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Abstract

Let A be a finitely generated superalgebra over a fiBldf characteristic 0. To the graded
polynomial identities ofA one associates a humerical sequehﬁgp(A)}n>1 called the sequence
of graded codimensions of. In caseA satisfies an ordinary polynomial identity, such sequence
is exponentially bounded and we capture its exponential growth by proving that for any such

algebra lim—, o +/ cf,Up(A) exists and is a non-negative integer; we denote such integer by
supexpA) and we give an effective way for computing it. As an application, we construct eight
superalgebrag\;, i =1, ..., 8, characterizing the identities of any finitely generated superalgebra

A with supexgA) > 2 in the following way: supex@) > 2 if and only if IdSUP(A) C 1dSYP(4;)

for somei € {1, ..., 8}, whereldSYP(B) is the ideal of graded identities of the algelaWe also
compare the superexponent and the exponent (see A. Giambruno, M. Zaicev, Adv. Math. 140 (1998)
145-155) of any finitely generated superalgebra.
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1. Introduction

Let F be a field of characteristic zerd, = {x1, x2, ...} a countable set, an#(X) =
F{x1, x2,...) the free associative algebra &nhover F.
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The connection betweeh-ideals of F(X) (ideals invariant under all endomorphisms
of F(X)) and Pl-algebras (algebras satisfying a polynomial identity) is well known: every
T-idealI of F(X) is the ideal of identitieg = 1d(A) of someF-algebraA.

The study of such ideals has been carried out by using methods of representation theory
of the symmetric group or of the general linear group. Since in characteristicZzédeals
are determined by their multilinear components, to €Bdbeal I = Id(A) one attaches a
numerical sequence, called the sequence of codimengip)},>1 of I or of A. ¢, (A)
is the codimension of the space of multilinear polynomials in the #irgariables of/.

In [16] Regev proved that for any Pl-algebda such sequence is exponentially bounded
and in [9] and [10] it was shown that lim, o /¢, (A) exists and is a non-negative integer.
Such integer is called the exponent of the algebramnd it has been a useful tool in PI-
theory in the last years.

The main purpose of this paper is to prove an extension of this result in the setting of
finitely generated superalgebras satisfying an ordinary identity and to deduce some natural
consequences.

Let A=AO© ¢ AD be a superalgebraZg-graded algebra) oveF. Write the set
X =Y U Z as the disjoint union of two sets. Than(X) = F(Y U Z) has a natural
structure of free superalgebra if we require that the variables ¥ohave degree zero
and the variables frord have degree one.

Recall that an element(y1, ..., yn,21,...,2m) Of F(Y U Z) is a graded identity for
Aif f(ay,...,an, b1,...,by) =0, forallay,...,a, € A9 andby,...,b, € AD. The
setldSUP(A) of all graded identities oft is a T»-ideal of F(Y U Z) i.e., an ideal invariant
under all endomorphisms @f(Y U Z) preserving the grading. Moreover, evefry-ideal
of F(Y U Z) is the ideal of graded identities of some superalgebra.

As it was shown by Kemer (see [13]), superalgebras and their graded identities play
a basic role in the study of the structure of varieties of associative algebras over a field
of characteristic zero. More precisely, Kemer showed that any variety is generated by the
Grassmann envelope of a suitable finite-dimensional superalgebra.

As in the setting of algebras with involution, in order to stud$P(A) in [8] the authors
introduced methods pertaining to the representation theory of the hyperoctahedral group.

In case chaF = 0, it is well known thatldS“P(A) is completely determined by its
multilinear polynomials and we lev¥,;"P denote the space of such polynomials in the
variablesys, z1, ..., yu, 2 (i-€., y; Or z; appears in each monomial at degree 1). Then
the sequence of spacg; N 1dSUP(A)},>1 determinesdSUP(A) and

dimg V,>UP

sup _
Cn (A) - VnSUpﬂ |dSUp(A)
is called thenth graded codimension of.

The asymptotic behavior of the graded codimensions plays an important role in the
Pl-theory of graded algebras. It was shown in [8] that the sequ(azﬁ,&f&A)},,;l is
exponentially bounded if and only £ satisfies an ordinary polynomial identity. For non-
associative algebras, graded identities and codimension growth of graded Lie algebras and
Lie superalgebras where studied in [1].
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By following the analogous procedure of the ordinary case, we shall study the
exponential behavior of such sequence of graded codimensions. We shall proveitisat if
a finitely generated superalgebra satisfying a polynomial identity, then.ligw/ c,f”p(A)
exists and is a hon-negative integer. We shall also describe explicitly how to compute such
limit. As a consequence, for any such finitely generated superalgebra, we shall define the

superexponent of as
supexpAd) = lim +/cy™™(A).
n—0o0

In [7] the authors characterized thoggideals such that the corresponding sequence of
graded codimensions is polynomially bounded. For finitely generated superalgebras this
means supexp) < 1. Here we shall characterize thoBeidealsldS"?(A) such thatA is

a finitely generated superalgebra and supaxp- 2.

