
symmetryS S

Article

A Symmetry-Based Approach for First-Passage-Times
of Gauss-Markov Processes through
Daniels-Type Boundaries

Enrica Pirozzi

Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy;
enrica.pirozzi@unina.it

Received: 14 January 2020; Accepted: 6 February 2020; Published: 13 February 2020
����������
�������

Abstract: Symmetry properties of the Brownian motion and of some diffusion processes are useful
to specify the probability density functions and the first passage time density through specific
boundaries. Here, we consider the class of Gauss-Markov processes and their symmetry properties.
In particular, we study probability densities of such processes in presence of a couple of Daniels-type
boundaries, for which closed form results exit. The main results of this paper are the alternative
proofs to characterize the transition probability density between the two boundaries and the first
passage time density exploiting exclusively symmetry properties. Explicit expressions are provided
for Wiener and Ornstein-Uhlenbeck processes.

Keywords: Symmetry functions; transition probability density function; first-exit-time; two-sided
region; diffusion processes

1. Introduction

Due the wide range of applications, from those of the financial context to those in biology,
computational neurosciences, genetics, and physics, the Gaussian processes have always been of
great interest (see, for instance, [1–3]). The theory of diffusion processes has extensively developed
and many interesting mathematical results, particularly useful for applications, were obtained
(see, for instance, [4–7]). Indeed, even if accurate models were designed to describe and investigate
real phenomena, often these models are too complicated to be treated mathematically; in most of
these cases the diffusion approximation provided the solution that was the right compromise between
the need to have more realistic models and a simple and effective mathematical description. Some
instances can be found in the field of computational neuroscience, such as in [8–11], or in the field of
queueing theory ([12,13]).

In the last two decades, also the Gauss-Markov (GM) processes ([14]) are often involved in a
similar way to specialize existing models; they constitute a simplified mathematical tool respect to
stochastic process that are Gaussian but do not have the Markov property. Under specific hypotheses,
the Gauss-Markov processes are also diffusions, hence, they are called Gauss-Diffusion processes; in
this case, their transition density function solves the Fokker-Planck partial differential equation (pde),
typical of diffusion processes ([15–17]), but with specified coefficient functions. Here, we will focus
our attention on these kind of processes.

The central interest is the determination of the probability density function (pdf) of the first
passage time (FPT) of these kind of processes through boundaries (constant or time-dependent).
Some results were already obtained for diffusion processes, even if most of them were obtained by
transformation methods of the Bachelier-Lévy formula (see, for instance, [18–22]) for the Brownian
motion and a linear boundary. Then, for GM processes, in [14,23,24] can be found contributions in
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the direction of determination of closed forms and for the approximations of the FPT pdf in presence
of specified boundaries. Also in these case, some space-time transformation between the involved
processes were used. Specifically, we can recall that in [25] Daniels, by using the method of images,
provided an expression for the transition pdf of the standard Wiener process in the presence of a
particular time-dependent absorbing boundary. On the other hand, in [26] (for diffusion processes)
and [14] (for Gauss-Markov processes) the strategy to solve a Volterra integral equation for the FPT
pdf was developed. Along this approach, in very few cases can the integral equation be solved, with a
closed form result derived; in all other cases, numerical procedures have been specialized ad hoc to
obtained very accurate approximations of the solution.

An alternative analytical approach particularly effective is that based on the exploiting of some
special features of the densities, such as the symmetry of the transition pdf. Indeed, in [27], in order
to derive closed forms for FPT pdf for diffusion processes, the authors studied special symmetry
conditions on the transition pdf in presence of particular time-dependent boundaries. Then, in [28],
a careful investigation was carried out for diffusion processes and their first exit time of these processes
through two-sided region delimited by an upper (respect to the initial position of the process) boundary
and a lower boundary.

Here, we are aimed to exploit the symmetry properties of the transition pdf specifically for
GM processes. Indeed, the symmetry approach has the advantage to allow discovering particular
expressions (characterizations) for the involved probability functions and consequentially a more
specific investigation of the process itself. It is worth remarking that the investigation of such symmetry
properties differ from the study of symmetry properties of diffusion processes (as done in [28]),
because essentially our results are derived only by using specific functions involving mean and
covariance of the Gauss-Markov processes. In particular, this paper is devoted to new characterizations
of the transition pdf of GM processes taking into account its symmetry properties. It is shown,
indeed, that some of these representations reveal to be particularly useful for the determination
of the closed form of first-exit-time (FET) from an open set confined between two boundaries.
A large number of papers is devoted to investigate first passage problem of diffusion processes
restricted between two boundaries, in the past but also recently, (see, for instance, [29–38]), also for
possible applications ([39,40]). Here, we focus on Gauss-Markov processes between Daniels-type
boundaries ([25]) for which the closed form can be derived also by the proposed symmetry approach.
The alternative proofs to determine specific closed forms for the transition pdf and for the FET pdf are
the main results of this paper. Some specific examples for well-known processes are also provided.

The paper is organized in following way: in Section 2 we give some preliminary definitions and
conditions under which it is possible to have FET pdf in closed form. In Section 3, the symmetry curves,
the corresponding symmetry functions and the symmetry properties of GM processes are considered.
Furthermore, the Daniels-type curves are defined in (21) and a two-sided region is defined as the open
set (subset of the process state space (R× T)), with such curves as lower and upper boundaries. Hence,
the transition pdf in the specified two-sided region is defined. In Theorem 1 and in Section 4 specific
expressions for the transition pdf between the two boundaries are provided, highlighting relations
with symmetry functions. In Proposition 1 it is proved that the transition pdf in the two-sided region
solves a Fokker-Planck equation. Section 5 is devoted to the characterization of FET pdf and the proof
of the second main theorem (Theorem 2) is provided. Specifically, in Proposition 2 the distribution
function of FET is given, whereas in Lemma 3 a preliminary representation of the FET pdf is given in
order it can be exploited in the proof of the Theorem 2. Finally, in Section 6, for useful comparisons,
two GM processes, Wiener and Ornstein-Uhlenbeck processes, are considered and the corresponding
results are specified for them.

2. Essentials on Gauss-Markov Processes and FET

From [14,23,24,37], we take the following definitions for GM processes and first passage times
random variables.
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Let T ⊆ R be a continuous parameter set and (Ω,F , {Ft}t∈T , {X(t)}t∈T ,P) be a stochastic process
with state space S = R. The process {X(t), t ∈ T} is a real continuous Gauss-Markov process if it
is normal and it has a continuous mean function m(t) := E[X(t)] in T and a continuous covariance
function c(s, t) := E{[X(s)−m(s)][X(t)−m(t)]} in T × T. Moreover, {X(t)} is non-singular process
except at the end points of T, i.e., if T = [a, b] (a, b ∈ R), then {X(t)} is non-singularly normal
distributed except possibly in t = a or t = b, where X(t) could be X(t) = m(t) with probability 1.

