
Fast QR factorization of Cauchy-like

matrices

Steven Delvaux Luca Gemignani
Marc Van Barel

Report TW469, September 2006

n Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Fast QR factorization of Cauchy-like

matrices

Steven Delvaux Luca Gemignani
Marc Van Barel

Report TW469, September 2006

Department of Computer Science, K.U.Leuven

Abstract

n this paper we present two fast numerical methods for comput-
ing the QR factorization of a Cauchy-like matrix C with data points
lying on the real axis or on the unit circle in the complex plane. It
is shown that the rows of the Q-factor of C give the eigenvectors of
a rank structured matrix partially determined by some prescribed
spectral data. This property establishes a basic connection between
the computation of Q and the solution of an inverse eigenvalue prob-
lem for a rank structured matrix. Exploiting the structure of the
associated inverse eigenvalue problem enables us to yield quadratic
time algorithms using a linear memory space.

Keywords : displacement structured matrices, quasiseparable matrices, Cauchy-
like matrices, inverse eigenvalue problems
AMS(MOS) Classification : Primary : 65F30, Secondary : 65F18.



Fast QR Factorization of Cauchy-like Matrices

Steven Delvaux a,2, Luca Gemignani b,1, Marc Van Barel a,2

aDepartment of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Leuven (Heverlee), Belgium.

bDipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5,
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1 Introduction

This paper is motivated by the search for efficient algorithms to compute a
rank-revealing factorization of a displacement structured matrix A ∈ Cn×n.
The design of efficient algorithms for computing the singular value decompo-
sition (SVD) is a challenging problem. In the past years a number of different
methods have been developed to alleviate the computational burden of the
SVD, yet retaining its numerical robustness. Among these, it is worth men-
tioning the orthogonal-triangular decompositions of the form A = UTV , where
U and V are unitary whereas T is upper triangular (see [10,16] and the refer-
ences therein). These decompositions are useful in the solution of least squares
problems and to provide an initial approximation which can be refined by some
iterative scheme approaching a rank-revealing factorization of A.

It is well known that a Toeplitz-like and a Hankel-like matrix can be reduced

into a Cauchy-like form C =

(
gi

Thj

d
(1)
i −d

(2)
j

)
, (gi, hj ∈ Cp), using the FFT or other

trigonometric unitary transformations. The elements d
(i)
j are generally referred

to as interpolation nodes, nodes for short, whereas the row-vectors gi and the
column-vectors hj are the generators of C. Depending on the displacement
operator employed in this reduction we find that the nodes of the matrix C
lye either on the real axis R or on the unit circle T in the complex plane.

The use of the transformation of displacement structured matrices to gen-
eralized Cauchy matrices was first suggested in [17] and then systematically
applied in [14] to obtain fast and stable linear solvers which incorporate piv-
oting strategies. The same approach can ideally be pursued for computing
orthogonal-triangular decompositions of Toeplitz-like and Hankel-like matri-
ces. Since C is unitarily similar to A, then the QR factorization of C gives a
UTV decomposition of A. The overall cost of the resulting method is domi-
nated by the cost of computing the QR factorization of a Cauchy-like matrix
C with nodes on the real axis or on the unit circle.

In this paper we present two fast O(n2) numerical methods for the QR fac-
torization of such a matrix C based on the reduction of this computation to
solving an inverse eigenvalue problem for an associated quasiseparable matrix
H ∈ Cn×n. Roughly speaking, a matrix H ∈ Cn×n is quasiseparable (of order
r) if all its submatrices which do not contain the diagonal have small rank
(less than or equal to r).

More precisely, it is shown that the rows of the Q-factor of C are the eigen-
vectors of a quasiseparable matrix H of order r, with r less than or equal to
the displacement rank of A, partially determined by some given spectral data.
The computation of Q can thus be reduced to reconstructing the whole matrix
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H with a prescribed quasiseparable structure from some partial information
about its eigensystem. Once H is found, the upper triangular factor R can be
determined column-by-column by solving n quasiseparable linear systems of
the form H − αIn for a suitable α. Software is available to solve each system
at the cost of O(n) flops in a backward stable way.

At the core of our QR algorithm there are two alternative fast methods for the
solution of the inverse eigenvalue problem, each of them requiring O(n2) flops
and O(n) memory space. The first method is a straightforward generalization
of the procedure outlined in [19] for the case r = 1. The method makes use of
a representation of H of the form H = D+tril(XH ·Y,−1)+triu(ZH ·W, 1) for
suitable X, Y, Z, W ∈ Cr×n and a diagonal matrix D. Generally speaking, this
means that the strictly lower triangular part of H coincides with the strictly
lower triangular part of a rank-r matrix and the same property holds for the
strictly upper triangular part. It is well known [21] that there are order-r
quasiseparable matrices which do not admit such a representation in terms
of rank-r matrices and, therefore, from a numerical standpoint the employed
parametrization can potentially break down and/or to be very poorly condi-
tioned. Similar issues have been recently addressed in several papers [3,9,20,2]
concerning the design of fast adaptations of the QR (QL) iteration for eigen-
value computation of quasiseparable matrices.