More precisely, we shall exhibit eight finite-dimensional superalgebias. ., Ag with
(distinct) T»-ideals of graded identities satisfying the following property:Aifis any
finitely generated superalgebra and sugeéyp> 2, thenldSUYP(A) C IdSUP(A;) for some
ie{l,...,8}.

As a consequence of this theorem and the main result of [7], we shall prove that
supexpA) = 2 if and only if IdS“P(A) Z IdS"P(4;) for all i = 1,...,8 andId®"P(A)
IdSUP(B;) for somei =1, 2, 3, whereB; = UT»(F), the algebra of X 2 upper triangular
matrices with trivial gradingB> = UT2(F) with canonical grading an®3 = F & cF,

c? =1, are the superalgebras constructed in [7].

Similar results have been found in case of ordinary algebras as well as for algebras with

involution (see [12,15]).

2. Preliminaries

Throughout the paper we will denote #y a field of characteristic zero. Recall that
an algebrad is a superalgebra (df,-graded algebra) with gradingd©@, AD) if A =
AQ g AD whereA®, AD are subspaces of satisfying:

A 40 +A(1)A(1) c AO and A©@AD +A(1)A(0) c A

Let F(X) be the free associative algebra oveon the countable set. We represenX
in the formX =Y U Z whereY andZ are countable disjoint subsetsXf We will denote
by F© the subspace of (X) = F(Y U Z) generated by the monomials of even degree
with respect toZ and by V' the subspace generated by the monomials of odd degree
with respect taZ. Then clearly,F(X) = F(Y U Z) = FO @ FD is a superalgebra with
grading(F©@, F®D),

Recallthatanideal of F(Y U Z) is aT»-ideal if it is invariant under all endomorphisms
n of F(Y U Z) such thaty(F©@) c FO and n(F®) c FD. Also, a polynomial
fO1,..., Y0, 21,...,2m) € F{(Y U Z) is a graded identity for arF-superalgebrad =
AQ @ AD if f(a1,...,an,b1,...,by)=0"orallay,...,a, € AQ andby,...,b, €
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AD_ The setdSUP(A) of all graded identities oA\ is aT»-ideal of F (Y U Z), and everyl»-
ideall of F(Y U Z) is the ideal of graded identities of some superalgefyra= IdSUP(A).

It is well known that any superalgebrh can be viewed as an algebra wiphaction
where ¢ € Aut(A) is an automorphism oftA of order 2. In fact, the homomorphism
¢ of A=AQ @ AD defined by¢(ag) = ap and ¢ (a1) = —a1 for any ag € A@ and
a1 € A is an automorphism ofd of order 2; conversely, ifA is an algebra with
an automorphisng such that¢? = 1, then by settingA® = {a € A | ¢(a) = a} and
AD ={a e A|¢(a) =—a} we obtainthatt = A@ ¢ AD is a superalgebra with grading
(A(O), A(l))_

By applying this remark to the free algebFd X) = F(Y U Z) we exploit the relation
betweenZy-grading andg-action on F(X). If we setx; = y; + z;, x;” =y; —z; for
i =12, ..., and we require thap acts as an automorphism of order 2 BX), then
F (X) becomes the free algebra &nwith ¢-action and we write it ag' (X, ¢).

The notion ofp-identity for an algebrat with automorphisng of order 2 is the obvious
one, and we denote bg? (A) the ideal ofp-identities ofA. It is not difficult to show that
Id? (A) = 1dSYP(A). Motivated by this equality we define the graded codimensions of the
superalgebra as follows (see [7]).

As in the case of ordinary identities, in characteristic zero, the graded identities of
a superalgebra are determined by the multilinear ones. We can write the space of all
multilinear ¢-polynomials of degree as

VP =span{x;iy, ity |61, 60 € (L0}, 0 €5, )

. S
=Span{ws@) - Wom) |0 €Sy, wi=y;Orw; =z;, i=1,...n}= Vi lP.

Recall that ifZ; is the multiplicative cyclic group of order 2, then the hyperoctahedral
group of ordem is the wreath producB,, = 7Z2: S, = {(a1, ..., ay;0) | a;i € Z2,0 € S}
with multiplication given by

(a1, ...,an;0) (b1, ...,by; 1) = (albo—l(l), ...,anbo_l(n); oT).

