROM A DELPHI OF PATIENTS AND HEALTH CARE PROFESSIONALS: THE GRONINGEN ISTS2018 CONSENSUS

¹Bill Vicenzino*, ²Robert-Jan de Vos, ³Håkan Alfredson, ^{4,5}Roald Bahr, ⁶Andrew Carr, ⁶Jill Cook, ⁷Brooke Coombes, ⁸Siu Ngor Fu, ⁹Karin Gravare Silbernagel, ^{1,10}Alison Grimaldi, ^{11,12}Jeremy Lewis, ^{26,27}Nicola Maffulli, ^{13,14}S Peter Magnusson, ¹⁵Peter Malliaras,
⁵Sean McAuliffe, ¹⁶Edwin H Oei, Craig Purdam, ^{17,27}Jonathan Rees, ⁶Ebonie Rio, ¹⁸Aex Scot, ¹⁹Cathy Speed, ^{20,21}Inge van den Akker-Scheek, ^{22,23,24}Adam Weir, ²⁵Jennifer Moriatis Wolf, ²⁰J (Hans) Zwerver. ¹The University of Queensland: School of Health and Rehabilitation Sciences, Australia; ²Erasmus MC University Medical Centre, The Netherlands; ³Sports Medicine Unit, University of Umeå, Sweden, Sweden; ⁴Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Norway; ⁵Aspetar Orthopedic and Sports Medicine Hospital, Qatar; ⁶La Trobe University Sport and Exercise Medicine Research Centre, Australia; ⁷Griffith University, Australia; ⁸Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong (SAR); ⁹Department of Physical Therapy, University of Delaware, USA; ¹⁰Physiotec, Tarragindi, Australia; ¹¹University of Hertfordshire, School of Health and Midwifery, UK; ¹²Central London Community Healthcare NHS trust, London, UK; ¹³Department of Physical Therapy, Bispebjerg Hospital, Denmark; ¹⁴Department of Sports Medicine, Bispebjerg Hospital, Denmark; ¹⁵Department of Physiotherapy, Monash University, Australia; ¹⁶Erasmus MC, University Medical Center; Department of Radiology and Nuclear Medicine, The Netherlands; ¹⁷Fortius Clinic, UK; ¹⁸Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Canada; ¹⁹Professor of Sports Medicine and Human Performance, Cardiff metropolitan University, Cardiff, UK; 20 University of Groningen, University Medical Center Groningen, Department of Sport and Exercise Medicine, The Netherlands; ²¹University of Groningen, University Medical Center Groningen, Department of Orthopedics, The Netherlands; ²²Erasmus MC Center for Groin Injuries, Department of Orthopaedics, Erasmus MC University Medical Centre, The Netherlands; ²³Aspetar Sports Groin Pain Centre, Aspetar Orthopaedic and Sports Hospital, Qatar; ²⁴Sport medicine and exercise clinic Haarlem (SBK), The Netherlands; ²⁵Department of Orthopaedic Surgery, University of Chicago, USA; ²⁶Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Italy; ²⁷Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, UK

10.1136/bjsports-2019-scandinavianabs.10

Introduction Tendinopathy (local tendon pain associated with physical activity) is a challenge to treat despite recent advances. One factor contributing to this challenge is our limited ability to synthesise/meta-analyse research findings, which is further compounded by a lack of valid outcome measures. We determined the core outcome domains against which outcome measures could be recommended.

Materials and methods We conducted a Delphi study of patients and health care professionals (HCP) in two parts: an online survey and consensus meeting. Online survey items were extracted from clinical trial reports. Agree, disagree, or unsure were options in response to: 'The 'item' is important enough to be included in a core domain set of tendinopathy'. A-priori criterion of \geq 70% participant agreement was deemed for selection of a core domain.

Results 32 patients and 28 HCP (92% had >10 years of tendinopathy experience, 71% consulted >10 cases per month) completed the online survey. 2 patients and 15 HCP attended the consensus meeting. Of the original 24 items (from trial reports); 9 were core: Patient overall rating, participation, pain on activity/loading, disability, function, physical function capacity, quality of life, psychology, and pain over a specified timeframe. Eight items were not core domains: range of motion, palpation, clinical examination, structure, pain on examination or without other specification, drop out, and sensory modality pain. Remaining seven items did not meet criterion.

Conclusion The core domain set serves as a guide for reporting of outcomes in clinical trials. Further research should determine these outcomes for each specific tendon.

11 THE EFFECTIVENESS OF THE FÉDÉRATION INTERNATIONALE DE FOOTBALL ASSOCIATION (FIFA) INJURY PREVENTION PROGRAMMES IN SOCCER: A META-ANALYSIS OF META-ANALYSES

¹Wesam Al Attar*, ^{1,2}Mansour Alshehri. ¹Department of Physiotherapy, Faculty of Applied Medical Sciences, Umm Al Qura University, Saudi Arabia; ²Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of Queensland, Australia

10.1136/bjsports-2019-scandinavianabs.11

Introduction The FIFA Medical and Research Centre has designed a comprehensive warm-up programme targeting muscular strength, body kinaesthetic awareness, and neuromuscular control during static and dynamic movements to decrease injury risk for soccer players.

Materials and methods The purpose of this research was to meta analyse the existing meta-analyses so that a conclusion can be drawn on how effective the injury programmes are. Relevant studies were identified by searching five databases for the period January 1990 till 1 July 2018. Results of each meta-analysis were combined together using OR (odds ratios) in a summary meta-analysis. QUOROM was used to assess how comprehensive the reporting included in the meta-analyses had been. The quality of the methodology in the metaanalyses was assessed using AMSTAR 2.

Results In total, the criteria for eligibility were satisfied by four meta-analyses covering fifteen primary studies. All four meta-analyses scored quite highly on QUOROM, but two were rated by AMSTAR 2 as moderate quality and two were found to be of critically low quality. Be that as it may, an overall risk reduction of 34% [OR=0.66 (0.60–0.73); I2=84%] for all injuries and a reduction of 29% [OR=0.71 (0.63–0.81); I2=80%] for injuries to the lower limbs were revealed.

Conclusion Combining every previous meta-analysis into a single source produced decisive evidence that the risk of injuries while playing soccer is reduced as a result of FIFA's programmes.