More specifically, the covariance function c(s, t) of a GM process is typically such that

c(s, t) = h1(s)h2(t), s ≤ t, s, t,∈ T̊ (1)

with h1(t), h2(t) we call the covariance factors. The ratio function of the covariance factors, i.e., r(t) =
h1(t)
h2(t)

is a monotonically increasing function; note that h1(t)h2(t) > 0, ∀t ∈ T due the process is
non-singular in the interior of T. The transition mean and variance of the process X(t) are

E[X(t)|X(τ) = y] = m(t) +
h2(t)
h2(τ)

[y−m(τ)]

Var[X(t)|X(τ) = y] = h2(t)
[

h1(t)−
h2(t)
h2(τ)

h1(τ)

]
(2)

for t, τ ∈ T, τ < t, and the normal transition pdf f (x, t|y, τ) remains completly specified by the
above quantities.

Now, we consider two C1(T)-class functions, i.e., S1(t) and S2(t) such that

(i) S1(t) < S2(t), ∀t ∈ T
(ii) S1(t0) < X(t0) ≡ x0 < S2(t0), t0 ∈ T.

We call S1(t) the lower and S2(t) the upper boundary, respectively.
We define the following random variables, ∀t ≥ t0, t, t0 ∈ T,

T(1)
x0 = inf

t≥t0
{t : X(t) < S1(t); X(θ) < S2(θ), ∀θ ∈ (t0, t)}, X(t0) = x0

T(2)
x0 = inf

t≥t0
{t : X(t) > S2(t); X(θ) > S1(θ), ∀θ ∈ (t0, t)}, X(t0) = x0 (3)

Tx0 = inf
t≥t0
{t : X(t) 6∈ (S1(t), S2(t))}, X(t0) = x0.

Specifically, T(1)
x0 is the lower FPT through the boundary S1(t), T(2)

x0 is the upper FPT through S2(t) and
Tx0 is the FET from the R×R open subset (S1(t), S2(t)), respectively. Furthermore, the respective pdfs
are the following

g1(t|x0, t0) =
∂

∂t
P(T(1)

x0 < t), g2(t|x0, t0) =
∂

∂t
P(T(2)

x0 < t),

g(t|x0, t0) =
∂

∂t
P(Tx0 < t) ≡ g1(t|x0, t0) + g2(t|x0, t0). (4)

We note that, for X(t0) = x0, if we consider the events, ,

E1 = {∃t ∈ (t0,+∞) : X(t) < S1(t); X(θ) < S2(θ), ∀θ ∈ (t0, t)}

and
E2 = {∃t ∈ (t0,+∞) : X(t) > S2(t); X(θ) > S1(θ), ∀θ ∈ (t0, t)}
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the pdf gi(t|x0, t0), for i = 1, 2, are such that

∫ +∞

t0

g1(t|x0, t0)dt = P{E1} = P{E1 ∪ E2} − P{E2}

= P{E1 ∪ E2} −
∫ +∞

t0

g2(t|x0, t0)dt.

Consequently, we can denote the probability that X(t) firstly attains S1(t) [S2(t)] by t without crossing
S2(t) [S1(t)] with P(T(1)

x0 < t) [P(T(2)
x0 < t)], and with P(Tx0 < t) we denote the probability that X(t)

firstly attains either S1(t) or S2(t) by time t. We recall that the pdfs g1(t|x0, t0) and g2(t|x0, t0) are
solutions of the two coupled non-singular second kind Volterra integral equations ([23]):

g1(t|x0, t0) = 2Ψ1(t|x0, t0)

− 2
∫ t

t0

{g1(τ|x0, t0)Ψ1[t|S1(τ), τ] + g2(τ|x0, t0)Ψ1[t|S2(τ), τ]} dτ,

g2(t|x0, t0) = −2Ψ2(t|x0, t0) (5)

+ 2
∫ t

t0

{g1(τ|x0, t0)Ψ2[t|S1(τ), τ] + g2(τ|x0, t0)Ψ2[t|S2(τ), τ]} dτ,

with

Ψj(t|y, τ) =

{
S′j(t)−m′(t)

2
−

Sj(t)−m(t)
2

h′1(t)h2(τ)− h′2(t)h1(τ)

h1(t)h2(τ)− h2(t)h1(τ)
(6)

− y−m(τ)

2
h′2(t)h1(t)− h2(t)h′1(t)
h1(t)h2(τ)− h2(t)h1(τ)

}
f [Sj(t), t|y, τ], (j = 1, 2).

and
lim
τ→t

Ψi[Si(t), t|Sj(τ), τ] = 0 (i, j = 1, 2), (7)

recalling that f [x, t|y, τ] is the transition pdf of X(t). By solving the system (5) it is possible to evaluate
g from (4). Closed form results for (5) are known in only a few cases (cf., [14,23]).

Closed-Forms Results

From [23] we recall that integral equations (5) can be reduced to a single equation under some
conditions. Indeed, under specific assumptions on the process and the boundaries, the first-exit time
pdf g(t | x0, t0) solves a single non-singular Volterra integral equation in place of Equations (5).

In addition to all previous assumptions, if the following conditions are satisfied, i.e.,

lim
t→+∞

r(t) = +∞, P
{

S1(t) ≤ X(t) < S2(t) | X(t0) = x0
}
6= 1 ∀t ∈ T,

we have: ∫ +∞

t0

g(t | x0, t0) dt = 1, (8)

and if ∀t ≥ t0 ∈ T
S1(t) + S2(t) = 2 m(t) + 2 c h2(t), (c ∈ R), (9)

then the system (5) reduces to the following integral equation

g(t | x0, t0) = 2
[
Ψ1(t | x0, t0)−Ψ2(t | x0, t0)

]
(10)

−2
∫ t

t0

g(τ | x0, t0)
{

Ψ1[t | S1(τ), τ]−Ψ2[t | S1(τ), τ]
}

dτ.
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Finally, if (9) holds for all t ≥ t0 and the initial state x0 satisfies the following relation

x0 = m(t0) + c h2(t0), (c ∈ R), (11)

then one has
g1(t | x0, t0) = g2(t | x0, t0). (12)

Hence, in this case, the solution g(t | x0, t0) of the integral Equation (10) is given by

g(t | x0, t0) ≡ 2 g1(t | x0, t0) ≡ 2 g2(t | x0, t0). (13)

In [23], solutions of (10) are given as series of functions when the two boundaries are specific
functions of the mean and covariance of the GM process. Successively, such solutions are specialized
for some GM processes and boundaries in [39]. In any other case, the system (5) can be solved by
numerical procedures providing reliable approximations of the solutions.