The spaceV,"P has a structure of leftB,-module induced by defining for =
@1,...,an;0) € Bu, hyi = Yoy, hzi = zZ"(E)) = +z,(). For every algebrad with
automorphismy of order 2, the vector spacg;,"” N IdSUP(A) is invariant under the
above action ofB, = Z5 S,. Hence the spac&,""(4) = Vv, P/ (Vo"P N 1dSUP(A)) has
a structure of leftB,,-module. Its characte(;f‘“p(A) is called thenth graded cocharacter of
A and the sequenc{e(,f”p(A)},,>1 is the graded cocharacter sequenceioflThe integer
cn®(A) = dimp V"(A) s called thenth graded codimension of and the sequence
{cn *(A)},>1 is the graded codimension sequencetof

As in the case of ordinary identities, an approach to the description of the graded
identities of A is based on the study of the graded cocharacter sequence of this algebra.
While in the theory of associative algebras the space of multilinear identities of deggree
studied through the representation theory of the symmetric gspuip this case the space
of multilinear graded identities of degraes explored through the representation theory
of B, (see [8]).
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Recall that there is a one-to-one correspondence between irredBgiolearacters and
pairs of partitionsx, ), wherex =r, u-n—r,forallr =0,1,...,n. If x, , denotes
the irreducibleB,,-character corresponding ta, ), we write

n
leup(A):Z Z o X, s (1)
r=0 Akr
ubFn—r
wherem,,_,, > 0 are the corresponding multiplicities.

We now make a reduction following [5]. For fixed let V,.,_, be the space of
multilinear polynomials inys, ..., yr, z1,...,zs—r. It is clear that in order to study
VoW 1dSUP(A) it is enough to study,.,—, N 1dSUP(A) for all r. If we let S, act on the
even variables;, ..., y, andS,—, on the odd onesy, ..., z,—, then we obtain an action
of S, x S,— onV,,_,. SinceT»-ideals are invariant under this action, we get that

Vr,nfr(A) = Vr,nfr/(vr,nfr N IdSUp(A))

has an induced structure of lef, x S,_.-module. We denote byy, ,—,(A) its
character and; ,—,(A) = dimg V,,_,(A). It is well known that there is a one-to-one
correspondence between irreduciBSlex S,_,-characters and pairs of partitions, 1)
such that. - », andu - n — r. Hence, by complete reducibility, we have the following
decomposition:

Xenor(A)= " i 1 (0 ® Xy, 2
Mﬁzir
where x, (respectivelyy,) denotes the ordinarg,-character corresponding ot n
(respectively S,_,-character corresponding tp - n), xi ® x. is the irreducible
(S, x Sy—r)-character associated to the péir, x) andin, , > O is the corresponding
multiplicity.
The relation betweerB,-characters andS, x S,_,)-characters is expressed in the

following theorem.

Theorem 1 [5, Theorem 1.3]If the nth graded cocharacter of has the decomposition

given in(1) and the(S, x S,—,)-character ofV,.,_.(A) has the decomposition given in
(2) thenm,, ,, =m,_, forall » andp and

A=) (’j ) Cran-r (A).

r=0

3. Determining the superexponent of afinitely generated Pl-superalgebra

In this section we shall prove that for any finitely generated superalggbsatisfying
a polynomial identity, supexp) = lim, .o vcn "(A) exists. A first reduction is in order.



F. Benanti et al. / Journal of Algebra 269 (2003) 422—-438 427

By a theorem of Kemer (see [13, Theorem 2.2]\ifs a finitely generated superalgebra,
then there exists a finite-dimensional superalgeBrauch thatldSUP(A) = IdSUP(B).
Therefore throughout we may assume that= A©Q @ AD is a finite-dimensional
superalgebra over satisfying an ordinary polynomial identity and chfae 0.

We write A = B + J, whereB is a maximal semisimple subalgebravofndJ = J(A)
is the Jacobson radical df. It is well known that/ = J© @ J@ is a homogeneous ideal.
Also, by [13, p. 21] we may assume thRithas an inducet,-grading,B = B©@ @ BD
andletB=B1 @ ---® B,, whereBs, ..., B, are simple superalgebras.

We now define an integef = d(A) in the following way: we consider all possible
nonzero products of the type

C1JC2J ---Cy—1JCr #£0

whereCy, ..., Cy are distinct subalgebras from the $84, ..., B} andk > 1. We then
defined = d(A) to be the maximal dimension of a subalgebiat - - - + Cy, satisfying the
above inequality. We next prove that in caBds algebraically closed coincides with
supexpA).

The proof of this fact follows closely the proof given in [11] concerning the existence
of the x-exponent for a finite-dimensional algebra with involutienWe start with the
following lemma.