The second method circumvents the numerical difficulty by taking a different
look at the recursive process of reconstructing the matrix H. The basic idea,
suggested by some results in [18,1], is to formulate the reverse process as a
sequence of QL iterations with ultimate shifts. Each QL iteration can again be
reversed by yielding a shifted LQ step. In this way it is shown that the origi-
nal reconstruction process can be thought of as a sequence of shifted LQ steps
with prescribed shifts. The LQ formulation is easier to implement in a numer-
ically robust way than the first method. In fact the resulting algorithm can
be simply constructed from a small set of building blocks for matrix manip-
ulations with quasiseparable structures, including matrix multiplication, QR
factorization and Schur-like decompositions of unitary quasiseparable matri-
ces. Highly accurate and efficient implementations of these blocks are available
(see [8,7,5,6] and the references given therein).

The paper is organized as follows. In sect. 2 we recall some basic facts concern-
ing the properties of the QR factorization of a Cauchy-like matrix C as well
as its relationships with the solution of an inverse eigenvalue problem for a
certain quasiseparable matrix H. In sect. 3 we extend the procedure described
in [19] for the fast solution of the inverse eigenvalue problem under some ad-
ditional mild assumptions on C. In sect. 4 we establish the QL formulation
and present a fast LQ-based algorithm to solve the inverse eigenvalue problem
without any additional requirement. Finally, the conclusion and a discussion
are the subjects of Sect. 5.
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2 Preliminaries and Basic Reductions

In this section we exploits some well-known properties of displacement and
rank structured matrices by showing that the QR factorization of a Cauchy-
like matrix C with nodes on the real axis or on the unit circle can be computed
by solving an inverse eigenvalue problem for a quasiseparable matrix H ∈ Cn×n

with some prescribed spectral data.

Given a set of pairwise distinct points {d(i)
j }, 1 ≤ j ≤ n, i = 1, 2, and two

matrices G ∈ Cn×p, GT = [g1| . . . |gn], and H ∈ Cp×n, H = [h1| . . . |hn], the

Cauchy-like matrix C ∈ Cn×n with nodes {d(i)
j } and generators gi, hi ∈ Cp,

1 ≤ i ≤ n, is defined by

C =

 gi
T hj

d
(1)
i − d

(2)
j


1≤i≤n,1≤j≤n

(1)

The generators of a Cauchy-like matrix C are not uniquely determined in the
sense that the matrix G·H can virtually admit several different decompositions
of the form G ·H = G′ ·H ′, where G′T , H ′ ∈ Cs×n for a certain s. However, if C
has a full-rank pair of generators (G, H), that is, rank(G) = rank(H) = p, then
any pair of generators (G′, H ′) of C satisfies the same property rank(G′) =
rank(H ′) = p and, moreover, if the number of columns of G′ (the number of
rows of H ′) is p, then G′ = GB and H ′ = B−1H for a suitable invertible
matrix B ∈ Cp×p.

Cauchy-like matrices frequently arise in functional approximation problems
concerning rational functions [11], [19]. The transformation of displacement
structured matrix A to a generalized Cauchy matrix C was also systematically
investigated with the aim of developing fast and stable linear solvers which
incorporate pivoting strategies [14].

This latter application is particularly meaningful for us since the same ap-
proach can be exploited for the efficient computation of the UTV decomposi-
tion of A provided that we have a fast algorithm for the QR factorization of
C. Depending on the displacement operator employed in the transformation
from A to C we find that the nodes of C may lye on the real axis or on the
unit circle in the complex plane . Hence, throughout this paper it is always
assumed that {d(i)

j } ⊂ R or {d(i)
j } ⊂ T, T = {z ∈ C : |z| = 1}.

The matrix C in (1) satisfies the displacement equation

D1 · C − C ·D2 = G ·H, (2)

where D1 = diag[d
(1)
1 , . . . , d(1)

n ] and D2 = diag[d
(2)
1 , . . . , d(2)

n ] are diagonal ma-
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trices. In addition, these matrices are Hermitian for real nodes and unitary
for nodes of modulus 1. By substituting the QR factorization of C, C = QR,
into the equation (2), we obtain that

D1 ·QR−QR ·D2 = G ·H, G ∈ Cn×p, H ∈ Cp×n,

which yields

M = QHD1Q = RD2R
−1 + (QHG) · (HR−1), (3)

whenever C is invertible.