3. Symmetry Properties

In the state space of the process {X(t), t ∈ T}, consider the following curves:

y(t) = m(t) + d1h1(t) + d2h2(t), (the symmetry curve or mirror)

u(t) = m(t) + d∗1h1(t) + d∗2h2(t), (an assigned curve) (14)

v(t) = 2y(t)− u(t), (the symmetric curve of u(t) respect to the mirror y(t))

such that v(t) < y(t) < u(t) ∀t ≥ t0 with t, t0 ∈ T, d1, d2, d∗1 , d∗2 ∈ R, and the corresponding symmetry
functions denoted by

ψ0(x, t), φ0(x, t), (associated with y(t))

ψ1(x, t), φ1(x, t), (associated with u(t)) (15)

ψ2(x, t), φ2(x, t), (associated with v(t))

with v(t) = ψ0(u(t), t).
The symmetry properties of GM processes ([28]) are such that for a general curve z(t) = m(t) +

ah1(t) + bh2(t), (a, b ∈ R), with the associated symmetry functions

ψ(x, t) = 2z(t)− x, φ(x, t) = exp
{
−2a[x− z(t)]

h2(t)

}
, (16)

the following relations hold

f (x, t|x0, t0) =
φ(x, t)

φ(x0, t0)
f [ψ(x, t), t|ψ(x0, t0), t0] (17)

φ(x, t) f [ψ(x, t), t|x0, t0] = f (x, t|x0, t0) exp
{
− 2[x− z(t)](x0 − z(t0))

h1(t)h2(t0)− h1(t0)h2(t)

}
. (18)

We point that the above relations written for the couple of functions (ψ, φ) hold for the symmetry
functions (ψi, φi) , for i = 0, 1, 2, for symmetry curves y(t), u(t), v(t) of (14), respectively.

3.1. Transition Distribution Function in a Two-Sided Region

Assuming that
P{X(τ) = y(τ)} = 1
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for a fixed τ ∈ T, we denote by S1(t, τ) and S2(t, τ) the C1(T) functions such that, for t ∈ T and t ≥ τ,
verify the following conditions

(i) S1(t, τ) < S2(t, τ) ∀t ≥ τ;
(ii) limt↓τ S1(t, τ) < y(τ) < limt↓τ S2(t, τ).

Furthermore, ∀t ≥ τ and x ∈ (S1(t, τ), S2(t, τ)), we define

B(x, t|y(τ), τ) = P{X(t) < x; S1(θ, τ) < X(θ) < S2(θ, τ), ∀θ ∈ (τ, t)|X(τ) = y(τ)} (19)

and
β(x, t|y(τ), τ) =

∂

∂x
B(x, t|y(τ), τ) (20)

the transition probability distribution function of X(t) between the two boundaries S1(t, τ), S2(t, τ),
and its density, respectively.

Now, in the next theorem, we give our first main result in which we give a closed form expression
for β(x, t|y(τ), τ) when the boundaries S1(t, τ), S2(t, τ) are of Daniels type ([20,25]). (Note that we can
also consider these boundaries as absorbing boundaries.)

Theorem 1. For a fixed t0 ∈ T, let the lower and upper boundaries be

S1(t, t0) = v(t)− h1(t)h2(t0)− h1(t0)h2(t)
2(u(t0)− y(t0))

ln
[

1 +
√

∆(t, t0)

2α2

]
S2(t, t0) = u(t) +

h1(t)h2(t0)− h1(t0)h2(t)
2(u(t0)− y(t0))

ln
[

1 +
√

∆(t, t0)

2α1

] (21)

with u(t), v(t) as in (14), α1, α2 ∈ R+, limt→supT ∆(t, t0) > 0
and

∆(t; t0) = 1− 4α1α2 exp
{
−4[u(t0)− y(t0)][u(t)− y(t)]

h1(t)h2(t0)− h1(t0)h2(t)

}
. (22)

Then, the transition probability density function of the process X(t) between the two boundaries S1(t, t0) and
S2(t, t0), for t ≥ t0, has the form

β(x, t|y(t0), t0) = f (x, t|y(t0), t0)− α1φ1(x, t) f [ψ1(x, t), t|y(t0), t0]

− α2φ2(x, t) f [ψ2(x, t), t|y(t0), t0]
(23)

for S1(t, t0) < x < S2(t, t0) and v(t0) < y(t0) < u(t0).

We will give the proof of the above theorem in Section 4.1, but before we need some preliminary
results about some representations and properties of the transition probability density β(x, t|y(t0), t0).

4. Characterization of the Transition Density in a Two-Sided Region

For t0 ∈ T, let us define D = (S1(t, t0), S2(t, t0)) ⊂ (R× T) as the two-sided region. Consider
β̃(x, t|y(t0), t0) the right-hand-side of (23) defined on (D × T)2.

Lemma 1. The function β̃(x, t|y(t0), t0) is such that

β̃(x, t|y(t0), t0) = f (x, t|y(t0), t0)− α1φ1[2u(t0)− y(t0), t0] f [x, t|2u(t0)− y(t0), t0]

− α2φ2[2v(t0)− y(t0), t0] f [x, t|2v(t0)− y(t0), t0], (24)

with

φ1[2u(t0)− y(t0), t0] = exp
{
−

2d∗1 [u(t0)− y(t0)]

h2(t0)

}
(25)
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and

φ2[2v(t0)− y(t0), t0] = exp
{
−

4[d∗1 − 2d1][u(t0)− y(t0)]

h2(t0)

}
. (26)

Proof. Note that, referring to (15), y(t0) can also be written as follows

y(t0) = 2u(t0)− [2u(t0)− y(t0)] = ψ1[2u(t0)− y(t0), t0] = ψ2[2v(t0)− y(t0), t0]. (27)

Hence, using (27) in the right-hand-side of (23), we have

β̃(x, t|y(t0), t0) = f (x, t|y(t0), t0)− α1φ1(x, t) f [ψ1(x, t), t|ψ1(2u(t0)− y(t0), t0), t0]

− α2φ2(x, t) f [ψ2(x, t), t|ψ2(2v(t0)− y(t0), t0), t0]. (28)

Then, referring to the general symmetry relation (17) and setting x0 = y(t0), one obtains

φ(x, t) f [ψ(x, t), t|ψ(y(t0), t0), t0] = φ(y(t0), t0) f (x, t|y(t0), t0). (29)