Lemma 2. Lett >0, a+ b >d, and let f(y1,..., V4,212,525, X1,..., %) DE @
multilinear polynomial alternating orys, ..., y,} and on{zs, ..., zp}. Then, for every
choice ofy1, ..., 5. € B9, z1,...,2, € BD %1,...,% € A, we have

fOL . Ya, 200 2, X1, .., %) =0,

Proof. Fori =1,...,m, letE; = El.(o) U Ei(l) be a basis oB; whereEfo) and Ei(l) are
sets of even and odd elements, respectively. Theal J E; = E© U ED is a basis oB.
Since f is multilinear, it is enough to evaluaté on a basis ofA. The proof now goes on
as in [11, Lemma 1], replacing thesimple subalgebras there with tg-graded simple
subalgebras. O

Recall that ifa - n, thend’ = (A, ..., A.) - n denotes the conjugate partitionjaf

Lemma 3. LetA-r, un—r andletW, , € V., ,—, be aleft irreducible(S, x S,—)-
module. IfW; , € Vy.n—r N1d%"R(A), thenh(2) <dimA©, h(u) <dimA®, anda), +
1)1 < d whereJ'™t = 0. Moreoverdim W;, ,, <n®(A),,)" (], )" for somea > 1.

Proof. It is well known (see [11, Remark 1]) thak, , = F(S, x S,—,) f wheref is a

multilinear polynomial alternating on disjoint sets of variamp'r’c; e, yil,_ 1 {z{, e, zl]/_ 1

for1<i<ig, 1<) <pa !
Since f is alternating or{y1, ..., yxl’l}' it follows thati; = h(x) < dimA©. Similarly

we get thati(u) < dimAY. Suppose by contradiction thaft, , + s, , > d. This implies
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thati; +u; > d fori=1,...,1. Since by hypothesig does not vanish od, then, by the
previous lemma, we must have that each{sgt.... y!,. 25, ..., sz,_}, 1<i<I+1, must

contain at least one variable that evaluates to an elemeht Bit J/+1 = 0 says thatf
vanishes om, a contradiction. The bound for dii#, , is obtained by applying the hook
formula for the degrees of the irreducilfig-representations (see [11, Lemma 2]}z

We can now determine an upper boundd@t’(A).
Lemma 4. There exist constants ¢ such thate;"X(A) < an’d".

Proof. By the previous lemma we can write

Xron—r(A) = Z Z mk,,u(XA X Xu)«

’ ’
0<Ay g1y <d m{:r—r

Hence

Crn—r (A) < Z Z mk,unat()\)rt(ﬂ)n_r
o< Foo<d M=
Shpathasd ST

for some constant. By [2], the multiplicitiesm, , are polynomially bounded. Hence, by
Theorem 1, we obtain

n

A=) (’:) Cr—r(A) <an” Z(’j)r{rg*r =an® Y (1+1)"

r=0 t1+12<d r=0 H+r<d
11,120 11,120

<anld"tt O
We next compute a lower bound fof"?(4). We start with the following lemma.

Lemma5. LetC = C©@ @ c® be a finite-dimensional central simple superalgebra over
the algebraically closed fieléf and letdimC©@ = p anddimCc® = 4. Thenforallm > 1
there exists a multilinear polynomial

1 1 2 2 1 1 2n, 2n,
f:f(yls"'syps"'1y1m1"'1ypm7Z]_7"'7qu"'1Z117"'1Zq 1)

such that

(1) f is alternating on each set of variablgs!, ..., y;;}, 1<i < 2m, and{z{, ...,zé},
1<j<2m; ,
(2) there existi/ € C©, 7/ e €@ suchthatf (51,.... 52", 2},.... 22" e F.

Proof. By [13, p. 21] we have thatf is isomorphic to one of the following superalgebras:
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(1) My (F), the algebra ofk + 1) x (k + ) matrices overF with grading((Fél ng),

(Fgl Féz)), where Fi1, Fi2, Fo1, Fop arek x k, k x 1, I x k, and/ x [ matrices,
respectivelyk > 1 and! > 0;
(2) M,(F & cF), the algebra ofi x n matrices overF & cF with grading (M, (F),

cM,(F)), wherec? =1.

Recall that by the result of Formanek in [6], for eveny> 1 there exists a multi-

linear polynomialf, (X) = fu(x1, ..., x%, ..., x2", ..., x2") alternating on each set of

variables{xi, .. .,lez}, 1<i < 2m and, f,(X) is a central polynomial foM,,(F). Then
Se+1(X) and £, (Y) - fn(Z) are the required polynomials fady ;(F) and M, (F & cF),
respectively. O

In the next step we extend the previous lemma by gluing together the polynomials
obtained there.