We next look at the structure of the matrix M into more detail. Since RD2R
−1

is upper triangular with diagonal elements equal to the diagonal elements of
D2 and (QHG) · (HR−1) has rank at most p, then M turns out to be lower
quasiseparable of order p.

A matrix B ∈ Cn×n is called order (nL, nU)-quasiseparable [7] if

nL ≥ max
1≤k≤n−1

rankB[k+1: n, 1: k], nU ≥ max
1≤k≤n−1

rankB[1 : k, k+1: n], (4)

where B[i : j, k : l] is the submatrix of B with entries having row and column
indices in the ranges i through j and k through l, respectively 3 . In case
nU = nL = p one refers to A as an order-p-quasiseparable matrix.

A more complete description of the quasiseparable structure of M is achieved
by taking into account the localization of the interpolation nodes. For the
case of real nodes, since D1, and a fortiori M , is Hermitian, it immediately
follows that M = D2 +S and S is Hermitian quasiseparable of order p. In the
unit circle case the matrix D1, and a fortiori M , is unitary. By virtue of the
following result [12], also in this case the matrix M can be split as M = D2+S
where S is quasiseparable of order p.

Theorem 2.1 Let F ∈ Cn×n be a unitary matrix with a quasiseparable struc-
ture of order r in its strictly lower triangular part. Then F is an order-r-
quasiseparable matrix.

The conclusion is summarized in the next theorem where the additional as-
sumption | det A| = | det C| 6= 0 is removed.

Theorem 2.2 Let C =

(
gi

Thj

d
(1)
i −d

(2)
j

)
∈ Cn×n, where gi, hj ∈ Cp and D1 =

diag[d
(1)
1 , . . . , d(1)

n ] and D2 = diag[d
(2)
1 , . . . , d(2)

n ] are diagonal matrices with mu-
tually distinct entries located on the unit circle T or on the real axis R. Then

3 This is a Matlab-style notation. Matlab is a registered trademark of The Math-
Works, Inc.
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there exists a QR factorization of C, C = QR, such that

QHD1Q = M = D2 + S, (5)

where S is quasiseparable of order p.

PROOF. It remains only to prove the theorem in the case where C is singu-
lar. We make use of a continuity argument. Let E ∈ Rn×p be a matrix with all
its entries equal to 1. Moreover, denote by C(t) the Cauchy-like matrix such
that

D1C(t)− C(t) ·D2 = (G + tE) · (H + tET ).

Observe that det(C(t)) is a polynomial in the variable t of degree at most
2n which is not identically zero. It follows that det(C(t)) = 0 has finitely
(≤ 2n) many solutions. Consider a sequence {tk} approaching zero such that
det(C(tk)) = det Ck 6= 0 and let Ck = QkRk, k ≥ 0, be a QR factorization of
Ck. Obviously Ck → C. Further, since {Qk} is a bounded sequence from the
Bolzano-Weierstrass theorem we get that {Qk} admits a subsequence {Qkj

}
converging to a certain unitary matrix Q. Then the corresponding subsequence
{Rkj

} approaches the upper triangular matrix R = QHC. From (5) we obtain
that

QH
kj

D1Qkj
= M = D2 + Skj

,

where Skj
is quasiseparable of order p. Since the rank constrains (4) pass to

the limit, we find that QHD1Q − D2 is also quasiseparable of order p which
completes the proof.

Some comments on this theorem are in order. Roughly speaking, the theorem
says that the computation of a QR factorization of the Cauchy-like matrix C
can be reduced to determining a matrix S and a unitary matrix Q satisfying
(5) given in input some (partial) information about the structure and the
eigensystem of the matrix M = D2 + S. This task can also be regarded as
a structured inverse eigenvalue problem, IEP for short, for the matrix M . If
C is singular we know that its QR factorization is essentially unique. This
means that in this case any QR factorization of C verifies (5). In the singular
case the uniqueness property of Q is lost and we can find QR factorizations
of C which do not satisfy (5). In the case p = 1 it is also possible to prove
a sort of converse result by showing that the solution of the IEP (5) is also
essentially unique [19]. The same proof does not work in the case p > 1 and
conditions ensuring the uniqueness of the solution of the IEP (5) are much
more difficult to find. In this case in order to guarantee that the computed
matrix Q is the Q−factor of a certain QR factorization of C, that is, QH · C
is upper triangular, we proceed in a substantially different way. Our approach
is recursive in nature. The basic idea is to compute a matrix Q satisfying (5)
given in input the QR factorization of a certain (n − 1) × (n − 1) submatrix
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of C. Since this construction is essentially unique, then we are able to show
that the computed Q has the desired property.