Finally, (24) is obtained by using (27) and (29) in (28). Furthermore, (25) is the second of (16) for the
symmetry function u(t) = m(t) + d∗1h1(t) + d∗2h2(t). Again by using the second of (16) for v(t) and
recalling that v(t) = 2y(t) − u(t) = m(t) + (2d1 − d∗1)h1(t) + (2d2 − d∗2)h2(t), the (26) is obtained
as follows

φ2[2v(t0)− y(t0), t0] = exp
{
−

2[2d1 − d∗1 ][(2v(t0)− y(t0))− v(t0)]

h2(t0)

}
(30)

= exp
{
−

4[2d1 − d∗1 ][
v(t0)−y(t0)

2 ]

h2(t0)

}
(31)

= exp
{
−

4[d∗1 − 2d1][u(t0)− y(t0)]

h2(t0)

}
. (32)

Remark 1. We can also note that the function β̃(x, t|y(t0), t0) can also be rewritten as

β̃(x, t|y(t0), t0) = f (x, t|y(t0), t0)− α1φ1[2u(t0)− y(t0), t0] f [x, t|2u(t0)− y(t0), t0]

−α2φ2[2v(t0)− y(t0), t0] f [x, t|3y(t0)− 2u(t0), t0],

being 2v(t0)− y(t0) = 4y(t0)− 2u(t0)− y(t0) = 3y(t0)− 2u(t0).
The last form will be useful in the next section.

Proposition 1. The function β̃(x, t|y(t0), t0) solves the Fokker-Planck partial differential equation:

∂β̃(x, t|y(t0), t0)

∂t
= − ∂

∂x
[A1(x, t)β̃(x, t|y(t0), t0)] +

1
2

∂2

∂x2 [A2(t)β̃(x, t|y(t0), t0)] (33)

where

A1(x, t) = m
′
(t) + [x−m(t)]

h
′
2(t)

h2(t)
, A2(t) = h2

2(t)r
′
(t) (34)

with the initial delta-type condition, i.e.,

lim
t0↑t

β̃(x, t|y(t0), t0) = δ(x− y(t0)).
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Proof. We note that from (24) of Lemma 1

∂β̃(x, t|y(t0), t0)

∂t
=

∂ f (x, t|y(t0), t0)

∂t

− α1φ1[2u(t0)− y(t0), t0)]
∂

∂t
f [x, t|2u(t0)− y(t0), t0]

− α2φ2[2v(t0)− y(t0), t0]
∂

∂t
f [x, t|2v(t0)− y(t0), t0]. (35)

Hence, β̃ is a linear combination of f (x, t|·, t0). We recall that the transition pdf f (x, t|·, t0) of the GM
process X(t) solves the following Fokker-Planck pde

∂ f (x, t|·, t0)

∂t
= − ∂

∂x
[A1(x, t)] f (x, t|·, t0)] +

1
2

∂2

∂x2 [A2(t) f (x, t|·, t0)] (36)

with corresponding initial delta-type conditions and A1(x, t), A2(t) as in (34). Then, taking into
account (36), Equation (35) can be explicitly written as

∂β̃(x, t|y(t0), t0)

∂t
= − ∂

∂x
[A1(x, t)] f (x, t|y(t0), t0)] +

1
2

∂2

∂x2 [A2(t) f (x, t|y(t0), t0)]

− α1φ1[2u(t0 − y(t0), t0)]

×
{
− ∂

∂x

[
A1(x, t) f [x, t|2u(t0)− y(t0), t0]

]
+

1
2

∂2

∂x2

[
A2(t) f [x, t|2u(t0)− y(t0), t0]

]}
− α2φ2[2v(t0)− y(t0), t0)]

×
{
− ∂

∂x

[
A1(x, t) f [x, t|2v(t0)− y(t0), t0]

]
+

1
2

∂2

∂x2

[
A2(t) f [x, t|2v(t0)− y(t0), t0]

]}
.

Finally, rearranging the last equation, we obtain Equation (33) with the corresponding initial condition.
Hence, the thesis holds.

Lemma 2. For S1(t, t0) < x < S2(t, t0) and ∀t ≥ t0 ∈ T, setting

U(x, t, t0) =

{
[u(t0)− y(t0)][u(t)− x]
h1(t)h2(t0)− h1(t0)h2(t)

}
and

R(t, t0) =

{
[u(t)− y(t)][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
the function β̃(x, t|y(t0), t0) has the following expression:

β̃(x, t|y(t0), t0) = − f [x, t|y(t0), t0]e2U(x,t,t0)[α1e−4U(x,t,t0) − e−2U(x,t,t0) + α2e−4R(t,t0)]. (37)

Proof. Coming back to the expression (23) of β̃(x, t|y(t0), t0) and by using the symmetry relation (18)
we have

β̃(x, t|y(t0), t0) = f (x, t|y(t0), t0)

− α1 f (x, t|y(t0), t0) exp
{
− 2[x− u(t)][y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
− α2 f (x, t|y(t0), t0) exp

{
− 2[x− v(t)][y(t0)− v(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
. (38)
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Recalling that y(t0)− v(t0) = y(t0)− 2y(t0) + u(t0) = u(t0)− y(t0) and v(t) = ψ[u(t), t], i.e., 2y(t)−
u(t) = v(t), and by using the symmetry property of the symmetry curve z(t) such that z(t)− x =

ψ(x, t)− z(t) and ψ(x, t)− x = 2[z(t)− x], we can write that x− v(t) = x− 2y(t) + u(t) = x− u(t)−
2[y(t)− u(t)]. Hence, the last term in (38) becomes:

exp
{
− 2[x− v(t)][y(t0)− v(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= exp

{
2
[
[x− u(t)]− 2[y(t)− u(t)]

]
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= exp

{
2[u(t0)− y(t0)][u(t)− x]
h1(t)h2(t0)− h1(t0)h2(t)

}
× exp

{
− 4[u(t)− y(t)][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
. (39)

Therefore, from (38) and (39), we have

β̃(x, t|y(t0), t0) = f [x, t|y(t0), t0]

{
1− α1 exp

{
−2[x− u(t)][y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
− α2 exp

{2[u(t0)− y(t0)][u(t)− x]
h1(t)h2(t0)− h1(t0)h2(t)

}
× exp

{
−4[u(t)− y(t)][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}}
that is the (37).

4.1. Proof of Theorem 1

Proof. To prove the thesis, i.e., β̃(x, t|y(t0), t0) ≡ β(x, t|y(t0), t0), we have to prove that the function
β̃(x, t|y(t0), t0) is the effective transition probability density of X(t) in the two-sided region D. To do
this we have to verify that β̃(x, t|y(t0), t0) is such that

(i) β̃(x, t|y(t0), t0) = 0 for x = Si(t, t0) (i = 1, 2), ∀t > t0;

(ii) β̃(x, t|y(t0), t0) ≥ 0, ∀x ∈ (S1(t, t0), S2(t, t0)), ∀t > t0;

(iii) β̃(x, t|y(t0), t0) satisfies the delta condition ∀x ∈ (S1(t, t0), S2(t, t0)), i.e.,

lim
t↓t0

β̃(x, t|y(t0), t0) = δ(x− y(t0))

with y(t0) ∈ (limt↓t0 S1(t, t0), limt↓t0 S2(t, t0)).