Lemma 6. Let A be a finite-dimensional algebra over the algebraically closed fited

Suppos€1JCaJ --- Cr_1J Cr #QwhereCy, ..., Cy are distinct simple subsuperalgebras
of AandCi+- +Ci=C1®--- & Ci.. If p=dim(C? +-.. +C?), g =dim(c¥ +

- C,El)), then for allm > 1 there exists a multilinear polynomial

1 1 2m 2m _1 1 2m 2m
f:f(yl,...,yp,...,yl sees Yp 5 Z0s e Zgs s 2 s 2y ,yl,...,ykl,zl,...,zkz)

wherek1 + k» = 2k — 1, such that

(1) 1 is alternating on each set of variablgs;, ..., y’}, (], ..., 2} 1<i, j <2m;
(2) there exists a valuation of the variablgg € (C\¥ + ... + ¢?), 7/ e (cP +
4+ C), 5 € A®, 7; € AD for which f takes a non-zero value.

Proof. The proof of this lemma is actually given in [11, Lemma 4] if we replace in that
lemma symmetric and skew elements with even and odd elements respectively and we use
Lemma 5 above instead of [11, Lemma 3[0

Proposition 7. Let A be a finite-dimensional superalgebra over the algebraically closed
field F and letd be the integer defined at the beginning of the section. Then there exist
constantsiy, ap, b1, b such that

ain”1d" < ;"(A) < aonb2d".
Hence the superexponentafexists andsupexpA) = lim,— oo vcn AA) =d.

Proof. The upper bound for;,"*(A) was found in Lemma 4 above. For finding the lower
bound, the proof s close to the one given in [11, Theorem 3] if one makes the due changes
(symmetric and skew elements become even and odd elements, respectively). We proceed
as follows.
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LetCy,..., Cy be distinct simple subsuperalgebrasio$uch that
C1JC2J ---Cy—1JCr #£0.

Letp =dim(C® + ...+ ), g =dimcCc® + -+ Py andd = p +q.

Take anyn > 2d + (k1 + k2), wherek; andk; are as in the previous lemma, and divide
n — (k1 + ko) by 2d; then we can writee = 2m(p +q) + (k1 + k2) + ¢, for somem, t where
0<t<2d. Sets =2mp+ki+t,n—s =2mq+kp. Let f be the polynomial constructed in
the previous lemma of degree@ + 2mq + k1 + ko, and seg = fyx,+1- - Yig+t € Vs n—s-

It is easy to check that does not vanish oA.

Let the groupG = Sa.p X Samg act ong (Samp acts on the even variablgé and
Samg acts on the odd variabl&$) and letM be theG-submodule ofV, ,_; generated
by g. By complete reducibilityM contains an irreduciblés-submodule of the form
Wi.u = FGer,er, (g) for some tableaux’, and 7, of shapei - 2mp and u = 2mgq,
respectively.

Let /(1) be the length of the first row af. Now, for everyt € Sz,,, t(g) is still
alternating on &: disjoint sets of even variables a@aeRTA o acts by symmetrizing(1)
variables. Thus, if(1) > 2m we would getr, (g) = 0, a contradiction. Similarly fof(u.).
The outcome of this is that)) < 2m andi(u) < 2m.

For a partitionv + n, let D, be the corresponding Young tableau andiét) be the
height of D,,. Notice that from the above, sinéé\) < 2m andl(u) < 2m, thenh(}) > p
andh(p) > q.

Suppose that eithér(.) > p or k() > g and that the total number of boxes out of the
first p rows of the diagranD, and out of the firsy rows of the diagranD,, is at least
[+ 1 whereJ!*1 =0.

Since FGer, ez, is a minimal left ideal ofFG, then FGCr, Cr, e, er, = FGerer,
where Cr, = 3, ¢, (Sgno)o and Cr, = Y secy, (89n0)o. We need to evaluate the

polynomialg = Cr, Cr,er, ez, (g) ONA.

Now let ' =(p+r1,...,p + ru,)»;+1,...,)\;1) and lety' = (g + s1,...,9 + sy,
Wyi1s -+ -5 Uy) bE the conjugate partitions afand i respectively. Hereq + - +ry, +
sit sy I+ L0 A, <pandw g, .., iy, < g. Now, the polynomiag is
alternating on each of sets of even variables of ordgr+ r1, ..., p +r, and on each of
v sets of odd variables of order+ s1, ..., ¢ + s,. If we substitute on any of these sets
of variables only elements from the semisimple subalgébtaC, & - - - & Ci, we would
get zero since dir6© = p, dimc® = 4. It follows that we have to substitute into these
sets of variables atleast +--- +r, +s1+---+ s, > [ + 1 elements form the Jacobson
radicalJ. SinceJ!™! = 0, we get thag vanishes i, a contradiction.