3 The First Solution Method: A Generator-Based Approach

In this section we describe a recursive method for computing a QR factoriza-
tion of a Cauchy-like matrix C = QR based on the characterization of the
unitary factor Q given in Theorem 2.2 as the solution of a suitable IEP. The
method relies upon the following approach. Assume that a QR factorization
of C([n − k + 1 : n], [1 : k]) = QkRk is available, 1 < k < n, then we may
compute Qk+1 by solving the IEP problem (5) for the Cauchy-like matrix
C([n−k : n], [1 : k+1]). Once Qk+1 is determined, the upper triangular factor
Rk+1 such that C([n− k : n], [1 : k + 1]) = Qk+1Rk+1 is a QR factorization of
C([n−k : n], [1 : k+1]) can be found at the additional cost of O(k2) flops [4,8]
by solving k+1 linear systems with the order-p (k+1)×(k+1) quasiseparable
matrix QH

k+1D1([n− k : n], [n− k : n])Qk+1 given in (5).

If C([n − k : n], [1 : k + 1]) is assumed invertible, then from (3) we obtain
that the entries located in the strictly lower triangular part of the matrix
QH

k+1D1([n − k : n], [n − k : n])Qk+1 can be completely specified by the row
vectors of QH

k+1G([n−k : n], [1 : p]) and the column vectors of H([1 : p], [1 : n−
1])R−1

k+1 which are called the generators of the (lower) quasiseparable structure
of the matrix. The algorithm proposed in this section for the solution of the
IEP problem exploits the properties of such a condensed representation for the
entries of the quasiseparable matrices involved. This is because it is referred to
as a generator-based algorithm. Since for a given quasiseparable matrix such
a kind of representation can not exist [21], in theory the applicability of the
algorithm is restricted to strongly nonsingular (w.r.t. the main antidiagonal)
Cauchy-like matrices and in practice the algorithm may suffer from numerical
drawbacks due to poorly conditioned computations (compare with Example
3.1 at the end of this section).

For the sake of notational simplicity set k = n − 1 and let D̂1 = D1([2 :
n], [2 : n]) and D̂2 = D2([1 : n − 1], [1 : n − 1]) be the trailing and the
leading principal submatrix of D1 and D2, respectively. Also, let Qn−1 = Q̂
and Rn−1 = R̂ be, respectively, the unitary and the upper triangular factor in
the QR factorization of the Cauchy-like matrix C([2 : n], [1 : n− 1]) = Ĉ. The
matrix Q̂ ∈ C(n−1)×(n−1) satisfies

Q̂HD̂1Q̂ = D̂2 + Ŝ, tril(Ŝ, 0) = tril(Q̂HĜ · ĤR̂−1) = tril(X̂H · Ŷ , 0), (6)

where Ĝ = G([2 : n], [1 : p]), Ĥ = G([1 : p], [1 : n − 1]), X̂ = [x̂1| . . . |x̂n−1] ∈
Cp×(n−1) and Ŷ =

[
ŷ1| . . . |ŷn−1

]
∈ Cp×(n−1). Here we adopt the Matlab nota-
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tion tril(B, p) = (ti,j) to denote the lower triangular portion of B = (bi,j) ∈
Cn×n such that ti,j = bi,j for j − i ≤ p, and ti,j = 0 elsewhere. Analogously,
the n× n matrix T = triu(B, p) is formed by the upper triangular portion of
B such that ti,j = bi,j for j − i ≥ p, and ti,j = 0 elsewhere.

Now let us consider the extension C ∈ Cn×n of Ĉ,

C =


gH

1 h1

d
(1)
1 −d

(2)
1

. . .
gH

1 hn−1

d
(1)
1 −d

(2)
n−1

Ĉ

gH
1 hn

d
(1)
1 −d

(2)
n

...

gH
n hn

d
(1)
n −d

(2)
n

 .

Observe that

P =

 1 0H

0 Q̂H

C =



gH
1 h1

d
(1)
1 −d

(2)
1

. . .
gH

1 hn−1

d
(1)
1 −d

(2)
n−1

gH
1 hn

d
(1)
1 −d

(2)
n

R̂

ρ1

...