We firstly prove i) and ii). From (37), we note that β̃(x, t|y(t0), t0) = 0⇔ α1α2 < 0 or α1α2 > 0 and
limt→supT ∆(t, t0) > 0 with ∆(t, t0) = 1− 4α1α2e−4R(t,t0). Indeed, under these conditions, the zeros of

[α1e−4U(x,t,t0) − e−2U(x,t,t0) + α2e−4R(t,t0)]

with U and R as in Lemma 2, are:

1 +
√

∆(t, t0)

2α1
and

1−
√

∆(t, t0)

2α1
.

Hence, we can write

β̃(x, t|y(t0), t0) = −α1 f [x, t|y(t0), t0]e2U(x,t,t0)[
e−2U(x,t,t0) − 1 +

√
∆(t, t0)

2α1

][
e−2U(x,t,t0) − 1−

√
∆(t, t0)

2α1

]
.

(40)

More specifically (in the case α1 > 0 that implies α2 > 0 and limt→supT ∆(t, t0) > 0),
β̃(x, t|y(t0), t0) is such that
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β̃(x, t|y(t0), t0) = −α1 f [x, t|y(t0), t0] exp
{

2[u(t0)− y(t0)][u(t)− x]
h1(t)h2(t0)− h1(t0)h2(t)

}
×
[

exp
{
− 2[u(t0)− y(t0)][u(t)− x]

h1(t)h2(t0)− h1(t0)h2(t)

}
− 1 +

√
∆(t, t0)

2α1

]
×
[

exp
{
− 2[u(t0)− y(t0)][u(t)− x]

h1(t)h2(t0)− h1(t0)h2(t)

}
− 1−

√
∆(t, t0)

2α1

]
and

β̃(x, t|y(t0), t0) = 0⇔ e−2U(x,t,t0) =
1 +

√
∆(t, t0)

2α1
or e−2U(x,t,t0) =

1−
√

∆(t, t0)

2α1
.

We note that

−2U(x, t, t0) = ln
[

1 +
√

∆(t, t0)

2α1

]
⇔ −2

{
[u(t0)− y(t0)][u(t)− x]
h1(t)h2(t0)− h1(t0)h2(t)

}
= ln

[
1 +

√
∆(t, t0)

2α1

]
⇔ u(t)− x = −h1(t)h2(t0)− h1(t0)h2(t)

2[u(t0)− y(t0)]
ln
[

1 +
√

∆(t, t0)

2α1

]
that gives a first solution:

x(t, t0) = u(t) +
h1(t)h2(t0)− h1(t0)h2(t)

2[u(t0)− y(t0)]
ln
[

1 +
√

∆(t, t0)

2α1

]
(41)

And similarly, we also note that from the condition e−2U(x,t,t0) =
1−
√

∆(t,t0)
2α1

another solution is

x(t, t0) = u(t) +
h1(t)h2(t0)− h1(t0)h2(t)

2[u(t0)− y(t0)]
ln
[

1−
√

∆(t, t0)

2α1

]
,

that we discard because it is a not continuous solution.

Furthermore, an equivalent representation of (37) of β̃(x, t|y(t0), t0) holds:

β̃(x, t|y(t0), t0) = − f [x, t|y(t0), t0]e−2V(x,t,t0)[α1e−4R(t,t0) − e2V(x,t,t0) + α2e4V(x,t,t0)], (42)

with

V(x, t, t0) =
[u(t0)− y(t0)][v(t)− x]
h1(t)h2(t0)− h1(t0)h2(t)

.

Indeed, in (38), being x− u(t) = x− u(t) + v(t)− v(t) = [x− v(t)] + [v(t)− u(t)], one has:

exp
{
−2[y(t0)− u(t0)][x− u(t)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= exp

{
− 2[[x− v(t)] + [v(t)− u(t)]][y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= exp

{
− 2[v(t)− x][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
exp

{
2[v(t)− u(t)]][y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
exp

{
− 2[v(t)− x][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
exp

{
4[y(t)− u(t)][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= e−2V(x,t,t0)e−4R(t,t0).
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From (42), in the case α1, α2 ∈ R+ and limt→supT ∆(t, t0) > 0, we can again write

β̃(x, t|y(t0), t0) = −α2 f [x, t|y(t0), t0]e−2V(x,t,t0)[
e2V(x,t,t0) − 1 +

√
∆(t, t0)

2α2

][
e2V(x,t,t0) − 1−

√
∆(t, t0)

2α2

]
and

β̃(x, t|y(t0), t0) = 0⇔

2V(x, t, t0) = ln
[

1 +
√

∆(t, t0)

2α2

]
or 2V(x, t, t0) = ln

[
1−

√
∆(t, t0)

2α2

]
.

Hence, in this case, the solutions of equation β̃(x, t|y(t0), t0) = 0 are

x(t, t0) = v(t)− h1(t)h2(t0)− h1(t0)h2(t)
2[u(t0)− y(t0)]

ln
[

1 +
√

∆(t, t0)

2α2

]
(43)

and

x(t, t0) = v(t)− h1(t)h2(t0)− h1(t0)h2(t)
2[u(t0)− y(t0)]

ln
[

1−
√

∆(t, t0)

2α2

]
,

the last one has to be discarded being a not continuous solution.
Hence, for α1 > 0 and α2 > 0 and limt→supT ∆(t, t0) > 0, the function β̃(x, t|y(t0), t0) verifies

the conditions i) and ii); specifically, we have that, from (41) and (43), it is equal to zero on the
continuous functions

S1(t, t0) = v(t)− h1(t)h2(t0)− h1(t0)h2(t)
2(u(t0)− y(t0))

ln
[

1 +
√

∆(t, t0

2α2

]
and

S2(t, t0) = u(t) +
h1(t)h2(t0)− h1(t0)h2(t)

2(u(t0)− y(t0))
ln
[

1 +
√

∆(t, t0

2α1

]
and it has positive values for x ∈ (S1(t, t0), S2(t, t0)).

Furthermore, iii) also holds. Indeed, β̃(x, t|y(t0), t0) satisfies the delta condition due the result of
Proposition 1 with y(t0) ∈ (limt↓t0 S1(t, t0), limt↓t0 S2(t, t0)).