We have proved thab, and D, must contain at most a total number/oboxes out
of the first p andq rows, respectively. SincE1) < 2m and/(u) < 2m, the outcome of
this is thath must contain the rectangle= ((2m — I)”) andu must contain the rectangle
Vv = ((2m —1)7). Recall that ag: — oo,

b b/ — m—. u m m
(degx,)(degxy) ~a((2n —Dp)’(2m —1q)” p@"=Drq@n=ba >y« p2mr g2ma
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for some constants, b, b’, u. Hence, since

dimW, , = (degy,)(degy,) > (degy,)(degy,),

we obtain
Cs,n—s(A) >dim Wk,u Z nup2mpq2mq.
Therefore
n
n n n!
A=) (r ) Crn—r(A) > (s ) Con-s(A) 2 " o p 2T g2

r=0

If we now recall that = 2mp + k1 +t andn — s = 2mq + k2, by making use of the Stirling
formula, we get the desired conclusigii® > an®d" for somea, o. O

Recall that by extending the ground field, the graded codimensions do not change. In
fact, let F be the algebraic closure f andA = A @ F. A has an induced grading given
by AQ = AQ @, F, AL = AD @ F and it follows that, "(4) = ¢;"*(A). Hence we
obtain the following.

Theorem 8. For any finitely generated superalgebsasatisfying an ordinary polynomial
identity, supexpA) = lim,,_, o v/ c;"P(A) exists and is a non-negative integer.

We record some immediate consequences of Theorem 8. For any superalgahma
F weletZ = Z(A) be the center of andZ© = Z(A)©@ = ZN A© the even center of.
Next result gives an exact estimate of supeipin case ofZp-simple orZ;-semisimple
superalgebras. For its proof, we refer the reader to [11, Corollaries 3-5].

Corollary 9. Let A be a finite-dimensional superalgebra over the figld\Ve have

(1) if A is Zp-simple thensupexgA) = dim,o A;

(2) if A is Zy-semisimplethen supexpA) = man{dimz@ A}, whereA =P A; and
79 =z@nna; ’

(3) supexpA) = dimg A if and only if A is Z,-simple andF = Z(©,

4. Superalgebraswith superexponent equal to two

In this section we shall characterize tiig-ideals of finitely generated superalgebras
having superexponent equal to two. Recall that a characterizatiof,-tdeals of
superalgebras of superexponent at most one (i.e., with polynomial growth of the graded
codimensions) has been given in [7]. We first need to introduce few algebras.

Let us denote by/ T, (F) the algebra of: x n upper triangular matrices. We define the
following eight superalgebras ovérthat we shall use in the sequel:



432 F. Benanti et al. / Journal of Algebra 269 (2003) 422-438

A1=Ma(F), with grading(M2(F), {0});

Ax = M11(F), W|thgrad|ng<<F 0) (2 >>
A3=<F€%CF FE?:CF), W|thgrad|ng<<€ ;:)(Cé: Cg));

_(F F&®cF . . F 0 cF\)).
A4_<O F@cF)’ W|thgrad|ng<< F) <O cF>>’

As=UT3(F), withgrading(UT3(F), {
0 F
0 0

) (§ :))
s

When the fieldF is algebraically closed and chér= 0, in [17] the authors classified
all possibleG-gradings onU T,,(F), for G an arbitrary finite abelian group. It turns out
that there exist only 4 distin&,-gradings onJ T3(F) and these give rise to the algebras
As, Ag, A7, Ag given above.

We start by examining some special cases in the next two lemmasidfa finite-
dimensional superalgebra, then we write= B + J where B is a maximal semisimple
subalgebra ofA with inducedZ,-grading andB = B1 @ --- @ B, whereBs, ..., B, are
Z»-graded simple subalgebras 4f

0});

F 0

Ag=UT3(F), withgrading (( 0 0
0 F

F

F

0

F 0

A7=UTs(F), with grading((O F
0 0

0
F
0

oOoo™mM oo™ ©0O0OO

F
Ag=UT3(F), withgrading (( 0
0

Lemma 10. Let A be a finite-dimensional superalgebra over an algebraically closed field
F and suppose thatupexpgA) > 2. If there exist three graded simple componeBis=

By = B; = F with grading (F, {0}) such thatB; J B;J B; # 0, then IFUP(A4) C IdSUP(4;)

for somei € {5, 6, 7, 8}.