ρn−1


, (7)

is upper Hessenberg. Whence, we can find n− 1 unitary matrices Gj = Ij−1⊕
Gj ⊕ In−j−1, 1 ≤ j ≤ n− 1, where Gj is of the form

Gj =

 1 αj

−ᾱj 1

 /(1 + |αj|2) or Gj =

 αj 1

−1 ᾱj

 /(1 + |αj|2), |αj| ≤ 1,

such that

Gn−1 · · · G1

 1 0H

0 Q̂H

C = Gn−1 · · · G1P = R (8)

yields a QR factorization of the extended Cauchy-like matrix C.

Set QH
n = QH = Gn−1 · · · G1

 1 0H

0 Q̂H

. From (3), we have

QHD1Q = D2 + S, tril(S, 0) = tril(XH · Y, 0), (9)

where X = [x1| . . . |xn] ∈ Cp×n and Y = [y1| . . . |yn] ∈ Cp×n. We can rewrite
(9) as follows

Gn−1 · · · G1

 1 0H

0 Q̂H


 d

(1)
1 0H

0 D̂1


 1 0H

0 Q̂

GH
1 · · · GH

n−1 =

 D̂2 0

0H d̂(2)
n

+ S.
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Using Q̂HD̂1Q̂ = D̂2 + Ŝ, we get

Gn−1 · · · G1

 d
(1)
1 0H

0 D̂2 + Ŝ

GH
1 · · · GH

n−1 =

 D̂2 0

0H d̂(2)
n

+ S. (10)

Relation (10) provides the basis for the recursive construction of the matrix Q
given the partial solution Q̂ of the smaller IEP problem. A set of generators
of C is given by

G = [g1|ĝ2| . . . |ĝn]H =
[
g1|Ĝ

]H
∈ Cn×p,

and

H = [h1| . . . |hn−1|hn] =
[
Ĥ|hn

]
∈ Cp×n.

Due to the remark after (1) we know that G and H are uniquely determined
up to multiplication by a small p × p matrix B and its inverse, respectively.
There follows that the same property also holds for the generators X and
Y of the (lower) quasiseparable structure of S. For the sake of simplicity we
can take B = Ip. ¿From (3), we know that a possible choice for XH in (9) is
XH = QHG. Hence, we find

GH =

 1 0H

0 Q̂

 [g1|X̂
]H

=

 1 0H

0 Q̂

GH
1 · · · GH

n−1X
H

which implies

XH = Gn−1 · · · G1

[
g1|X̂

]H
. (11)

Similarly, we can obtain recursive relations for the elements of H. We have
with P defined by (7) and HR−1 = Y from (3) that

[
0|Ŷ

]
P =

[
0|Ŷ

]


gH
1 h1

d
(1)
1 −d

(2)
1

. . .
gH

1 hn−1

d
(1)
1 −d

(2)
n−1

gH
1 hn

d
(1)
1 −d

(2)
n

R̂

ρ1

...

ρn−1


=
[
Ĥ|η

]
,

for a suitable η ∈ Cp. Moreover, we find that

H̃ =
[
Ĥ|η

]
=
[
y1| . . . |yn−1|ζ

]
R

for a suitable ζ ∈ Cp. From (8), it follows that

H̃ =
[
y1| . . . |yn−1|ζ

]
Gn−1 · · · G1P

9



which gives [
0|Ŷ

]
P =

[
y1| . . . |yn−1|ζ

]
Gn−1 · · · G1P

or [
0|Ŷ

]
GH

1 · · · GH
n−1 =

[
y1| . . . |yn−1|ζ

]
. (12)

Inspired by (11) and (12), let us introduce the vectors ỹi and x̃i by means of
the relations

[x1| . . . |xk−1|x̃k]
H = (Gk−1 · · · G1)([1 : k], [1 : k]) [g1|x̂1| . . . |x̂k−1]

H ,

and [
y1| . . . |yk−1|ỹk

]
=
[
0|ŷ1| . . . |ŷk−1

]
(GH

1 · · · GH
k−1)([1 : k], [1 : k]).

The Givens rotations G1, . . . ,Gn−1 can be computed by using the relation
(10) without performing the triangularization of P directly. This enables the
computation of Q given Q̂ to be performed at a linear rather than a quadratic
cost. At the first step we want to determine G1 such that

G1

 d
(1)
1 0

0 d
(2)
1 + x̂H

1 ŷ1

GH
1

 1

0

 = G1 [g1|x̂1]
H [0|ŷ1] G

H
1

 1

0

+

 d
(2)
1

0


which can be rewritten as d

(1)
1 0

0 d
(2)
1 + x̂H

1 ŷ1

GH
1 e1 = [g1|x̂1]

H [0|ŷ1] G
H
1 e1 + d

(2)
1 GH

1 e1,

where e1 =

 1

0

. In this way we obtain

 d
(1)
1 − d

(2)
1 −gH

1 ŷ1

0 0

GH
1 e1 = 0

which enables the computation of G1.

