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Abstract 

Background. Larger one-time values of spatial QRS-T 

angle (SA) are associated with risk. However, experience 

how serial changes in SA (ΔSA) should be interpreted is 

lacking. Even within normal limits, any ΔSA likely signifies 

electrical remodeling. This study aimed to assess the 

impact of choosing either ΔSA or |ΔSA| as one of a set of 

serial ECG difference features that constitute the input for 

our deep learning serial-ECG classifier (DLSEC). 

Methods. DLSEC was trained and tested to detect 

emerging pathology in two serial ECG databases: a heart 

failure database and an acute ischemia database. Either 

ΔSA or |ΔSA| were among 13 features of serial-ECG 

differences. DLSEC was dynamically generated during 

learning, and testing area under the curve (AUC) of the 

receiver operating characteristic was computed. 

Results. The DLSECs performed well in emerging heart 

failure as well as in acute ischemia: testing AUCs were 

72% and 84% for the heart failure database and 77% and 

83% for the ischemia database, for ΔSA or |ΔSA| among 

the features, respectively. 

Conclusion. |ΔSA| among the features was superior to 

ΔSA in discriminating cases and controls. Our study 

supports the concept that any ΔSA, irrespective of its sign, 

indicates a worsening clinical condition. Further 

corroboration requires studies in other clinical situations. 

 

 

1. Introduction 

Serial electrocardiography (ECG) is a promising 

clinical strategy to improve diagnosis and monitoring [1], 

[2]. It consists in the comparison of ECGs of the same 

patient, to reveal emerging pathology and to avoid 

confounding factors caused by inter-subject variability. 

Several serial ECG features can reveal changes in 

clinical cardiac status, and one of them is the 

vectorcardiographic QRS-T spatial angle (SA), defined as 

the angle between the QRS-complex and the T-wave axes. 

SA is a measure of concordance/discordance between 

cardiac depolarization and repolarization [3] and has 

proven to be an important prognostic ECG index [4,5]. 

Until now, experience in how serial SA changes (ΔSA) 

should be interpreted is lacking: usually, clinicians 

interpret larger values of the SA as associated with risk, but 

possible pseudo-normalization can explain that in patients 

with acquired large SA values, new emerging pathology 

could decrease SA, while the clinical status deteriorates.  

Thus, this study aims to assess the impact of choosing 

either ΔSA or |ΔSA| as one of a set of serial ECG features 

to diagnose emerging pathology, using a new deep learning 

serial-ECG classifier (DLSEC). To assess its general 

applicability, we evaluated the DLSEC algorithm in two 

different clinical situations. 

 

2. Material and Methods 

2.1. Data 

Two databases with serial ECGs of control- and case-

patients were considered. For each patient, the database 

contained two digital standard 10-second 12-lead ECGs, 

recorded at different time instants, and called the baseline 

ECG (BL-ECG) and the follow-up ECG (FU-ECG). In 

controls, the clinical status at the time at which BL-ECG 

and FU-ECG were made remained unchanged. In cases, 

the clinical status had changed in an unfavorable direction 

at the time at which the FU-ECG was made; hence, their 

FU-ECG has to be associated with newly arisen pathology. 

The first database (heart failure database; 48/81 

cases/controls)[4] was created to evaluate the ECG 

changes associated with emerging heart failure in subjects 

that had experienced a myocardial infarction in the past. 

The BL-ECGs of all patients were made in a clinically 

stable condition, at least 6 months after acute myocardial 

infarction. The FU-ECGs of controls were made about one 

year after the BL-ECGs, with unchanged clinical status. 

The FU-ECGs of cases was made when they presented 

themselves with evidence of emerging heart failure. 

The second database (ischemia database; 84/398 

cases/controls) [6] was created to evaluate ECG changes 

during acute ischemia. Control patients were 

retrospectively selected from the digital ECG database of 

the Leiden University Medical Centre; BL- and FU-ECGs 

were made during routine check-ups, about one year apart, 
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ascertaining that the clinical status of these patients 

remained unchanged. The case patients belonged to the 

STAFF III database [7,8]. All cases had stable angina; 

acute ischemia was created by the balloon occlusions 

during elective percutaneous transluminal coronary 

angioplasty (PTCA). The BL-ECGs and the FU-ECGs 

were made before and after 3 minutes of balloon occlusion, 

respectively. 

 

2.2. Deep-Learning Serial ECG Classifier 

Our deep-learning serial ECG classifier (DLSEC) is a 

supervised multi-layer neural network (NN) [9]. To build 

and evaluate the classifier, we followed the classical 

scheme as represented in Figure 1, consisting of three main 

steps: 1) feature extraction and data division into a learning 

and a testing dataset, 2) construction and training of the 

classifier using the learning dataset, 3) performance 

evaluation using the testing dataset.  