Proof. Letes, ez, e3 be the unit elements a&;, B, B, respectively. It is clear thaﬁ =

ep, ep € B(O) ande,e; = §,5¢, forr,s =1,2,3 andp € {i, k,1}. SinceB;JB;JB; # 0,
there existj; = j(o) + i, ja= 12(0) + 5P e J with ](0), .§o> e JO, i1 D e g
such that

oo 1 0 1
e1j1e2j2e3 = el(Jl + J{ ))ez(Jé )+ ]é ))63 #0.

It follows that one of the four inequalities must hold:
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6’1]{ )6’2]2 e3# 0, 6’1]](_ )6’2]2 e3 %0,

611{ )6212 e3 #0, 611{ )6212 ez #0.

Suppose first thaalj e2]2 e3 # 0. Then clearlyelj e2 #0, 6‘2] e3 # 0 and let
D1 be the subalgebra of generated by the elements

0
e1,e2, €3, 61}{ Ves, 6212( es, 611{ )621§ es.

D1 is a superalgebra with inducé&@-grading(D1, {0}). Moreover, it is easy to check that
D is isomorphic to the superalgeblials(F) with trivial grading(U T3(F), {0}). In fact,
one can build up the isomorphism of superalgelgra®1 — U T3(F) induced by setting

plei)=eii,i=1,23, (P(elj( ) = e1, <ﬂ(€21( )63) =e23 and(p(eljfo)ezjz( e3) = e1s.
Suppose now th&tj_]](_o)ezjél)e:g #0. Thenelj e2 #0, 62](1)63 # 0 and we construct
the subalgebr®, of A generated by the elements

.(0 .(1
e1, €2, e3, 61]{ e, 6212( es, 611{ )ezjé es

D> is a superalgebra with induceft- grading(D(o), Dél)), WhereDéo) = Spar{es, e2,
es, 6’1]{0)62} andDél) Spaf}:{ezjél)eg, 61]](_0)62]51)63}. Itis not difficult to show thaD;

is isomorphic as a superalgebralfd@s(F) with the Z,-grading

F F O 0 0 F
((o F o),(o 0 F>)
0 0 F 0 0O

HenceD2 = As.

In the remaining cases, i.e., if e|thelrj1 62]2(0)6‘3 #0or 61]](_1)62]2 e3 # 0, we can
construct two subsuperalgebrastofsomorphic to eithed; or As.

Finally, it is clear that ifC is a subsuperalgebras df thenldS“’(C) D I1d5UP(A4), and
the conclusion of the lemma follows.oO

Lemma 11. Let A be a finite-dimensional superalgebra over an algebraically closed
field F and suppose thatupexpA) > 2. If there exist two graded simple components
Bi = F @ cF, wherec? = 1, with grading(F, ¢ F) and By = F with grading(F, {0}) such
that eitherB; J B; # 0 or By J B; # 0,then IFYP(A) C IdSUP(A;) for somei € {3, 4}.

Proof. Suppose first thaB; J By # 0. Lete1 € B; andez € By be the unit elements a;
and By, respectively. FronB; J By # 0 it follows that there exists some elemgnt J such
thates jes # 0. By eventually multiplying by: on the left, we may assume thatj @e, £ 0
for somej @ ¢ J (O,

Let D be the subalgebra of generated by the elements

©

e1, cer, ez, e1j Qe cerj Qe
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Since all gradings are direct, it is easy to check that these five elements are linearly
independent ovef. ThusD = D@ @ DD is a superalgebra with inducép-grading,
whereD© = Spar.{e1, ez, e1jQez} and DV = Span.{ce1, ce1j @V ez}. We claim thatD
is isomorphic to the superalgebrg described at the beginning of this section. In fact,
it is enough to consider the homomorphigmD — Az induced by setting(e1) = e11,
@(ce1) = cer1, p(e2) = e22, (p(elj(o)ez) =e12 and (p(CElj(O)ez) = ceq2. Thus it follows
that if B; J By # 0, thenldS'P(A) C 1dSUP(A3).
A similar argument show that in cagg J B; # 0, thenld'P(A) C IdSUP(A4). O

We can now prove the main result of this section.

Theorem 12. Let A be a finitely generated superalgebra ovErsatisfying an ordinary
polynomial identity. ThesupexpA) > 2 if and only if IFYP(A) C IdSUP(A;) for some
ie{l,...,8}.

Proof. Recall that by extending the ground field, the graded codimensions do not change.
Hence, if F denotes the algebraic closure Bf supexpA) = supexpA ® F) and we
may assume (as we shall) thatis algebraically closed.

As remarked at the beginning of Section 3, we may also assumeitiata finite-
dimensional algebra ovét.