We finally claim that β̃ = β, i.e., β̃ is the transition pdf of the process X(t) in presence of the two
boundaries (21).

5. Pdf of FET

Here, exploiting the form and the properties of the transition pdf β(x, t|y(t0), t0) in the presence
of the boundaries (21), we can obtain the first-exit-time probability density from the above two-sided
open set in closed form. First, we provide an expression of the distribution function of the FET density.

Proposition 2. Under the hypotheses of Theorem 1, for the two-sided region delimited by the boundaries (21),
for t > t0, we have the following result for the distribution function of FET as the integral of g(t|y(t0), t0):
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∫ t

t0

g[θ|y(t0), t0]dθ = 1− [F[S2(t, t0), t|y(t0), t0]− F[S1(t, t0), t|y(t0), t0]]

+ α1 exp
{
−

2d∗1 [u(t0)− y(t0)]

h2(t0)

}[
F[S2(t, t0), t|2u(t0)− y(t0), t0]− [F[S1(t, t0), t|2u(t0)− y(t0), t0]

]
+ α2 exp

{
−

4[d∗1 − 2d1][u(t0)− y(t0)]

h2(t0)

}
×
[

F[S2(t, t0), t|3y(t0)− 2u(t0), t0]− [F[S1(t, t0), t|3y(t0)− 2u(t0), t0]

]
.

Proof. Recalling that the following relation between the transition density β(x, t|y(t0), t0) and the FET
density g[t|y(t0), t0] holds

∫ S2(t,t0)

S1(t,t0)
dzβ(z, t|y(t0), t0) +

∫ t

t0

dθg[θ|y(t0), t0] = 1. (44)

Using here Remark 1, and proceeding to integrate β(x, t|y(t0), t0) between the two boundaries (21),
the thesis holds, with F[x, t|y, τ] the transition probability distribution function of the process.

We now need to prove a preliminary lemma about an integral representation of FET density.

Lemma 3. Under the hypotheses of Theorem 1, for the two-sided region delimited by the boundaries (21), taking
into account the functions U and R of Lemma 2 , for the GM process X(t), for t > t0, we first obtain the FET
pdf such as

g[t|y(t0), t0] =
∫ S2(t,t0)

S1(t,t0)
dz

∂

∂z

{
A1(z, t) f [z, t|y(t0), t0]−

1
2

∂

∂z

[
A2(t) f [z, t|y(t0), t0]

]}

− α1

∫ S2(t,t0)

S1(t,t0)
dz

∂

∂z

{
A1(z, t) f [z, t|y(t0), t0]e−2U(z,t,t0) − 1

2
∂

∂z
A2(t) f [z, t|y(t0), t0]e−2U(z,t,t0)

}
(45)

−α2

∫ S2(t,t0)

S1(t,t0)
dz

∂

∂z

{
A1(z, t) f [z, t|y(t0), t0]e2V(z,t,t0) − 1

2
∂

∂z
A2(t) f [z, t|y(t0), t0]e2V(z,t,t0)

}
.

Proof. From (44), by differentiating, we obtain

g[t|y(t0), t0] = −
∂

∂t

∫ S2(t,t0)

S1(t,t0)
β(z, t|y(t0), t0)dz

in which we will insert β(x, t|y(t0), t0) such as from Remark 1. Furthermore, from Proposition 1,
we know that β(x, t|y(t0), t0) solves the Fokker-Planck pde (33). Hence, we can write:

g[t|y(t0), t0] =
∫ S2(t,t0)

S1(t,t0)

[
− ∂

∂t
β(z, t|y(t0), t0)

]
dz

= −
∫ S2(t,t0)

S1(t,t0)

∂

∂t

[
f [z, t|y(t0), t0]− α1φ1[2u(t0)− y(t0), t0] f [z, t|2u(t0)− y(t0), t0]

− α2φ2[2v(t0)− y(t0), t0] f [z, t|3y(t0)− 2u(t0), t0]

]
dz



Symmetry 2020, 12, 279 13 of 20

=−
∫ S2(t,t0)

S1(t,t0)

(
− ∂

∂z

[
A1(z, t) f [z, t|y(t0), t0] +

1
2

∂2

∂z2 [A2(t) f [z, t|y(t0), t0]
])

− α1φ1[ψ1(y(t0), t0), t0]

(
− ∂

∂z

[
A1(z, t) f [z, t|ψ1(y(t0)), t0]

]
+

1
2

∂2

∂z2

[
A2(t) f [z, t|ψ1(y(t0)), t0]

])
− α2φ2[ψ2(y(t0), t0), t0]

(
− ∂

∂z

[
A1(z, t) f [z, t|ψ2(y(t0)), t0]

]
+

1
2

∂2

∂z2

[
A2(t) f [z, t|ψ2(y(t0)), t0]

])
dz

=
∫ S2(t,t0)

S1(t,t0)
dz

∂

∂z

{[
A1(z, t) f (z, t|y(t0), t0)

]
−1

2
∂

∂z

[
A2(t) f (z, t|y(t0), t0)

]}
− α1φ1[ψ1(y(t0), t0), t0]

∫ S2(t,t0)

S1(t,t0)
dz

∂

∂z

{[
A1(z, t) f [z, t|ψ1(y(t0)), t0]

]
−1

2
∂

∂z

[
A2(t) f [z, t|ψ1(y(t0), t0), t0]

]}
− α2φ2[ψ2(y(t0), t0), t0]

∫ S2(t,t0)

S1(t,t0)
dz

∂

∂z

{[
A1(z, t) f [z, t|ψ2(y(t0)), t0]

]
−1

2
∂

∂z

[
A2(t) f [z, t|ψ2(y(t0), t0), t0]

]}
.

(46)

Now, taking into account

f (x, t|y, τ) =
φ(x, t)
φ(y, τ)

f [ψ(x, t), t|ψ(y, τ), τ]

and
ψ[ψ(x, t), t] = x,

we obtain

φ1[ψ1(y(t0), t0), t0] f [z, t|ψ1(y(t0), t0), t0] = φ1(z, t) f [ψ1(z, t), t|ψ1[ψ1(y(t0), t0), t0], t0]

= φ1(z, t) f [ψ1(z, t), t|y(t0), t0]

= f [z, t|(y(t0), t0] exp
{
− 2[u(t)− z][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= f [z, t|(y(t0), t0]e−2U(z,t,t0).

(47)

Similarly, it can be proved

φ2[ψ2(y(t0), t0), t0] f [z, t|ψ2(y(t0), t0), t0] = f [z, t|(y(t0), t0]e2V(z,t,t0).