 

2.2.1 Feature Extraction and Data Division 

All ECGs were analyzed by the Leiden ECG Analysis 

and Decomposition Software (LEADS) [10]. LEADS 

converts the 12-lead ECG into a vectorcardiogram (VCG) 

and measures a multitude of ECG and VCG variables in 

the averaged heartbeat. To represent the major cardiac 

electrical properties, we selected 13 ECG features. By 

subtracting the 13 BL-ECG features from the 13 FU-ECG 

features, we created for each patient a set of 13 ECG 

difference descriptors (DDs): the feature set. The 13 

features are: QRS-duration difference (1), QT-interval 

difference (2), difference in maximal QRS-vector (3) and 

T-vector (4), QRS-integral vector (5) and T-integral vector 

(6) magnitude difference , QRS-complexity (7) and T-

wave complexity difference (8), magnitude of the 

ventricular-gradient difference vector (9), QRS-T spatial-

angle difference (10a) or magnitude of the QRS-T spatial-

angle difference (10b), heart-rate difference (11), 

magnitude of J-vector difference vector (12), T-wave 

symmetry difference (13).  

Together, the 13 DDs characterize how the ECG of an 

individual has changed after the follow-up period. Newly 

emerging cardiac pathology will cause ECG changes, and, 

consequently, non-zero values of the 13 DDs. Due to these 

properties, the 13 DDs, as the input of the DLSEC, allow 

the DLSEC to discriminate between controls (in whom the 

ECG changes are thought to remain limited) and cases (in 

whom larger ECG changes are expected). 

Each database is divided into learning and testing 

datasets with equal prevalences of cases and controls. The 

learning dataset is used to create and train the DLSEC 

(80% is used for training and 20% for validation), while 

the testing dataset was used to evaluate its performance. 

 

 
 

Figure 1. Main steps to construct the deep-learning serial 

ECG classifier and to evaluate its performance. 

 

2.2.2 Construction and Learning of the 

Deep-Learning Serial ECG Classifier 

Our deep-learning serial ECG classifier (DLSEC) is a 

supervised multi-layer neural network (NN) [9] with 13 

inputs (the DDs) and one output, that assumes a value 

between 0 (definitely a control-patient) and 1 (definitely a 

case-patient). The DLSEC is dynamically formed during 

learning: its architecture and training of the neurons are 

alternated to reach the final DLSEC. Neurons (weights and 

biases: [˗1;+1]; activation function: sigmoid) are trained 

with the scaled-conjugate-gradients algorithm [11]. 

The DLSEC construction procedure starts from a 

primitive NN, with one single neuron in one hidden layer: 

the first existing NN. From any given existing NN, new 

candidate structures are created. A candidate NN is a new 

NN that contains the neurons of the existing NN plus one 

additional neuron. Alternative candidate NNs differ as to 

the position of the new neuron in the structure: the new 

neuron can be located in one of the existing hidden layers, 

or it can constitute a new hidden layer. Limitations for 

alternative candidate structures are: the maximal number 

of hidden layers is 3 and, in case of multiple layers, the 

number of neurons in a given hidden layer cannot be larger 

than the number of neurons in the previous hidden layer. 

In all valid alternative candidate NNs, the new neuron 

is initialized with random weight and bias, while the 

weights and biases of neurons that already existed are kept. 

After initialization of the new neuron, the acceptability 

of this candidate NN must be assessed: a candidate NN is 

only acceptable if the new neuron helps the existing NN to 

reach a better training performance after one single initial 

learning iteration. If, after this single initial learning 
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iteration, the training error is larger than the training error 

of the existing NN, a next single initial learning iteration 

with a different initialization of the new neuron is 

attempted. This process is repeated till an initialization is 

found that renders the candidate acceptable, or till 500 

attempts have been done without success: in that case the 

candidate is rejected. If all candidates are rejected, the 

existing NN is kept as the final DLSEC.  

Acceptable candidate NNs enter the learning procedure, 

to investigate if they can outperform the existing NN. To 

this purpose, the final validation error of each candidate 

NN is compared with the validation error of the existing 

NN: if it is smaller, the candidate NN becomes the new 

existing NN. In case of multiple successful candidate NNs, 

the candidate NN with the lowest validation error is chosen 

to replace the existing NN. 

After an existing NN advancement, the structuring 

procedure starts anew. The procedure stops when 1) there 

are no acceptable candidate NNs, 2) no candidate NN is 

able to outperform the existing NN, or 3) there are no 

misclassifications in the learning dataset. 