At the kth step Gk operates on the 2× 2 matrix

(Gk−1 · · · G1

 d
(1)
1 0H

0 D̂2 + Ŝ

GH
1 · · · GH

k−1)([k : k + 1], [k : k + 1]) =

=

 θk ϑk

x̂H
k ỹk d

(2)
k + x̂H

k ŷk

 .
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We have

Gk

 θk ϑk

x̂H
k ỹk d

(2)
k + x̂H

k ŷk

GH
k e1 = Gk [x̃k|x̂k]

H [ỹk|ŷk] G
H
k e1 +

 d
(2)
k

0


which gives  θk − d

(2)
k − x̃H

k ỹk ϑk − x̃H
k ŷk

0 0

GH
k e1 = 0. (13)

At the end of the process a factored form of the unitary matrix Q and a
generator representation of the order-p quasiseparable matrix M are available
at the cost of O(n) flops. Due to computations performed in the updating
procedure the generators in the strictly upper triangular part of M can have
length greater than p. In this case a compression scheme [2] requiring addi-
tional O(n) flops must be carried out to recover a condensed representation for
the whole matrix M . Once M is known, then the last column rn of R = (ri,j)
can efficiently be computed by solving the linear system

(M − d(2)
n I)rn = XHhn.

Moreover, by using rn we can determine yn by the last column of the relation
Y R = H, i.e, Y rn = hn or

rn,nyn = hn −
n−1∑
i=1

ri,nyi.

However, this relation clearly shows that the norm of the vectors y
(k)
j which

generate the lower triangular part of the matrix Sk can not be bounded from
above since, for instance, large vectors are expected if rn,n is almost zero.
The growth of the magnitude of these vectors generally leads to numerical
difficulties and poorly accurate results as discussed in the next example.

Example 3.1 Let p = 1 and n = 4. Consider the Cauchy matrix C ∈
R4×4 defined by the set of generators g = [1, 1, 1, 0], h = [1, 1, 1, 1], D1 =

diag[2 cos( (2i−1)π
9

)]1≤i≤4, and D2 = diag[2 cos(2iπ
9

)]1≤i≤4. By using Matlab we
get

C =



2.8794 0.6527 0.3473 0.2660

−1.8794 1.5321 0.5000 0.3473

−0.5321 −1.4397 1.5321 0.6527

0 0 0 0


.

Since the 3×3 leading principal submatrix of C is nonsingular, we find that the
QR factorization of C is essentially unique. The internal MATLAB function
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[Q,R] = qr(C) returns

Q =



−0.8276 −0.3219 0.4599 0

0.5401 −0.6798 0.4961 0

0.1529 0.6590 0.7365 0

0 0 0 1.0000


,

from which we obtain

S = QT D1Q−D2 =



0.0387 0.0985 −0.4864 0

0.0985 0.1588 −0.7840 0

−0.4864 −0.7840 1.4553 0

0 0 0 0.3473


.

One easily deduces that the lower triangular part of S can not be represented as
the lower triangular part of a rank-one matrix or, differently saying, we are not
able to find two vectors x, y ∈ R4 such that (S)i,j = xiyj for 1 ≤ j ≤ i ≤ 4.
Although the rank properties of the matrix S are verified the representation
used is too week to capture the structure of S correctly. If we perturb the
vector g and thereby set g = g(ε) = [1, 1, 1, ε], then C = C(ε) is nonsingular
and the method described above works. However, since we are dealing with a
nearly degenerate situation poor results and ill-conditioning problems can be

expected. For ε = 10−8 we find that
max |yi|
min |yi|

' 3.6e + 07.

4 The Second Solution Method: A QL-Based Approach

The algorithm in the previous section computes the unitary Hessenberg matrix
Q̃ = G1 · · · Gn−1 which solves (10) by making use of a generator-based repre-
sentation for the quasiseparable matrices involved. In this section we present a
different solution method which works under less restrictive assumptions and
is suited to employ more robust quasiseparable parametrizations yet retaining
low complexity estimates.

The starting point is the relation (10) which, for notational convenience, is
rewritten as

Q̃ÃQ̃H = A, (14)

12



where

Ã =

 d
(1)
1 0H

0 D̂2 + Ŝ

 , A =

 D̂2 0

0H d̂(2)
n

+ S.