Indeed, taking into account that v(t0) = 2y(t0)− u(t0)− y(t0) = y(t0)− u(t0), one has:

φ2[ψ2(y(t0), t0), t0] f [z, t|ψ2(y(t0), t0), t0] = φ2(z, t) f [ψ2(z, t), t|y(t0, t0]

= f [z, t|(y(t0), t0] exp
{
− 2[v(t)− x][v(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= f [z, t|(y(t0), t0] exp

{
2[v(t)− x][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
= f [z, t|(y(t0), t0]e2V(z,t,t0).

(48)

Finally, by inserting (47) and (48) in (46), the lemma is proved.

Theorem 2. Under the hypoteses of Theorem 1, for the two-sided region delimited by the boundaries (21), taking
into account the result and the functions U and R of Lemma 2 , for the GM process X(t), for t > t0, we have the
following closed form for the FET pdf

g[t|y(t0), t0] =
h2

2(t)[u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)
dr(t)

dt

√
∆(t, t0)

×
[

f [S1(t, t0), t|y(t0), t0] + f [S2(t, t0), t|y(t0), t0]
]
.

(49)
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Proof. Taking into account Lemma 3, in order to evaluate the right-hand-side of (45), we first calculate
the following derivatives:

∂

∂z
U(z, t, t0) =

∂

∂z

{
[u(t)− z][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
=

{
y(t0)− u(t0)

h1(t)h2(t0)− h1(t0)h2(t)

}
and

∂

∂z
V(z, t, t0) =

∂

∂z

{
[v(t)− z][u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

}
=

{
y(t0)− u(t0)

h1(t)h2(t0)− h1(t0)h2(t)

}
.

Hence, by integrating the right-hand-side of (45), by using Lemma 2, Equation (38), Theorem 1, and
the above expressions, by exploiting the symmetry properties of the process in the presence of the
boundaries (21), we have

g[t|y(t0), t0] =

f [S2(t, t0), t|y(t0), t0)]

{
A1[S2(t, t0), t]− α1 A1[S2(t, t0), t]e−2U[S2(t,t0),t,t0]

− α1 A2(t)
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)
e−2U[S2(t,t0),t,t0]

− α2 A1[S2(t, t0), t]e2V[S2(t,t0),t,t0]

+ α2 A2(t)
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)
e2V[S2(t,t0),t,t0]

}

− f [S1(t, t0), t|y(t0), t0)]

{
A1[S1(t, t0), t]− α1 A1[S1(t, t0), t]e−2U[S1(t,t0),t,t0]

− α1 A2(t)
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)
e−2U[S1(t,t0),t,t0]

− α2 A1[S1(t, t0), t]e2V[S1(t,t0),t,t0]

+ α2 A2(t)
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)
e2V[S1(t,t0),t,t0]

}

− 1
2

A2(t)
∂

∂z
f [z, t|y(t0), t0

]
z=S2(t,t0)

{
1− α1e−2U[S2(t,t0),t,t0] − α2e2V[S2(t,t0),t,t0]

}
+

1
2

A2(t)
∂

∂z
f [z, t|y(t0), t0

]
z=S1(t,t0)

{
1− α1e−2U[S1(t,t0),t,t0] − α2e2V[S1(t,t0),t,t0]

}

= f [S2(t, t0), t|y(t0), t0)]

{
A2(t)

[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)(
α2e2V[S2(t,t0),t,t0] − α1e−2U[S2(t,t0),t,t0]

)}

− f [S1(t, t0), t|y(t0), t0)]

{
A2(t)

[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)(
α2e2V[S1(t,t0),t,t0] − α1e−2U[S1(t,t0),t,t0]

)}
=A2(t)

[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t){
f [S2(t, t0), t|y(t0), t0)]

(
α2e2V[S2(t,t0),t,t0] − α1e−2U[S2(t,t0),t,t0]

)
− f [S1(t, t0), t|y(t0), t0)](α2e2V[S1(t,t0),t,t0] − α1e−2U[S1(t,t0),t,t0])

}
.
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Recalling that:

e2V[S2(t,t0),t,t0] =
1−

√
∆(t, t0)

2α2
, e2V[S1(t,t0),t,t0] =

1 +
√

∆(t, t0)

2α2
,

e−2U[S2(t,t0),t,t0] =
1 +

√
∆(t, t0)

2α1
, e−2U[S1(t,t0),t,t0] =

1−
√

∆(t, t0)

2α1
,

one has

g[t|y(t0), t0] = A2(t)
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t){
f [S2(t, t0), t|y(t0), t0)]

[
α2

(
1−

√
∆(t, t0)

2α2

)
− α1

(
1 +

√
∆(t, t0)

2α1

)]
− f [S1(t, t0), t|y(t0), t0)]

[
α2

(
1 +

√
∆(t, t0)

2α2

)
− α1

(
1−

√
∆(t, t0)

2α1

)]}

= A2(t)
[y(t0)− u(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

{
f [S2(t, t0), t|y(t0), t0)](−

√
∆(t, t0))

− f [S1(t, t0), t|y(t0), t0)]
√

∆(t, t0)

}

= A2(t)
[u(t0)− y(t0)]

h1(t)h2(t0)− h1(t0)h2(t)

√
∆(t, t0)

{
f [S2(t, t0), t|y(t0), t0]

+ f [S1(t, t0), t|y(t0), t0)]

}
.

(50)

By using the following relation

A2(t) = h2
2(t)

dr(t)
dt

(51)

and inserting this in (50) the proof is completed.

Remark 2. We note that

h1(t)h2(t0)− h1(t0)h2(t) = h2(t)h2(t0)
[h1(t)

h2(t)
− h1(t0)

h2(t0)

]
= h2(t)h2(t0)[r(t)− r(t0)].

Hence, by using also (51), we can write

A2(t)
h1(t)h2(t0)− h1(t0)h2(t)

=
dr(t)

dt
h2

2(t)
h2(t)h2(t0)[r(t)− r(t0)]

and finally, by substituting the last relation in (50), we obtain the following expression (comparable with that
of [24])

g[t|y(t0), t0] =
u(t0)− y(t0)

r(t)− r(t0)

h2(t)
h2(t0)

dr(t)
dt

√
∆(t, t0) (52){

f [S2(t, t0), t|y(t0), t0] + f [S1(t, t0), t|y(t0), t0)]

}
. (53)
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6. Two Specific Examples

Only for explanatory purposes and comparisons with known results (see, for instance, [28,34]),
we give some explicit expressions for the above functions of two GM processes such as Wiener and
Ornstein-Uhlenbeck processes, due their central rule in the class of GM processes ([14]).

6.1. The Wiener Process

Consider the Wiener process {X(t), t ≥ 0} with mean function m(t) = µt, (µ ∈ R+), covariance
function c(s, t) = s, (s, t ∈ R+, s < t), covariance factors h1(t) = t, h2(t) = 1, and r(t) = t, ∀t ≥ 0.