Like in any optimization problem, there is never a 

guarantee that the optimal performance is reached. Thus, 

our algorithm constructs 100 DLSECs, each time starting 

from a different random initialization. For each realization, 

a receiver operating curve (ROC) [12] is constructed by 

varying the case-control decision threshold between 0 and 

1, thus computing the area under the curve (AUC). The 

resulting DLSEC is the one with the largest learning AUC. 

 

2.2.3 Performance Evaluation 

Finally, the testing dataset is used to evaluate the 

performance of the best DLSEC. This is done in a similar 

way as described above: a ROC is constructed by varying 

the case-control decision threshold between 0 and 1, thus 

constructing the AUC and its 95% CI. 

2.3. QRS-T Spatial Angle Variants 

Purpose of the current study is to evaluate the impact of 

incorporating either the signed QRS-T spatial-angle 

difference, ΔSA (difference descriptor 10a), or the 

absolute QRS-T spatial-angle difference, |ΔSA| (difference 

descriptor 10b), in the feature vector. Consequently, two 

alternative DLSECs were constructed for each of the two 

serial ECG databases. The performances of these two 

variants were compared regarding their AUC and if they 

were statistically significantly >0.5 (DeLong’s test [13]). 

 

3. Results 

Table 1 shows the structures and performances of the 4 

DLSECs that were generated (two for the heart failure 

database and two for the ischemia database, each with 

either |ΔSA| or |ΔSA| as difference descriptor 10). The 

structure of the DLSECs differed strongly: the heart failure 

DLSECs required more neurons than the ischemia 

DLSECs, while the |ΔSA| variant had less neurons than the 

ΔSA variant for the heart failure database and more 

neurons for the ischemia database. 

In both databases, the AUCs of the ΔSA variants (72% 

for the heart failure database and 77% for the ischemia 

database) were smaller than the AUCs of the |ΔSA| 

variants (84% for the heart failure database and 83% for 

the ischemia database). Moreover, the 5-95% CI ranges for  

the ΔSA variants (26% for the heart failure database and 

18% for the ischemia database) were larger than the 5-95% 

CI ranges of the |ΔSA| variants (22% for the heart failure 

database and 16% for the ischemia database). Figure 2 

shows the ROCs; all AUCs were statistically significantly 

larger than 0.5 (P values < 10-3). 

 

4. Discussion 

The aim of this study was to evaluate the impact of 

choosing either ΔSA or |ΔSA| as one of a set of serial ECG 

features for the detection of emerging cardiac pathology. 

This feature set assessment was performed in two serial 

ECG databases: a database of patients with a healed 

myocardial infarction in which the case-patients had 

developed heart failure at follow-up, and a database of 

cardiac patients, in which the case-patients had acute 

ischemia as a consequence of balloon occlusions during 

PTCA. For each database, two DLSECs were developed, 

for either ΔSA or |ΔSA| in the feature set, respectively. 

Table 1 shows that, although these differences did not 

reach statistical significance, the testing AUCs computed 

with the |ΔSA| variants were larger than the testing AUCs 

computed with the ΔSA variants in both databases. 

Additionally,  the   smaller   5-95%   confidence   intervals  

 

Table 1. Performance of the DLSECs computed with the 

two ΔSA variants for the heart failure database and for the 

ischemia database. The structures, between brackets, 

denote the numbers of neurons in the first, second, and 

third hidden layers, respectively. 

 

 ΔSA |ΔSA| 

Heart 

Failure 

Database 

Structure [24 13 10] [16 13 12] 

AUC(%) 72* 84* 

CI (%) [59;85] [73;95] 

Ischemia 

Database 

Structure [12 0 0] [11 9 1] 

AUC(%) 77* 83* 

CI(%) [68;86] [75;91] 
*:P<10-3 when comparing the AUC with 0.5. 
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Figure 2. DLSEC ROCs computed for the heart failure 

(panel A) and ischemia (panel B) databases. Grey and 

black lines depict the ΔSA and |ΔSA| variants, 

respectively. The 45-degree lines represent AUC=0.5. 

 

confirm the superiority |ΔSA| over ΔSA. Hence, the 

discriminatory power of the DLSEC in the detection of 

emerging pathology is stronger if the feature set considers 

changes in SA irrespective of the direction of change. This 

finding is likely to be explained by the possibility of 

pseudo-normalization: newly emerging pathology can 

mask existing pathology because both have an opposite 

effect on the ECG. Hence, a decrease of SA over time is 

not necessarily correlated with an improved clinical status. 

 

5. Conclusion 

Our study supports the concept that any change in SA, 

decrease or increase, can signal a worsening clinical status.  

Future studies have to demonstrate if |ΔSA| is also 

important in the detection of emerging cardiac pathologies 

other than heart failure or ischemia. A positive outcome of 

such studies would render |ΔSA| an essential ECG variable 

in serial ECG analysis in standard clinical practice. 
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