The direct problem addressed in the previous section consists in computing
the matrix A given in input the matrix Ã. Let us consider now the reverse
problem. Since the first eigenvalue d

(1)
1 of Ã, and, a fortiori, of A, is given and,

moreover, we know that the QR (QL) iteration maintains the quasiseparable
properties of the input matrix [3,9,20,2], then it is quite natural to look at the
action of the shifted QL iteration applied to the matrix A with ultimate shift
d

(1)
1 . The result should be a certain matrix B defined byA− d

(1)
1 In = Q̃L̃,

B = L̃Q̃ + d
(1)
1 In

(15)

and suitably related to Ã.

The scheme (15) can be run backwards in order to recover the matrix A
from B. The computation essentially amounts to the LQ factorization of the
matrix B − d

(1)
1 In. Inspired by this consideration, we are going to investigate

the properties of LQ factorizations of the matrix Ã − d
(1)
1 In. Notice that the

matrix is singular and, therefore, its LQ factorization is not unique. In what
follows we relate the unitary factor of a certain LQ factorization of Ã− d

(1)
1 In

to the sought unitary matrix Q̃. The first result describes the structure of the
matrix

E = (Ã− d
(1)
1 In)Q̃H . (16)

Observe that Q̃H = GH
1 · · · GH

n−1 is a upper unitary Hessenberg matrix specified
by its Schur parametrization [13,15].

Theorem 4.1 Let Ẽ = E([2 : n], [2 : n]) be the (n − 1) × (n − 1) trailing
principal submatrix of the matrix E defined in (16). Then Ẽ has an order-p
upper quasiseparable structure including the main diagonal, that is,

p ≥ max
1≤k≤n−1

rankẼ[1 : k, k : n− 1].

PROOF. We show that Q̃(Ã− d
(1)
1 In) has an order−p lower quasiseparable

structure including the main diagonal. In the case of real nodes this implies
immediately the thesis. In the case of nodes located on the unit circle it suffices
to apply the result to the conjugate Cauchy-like matrix C̄. ¿From (3) we find
that

Q̃

 1 0H

0 Q̂H

 (D1 − d
(1)
1 In)

 1 0H

0 Q̂

 = R(D2 − d
(1)
1 In)P−1 + (QHG) · (HP−1),
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where P is the irreducible upper Hessenberg matrix defined by (7) and (8).
This implies that

Q̃(Ã− d
(1)
1 In) = R(D2 − d

(1)
1 In)P−1 + (QHG) · (HP−1).

The thesis now follows by observing that the first column of the matrix on
the left-hand side is zero and, moreover, the inverse of an irreducible upper
Hessenberg matrix admits an order-1 lower quasiseparable structure including
the main diagonal.

The upper quasiseparable structure of Ẽ in Theorem 4.1 can efficiently be
exploited to generate in linear time a unitary matrix U such that ẼU is lower
triangular [8]. More specifically, it is possible to show that U can further be
decomposed as U = V ·T , where V and T are unitary, T is lower banded with
bandwidth p− 1 and, moreover,

V =

 Ip−1 0H

0 V̂

 ,

where V̂ is upper banded with bandwidth p. In this way we obtain that

(Ã− d
(1)
1 In)GH

1 · (GH
2 · · · GH

n−1)

 1 0H

0 U

 = lower triangular. (17)

Observe that

GH
2 · · · GH

n−1 = G1Q̃
H =

 1 0H

0 G

 ,

where G is a unitary upper Hessenberg matrix.

Since the (n − 1) × (n − 1) trailing principal submatrix of (Ã − d
(1)
1 In) is

nonsingular and the same clearly holds for the corresponding submatrix of
(Ã− d

(1)
1 In)GH

1 we conclude that G ·U is the essentially unique unitary factor
in the LQ factorization of the trailing principal submatrix of order n − 1
of (Ã − d

(1)
1 In)GH

1 . Therefore, if we assume to know the matrix G1 then the
computation of G and, hence, of Q̃ might be performed by means of the
following two-step procedure.

(1) Firstly we compute an LQ factorization of (Ã − d
(1)
1 In)GH

1 = L̃S̃H with

S̃ unitary of the form S̃ =

 1 0H

0 S

.
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(2) Secondly, in view of (17) we recover the matrix G from a suitable refac-
torization of S as product of unitary matrices with specified shapes. More
precisely, we have

S = G · U = G · V · T, (18)

where G is unitary upper Hessenberg and V and T are specified as above.

This procedure is eligible for computing the right matrix G provided that the
decomposition (18) is essentially unique. Conditions for the uniqueness are
proved in the next result.

Theorem 4.2 Assume that all the entries in the last nonzero subdiagonal of
T and in the last nonzero superdiagonal of V̂ are nonzero. Then the factors
G, V and T in the decomposition of S are essentially unique whenever we have
fixed the first p− 1 and the last p Givens rotations in the Schur decomposition
of G.