According (14), we set the following symmetry curves:

u(t) = µt + η

y(t) = µt

v(t) = µt− η

with η ∈ R+. The symmetry functions are

ψ0(x, t) = 2µt− x, φ0(x, t) = 1, (associated with y(t))

ψ1(x, t) = 2µt + 2η − x, φ1(x, t) = 1, (associated with u(t)) (54)

ψ2(x, t) = 2µt− 2η − x, φ2(x, t) = 1 (associated with v(t)).

Please note that from (2) the transition mean and variance functions are

E[X(t)|X(τ) = y] = µt + [y− µτ]

Var[X(t)|X(τ) = y] = t− τ

for y ∈ R, t, τ ∈ R+, τ < t, and the free transition pdf f (x, t|y, τ) remains specified as the
corresponding normal density with the above mean and variance. Setting t0 = 0, y(0) = 0, we have,
from (22)

∆(t; 0) = 1− 4α1α2 exp{−4η2/t},

with α1, α2 ∈ R+ and such that limt→+∞ ∆(t, 0) > 0 , whereas the Daniels-type boundaries from
(21) are

S1(t, 0) = µt− η − t
2η

ln

[
1 +

√
1− 4α1α2 exp{−4η2/t}

2α2

]

S2(t, 0) = µt + η +
t

2η
ln

[
1 +

√
1− 4α1α2 exp{−4η2/t}

2α1

]
.

Please note that for instance, choosing η > 0, one has S1(0, 0) < y(0) < S2(0, 0), with y(0) = 0,
S1(0, 0) = −η and S2(0, 0) = η. From (23), the transition pdf between the two Daniels-type boundaries
is, for S1(t, 0) < x < S2(t, 0),

β(x, t|0, 0) =
1√
2πt

[
exp

{
− (x− µt)2

2t

}
− α1 exp

{
− (x− µt− 2η)2

2t

}
− α2 exp

{
− (x− µt + 2η)2

2t

}]
. (55)
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Finally, from (52), the FET pdf is ∀t > 0

g[t|0, 0] =
η

t

√
1− 4α1α2 exp{−4η2/t} (56)

× 1√
2πt

{
exp

[
− [S1(t, 0)− µt]2

2t

]
+ exp

[
− [S2(t, 0)− µt]2

2t

]}
. (57)

6.2. The Ornstein-Uhlenbeck Process

Consider the well-known Ornstein-Uhlenbeck process {X(t), t ≥ 0} with X(0) = x0, that is the
GM process with mean

m(t) = x0e−t/ϑ + µϑ
(

1− e−t/ϑ
)

and covariance, for s ≤ t,

c(s, t) =
σ2ϑ

2

(
e−(t−s)/ϑ − e−(t+s)/ϑ

)
where σ, ϑ > 0, and with covariance factors

h1(t) =
σϑ

2

(
et/ϑ − e−t/ϑ

)
, h2(t) = σe−t/ϑ.

Moreover, we note that the variance is Var(X(t)) = σ2ϑ
2

(
1− e−2t/ϑ

)
, and the ratio function r(t) is

such that r(t) = ϑ
2

(
e2t/ϑ − 1

)
with r(0) = 0. Then, according to (14), and with x0 = 0, we set the

following symmetry curves:

u(t) = µϑ
(

1− e−t/ϑ
)
+ η

σϑ

2
et/ϑ

y(t) = µϑ
(

1− e−t/ϑ
)

v(t) = µϑ
(

1− e−t/ϑ
)
− η

σϑ

2
et/ϑ

with η ∈ R+. From (15) and (16), the symmetry functions are

ψ0(x, t) = 2µϑ
(

1− e−t/ϑ
)
− x, φ0(x, t) = 1,

ψ1(x, t) = 2µϑ
(

1− e−t/ϑ
)
+ ησϑet/ϑ − x, φ1(x, t) = exp{−2η

σ
et/ϑ[x− u(t)]}, (58)

ψ2(x, t) = 2µϑ
(

1− e−t/ϑ
)
− ησϑet/ϑ − x, φ2(x, t) = exp{2η

σ
et/ϑ[x− v(t)]}.

Please note that from (2), with y(τ) = 0 and τ = 0, the transition mean and variance functions are

E[X(t)|X(0) = 0] = m(t) = µϑ
(

1− e−t/ϑ
)

Var[X(t)|X(0) = 0] = Var(X(t)) =
σ2ϑ

2

(
1− e−2t/ϑ

)
for t ∈ R+, and the free transition pdf f (x, t|0, 0) remains specified as the corresponding normal
density with the above mean and variance. Setting again t0 = 0, y(0) = 0, we have, from (22)

∆(t; 0) = 1− 4α1α2 exp
{
− 2η2ϑ

1− e−2t/ϑ

}
,

with α1, α2 ∈ R+ and such that limt→+∞ ∆(t, 0) > 0 , whereas the Daniels-type boundaries from
(21) are
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S1(t, 0) = µϑ
(

1− e−t/ϑ
)
− η

σϑ

2
et/ϑ −

σ
(

et/ϑ − e−t/ϑ
)

2η
ln

1 +
√

1− 4α1α2 exp
{
− 2η2ϑ

1−e−2t/ϑ

}
2α2



S2(t, 0) = µϑ
(

1− e−t/ϑ
)
+ η

σϑ

2
et/ϑ +

σ
(

et/ϑ − e−t/ϑ
)

2η
ln

1 +
√

1− 4α1α2 exp
{
− 2η2ϑ

1−e−2t/ϑ

}
2α1

 .

Please note that for instance, choosing η > 0, one has S1(0, 0) < y(0) < S2(0, 0), with y(0) = 0,
S1(0, 0) = −ησϑ/2 and S2(0, 0) = ησϑ/2.

Finally, by using all above specified functions, from (23) and from (52), the transition pdf β(x, t|0, 0)
between the two Daniels-type boundaries is, for S1(t, 0) < x < S2(t, 0), and the FET pdf g[t|0, 0] can
be explicitly obtained, respectively.

As last remark, we note that the Ornstein-Uhlenbeck process X(t) here considered is also solution
of the following stochastic differential equation (SDE):

dX(t) =
[
−X(t)

ϑ
+ µ

]
dt + σ2dW(t), X(0) = 0,

with W(t) is a standard Wiener process. The determination of the first passage time density of
X(t) from a region is the central problem for very large number of models based on the above SDE.
The symmetry strategy and the obtained expressions in presence of Daniels-type boundaries can
be useful also in such modeling contexts, because, under specific assumptions, some (piecewise)
approximations can be derived.
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