PROOF. Let us first consider the factorization of the matrix S as the product
of G ·V = P and T . Observe that P is unitary and T is unitary lower banded
with bandwidth p− 1. Let

T̃ =


Ip−1

0(n−p)×(p−1)

T

0p−1 0(p−1)×(n−p)

 ,

be the upper triangular matrix obtained from T by an appropriate bordering.
Introduce also the corresponding bordered unitary matrix P̃ defined by

P̃ =

 0(p−1)×(n−1) Ip−1

P 0(n−1)×(p−1)

 .

We have

P̃ · T̃ =


0p−1 0(p−1)×(n−1)

P

 Ip−1

0(n−p)×(p−1)

 S

 .

Observe that the first p−1 columns of P coincide with the first p−1 columns
of G which are completely determined by the Givens rotations G2, . . . ,Gp. It
follows that

T̃H · T̃ = (P̃ · T̃ )H · (P̃ · T̃ ) =


Ip−1 [Ip−1, 0(p−1)×(n−p)]G

HS

SHG

 Ip−1

0(n−p)×(p−1)

 In−1

 ,
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which provides the Cholesky decomposition of the positive semidefinite matrix
on the right hand-side. If the main diagonal of T̃ is nonzero except for the
entries in the last p− 1 positions, then we can conclude that T and, therefore,
P are essentially unique. The same reasoning can be applied to prove the
essential uniqueness of the factors G and V in the decomposition of P .

Generally speaking, this theorem says that, if we know the first p− 1 and the
last p Givens rotations in the Schur decomposition of G then under quite mild
assumptions we are able to determine the matrix G completely by refactoring
S as the product of suitable unitary matrices. All these factorizations can be
computed in linear time by using numerically stable methods. Furthermore,
the required Givens rotations can also be obtained in linear time in the tri-
angularization of the matrix P in (8). Finally, by using (14) we can update
in linear time the parametrization of Ã to obtain a parametrization for the
larger matrix A.

Example 4.3 Let C = C(ε) be the matrix defined in the previous example for
ε = 10−8. We find that

(Ã− d
(1)
1 I4) · GH

1 =



0.7277 −0.4937 0 0

0.5498 0.8105 −0.3531 0.0000

0.1982 0.2922 −2.1267 0.0000

−0.0000 −0.0000 0.0000 −3.4115


,

and

G =


−0.5735 −0.8192 0.0000

−0.8192 0.5735 −0.0000

−0.0000 0.0000 1.0000

 , U =


−0.1985 0.9801 0

−0.9801 −0.1985 0.0000

0.0000 0.0000 1.0000

 .

Observe that the entry in position (2, 3) of U = U(ε) becomes smaller and
smaller as ε approaches zero. Since in this case U = V = V̂ , according to
Theorem 4.2 this behavior can indicate a connection between the rank structure
of Ã and the properties of the factorization (18)

Remark 4.4 The computational effort of the LQ-based method can be further
reduced by avoiding the explicit computation of the factors in the LQ factor-
ization of Ã−d

(1)
1 In. In particular, Theorem 4.1 implies that, starting from the

matrix Ã− d
(1)
1 In having quasiseparable structure in its strictly upper triangu-

lar part, applying the factor QH = GH
1 · · · GH

n−1 to the columns will result in the

matrix E = (Ã− d
(1)
1 In)Q̃H in (16) having quasiseparable structure including
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the main diagonal. It turns out that under some mild conditions, this char-
acterization is sufficient to obtain the required Givens rotations GH

1 , . . . , GH
n−1

directly, except for the first and the last p Givens rotations. An implementation
of such an idea will be described in a forthcoming paper.

5 Conclusion and Discussion

In this paper we establish the theoretical basis of fast methods to find the QR
factorization of a Cauchy-like matrix C, as a means of computing a UTV de-
composition of a displacement structured matrix A efficiently. Our approach
is based on the characterization of the unitary factor Q as the eigenvector ma-
trix of a partially given quasiseparable matrix M suitably related to C. This
enables the computation of Q to be reduced to solving an inverse eigenvalue
problem for the matrix M . Two methods are presented which are suited to
exploit the quasiseparable structure of M . The first method makes use of a
condensed representation of M via generators which can be prone to numer-
ical instabilities and difficulties. The second method reduces to computing a
sequence of QR factorizations of quasiseparable matrices, or to some more
efficient version of this scheme (cf. Remark 4.4). Therefore, this method can
in principle be made more robust by using appropriate condensed represen-
tations for these matrices. Details concerning the implementation of these
methods as well as the results of numerical experiments will be the subject of
a forthcoming paper.
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