LetA=B1®---® By, + J be the Wedderburn—Malcev decompositiordoéis above.
Recall that a simple finite-dimensional superalge®raver F is isomorphic to one of the
following algebras:

(1) My (F) with grading

Fii O 0 Fi2
0 Fn)'\Fa O ’
whereFi1, Fi2, Fo1, Fop arek x k, k x 1,1 x k, andl x [ matrices, respectively, > 1

andl > 0;
(2) M, (F & cF) with grading(M,, (F), cM,(F)), wherec? = 1.

Now, if one of the simple componentB; is of type 1 withk + [ > 2, then
IdSUP(A) C IdSUP(My;(F)). Hence, eitheddSUP(A) C IdSUP(M2(F)) = IdSUP(A1) with
I =0orldSUP(A) C IdSUP(M 1(F)) = IdS"P(A2) with [ > 1, and we are done in this case.

On the other hand, i8; = M, (F & c¢F) andn > 2, thenldSYP(A) C IdSYP(M,, (F)) €
1dSYP(M>(F)) = 1dSYP(A 1), and we are done too.

Recall that by the basic property of the superexponent seen in the previous section,
since supexf) > 2, it follows that there exist distinct simple componests, ..., B;,
such thatB;, J - -- J B;, # 0 and diny(B;, + - - - + B;,) > 2. Therefore we may assume that
one of the following possibilities occurs:

(1) for somei # k, B; J By # 0 whereB; = F & cF with ¢2=1 andB; = F;
(2) for somei #k, B;J By # 0 whereB; = F andB; = F @ cF with ¢2=1;
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(3) there exist distincB;, Bi, B; such thatB; J By JB; #0 andB; = By = B = F.

If either (1) or (2) holds, then by Lemma 124, contains a superalgebra isomorphic
to Az or A4, respectively. On the other hand, if case (3) occurs, then by Lemma 10 the
superalgebral contains a superalgebra isomorphicApfor somei € {5, 6, 7, 8}. In any
case the proof is complete ™

We shall prove next that the above list of algebras cannot be reduced. In fact, we have
Proposition 13. For all i, j € {1, ..., 8},i # j, we have that I&I'P(A;) Z Id%"P(A ).

Proof. We first notice that supexgi) = supexfgAz) = 4 and supexf;) = 3, fori =
3,...,8.Hencdd®P(4;) Z Id%"P(A4) i =3,...,8,j=1,2.

Generators for theéf»-ideals of A1, A2 and As are well known (see [3,4,14]) and
ldSUP(A;) Z 1dSUX(A ;) for i, j € {1,2,5),i # j.

Sincez € 1dSUP(A1) but z ¢ I1dSUP(A;), i = 3,4,6,7,8 and[y1, y2] € IdS"P(4,) but
[v1, y2] € IdSUP(A;), i = 3,4,6,7,8 we get thaldS"P(4;) Z IdSUP(A ;) and IdSX(A ) ¢
IdS"P(A;), j=1,2,i=3,4,6,7,8.

The following list of polynomial characterize the remainifigideals:

[y1. y2lly3, yal € Id*P(A;), i=3,4,6,7.8  [y1 y2lly3. yal ¢ Id°*P(As);
z € 1dSYP(As); z ¢ 1d%"PA;)), i=3,4,6,7,8;

[y1, y2lz € 1d%P(4;), i=3,7.8; [y1, y2lz ¢ 1d%P(A;), i =4,6;
zlys, y2l € 1d%P(Ay), i =4,6,8  zly1,y2l ¢ 1d%P(A;), i=3,7;
z1z2 € 1d%YP(4;)), i=86,T; 7122 ¢ 1d59(4;), i=3,4,8;

[v1, 2lly2, yal € 1d*"(A3);  [y1, z]ly2, y3l ¢ 1dSX(A7);

[y, z1]z2 € 1d5“P(A3); [y, z1lz2 ¢ 1d°"P(Ag);
[y1, y21[y3, z] € 1d5"P(A); [y1. y2llys, z] ¢ 1d5“P(Ag);
z1ly, z2] € 1d%"P(Aa); z1ly, z2] ¢ 1d3"P(Ag).

It follows thatldS"P(A;) Z 1dSU(A ;) fori, j e {1,...,8},i#j. O

As a consequence of Theorem 12 and the main result of [7], we can now characterize
finitely generated superalgebras of superexponent 2. To this end we introduce the following
three algebras:

(1) B1=UT>»(F) with grading(UT>(F), {0});
(2) Bo=UTy(F) with grading(( £ 9. 35));
(3) Bz3=F @ cF with grading(F, ¢F), c® = 1.

We can now prove the following statement.
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Corollary 14. Let A be a finitely generated superalgebra ovérsatisfying an ordinary
polynomial identity. ThersupexgA) = 2 if and only if IP"P(A) ¢ Id3“A(4;) for some
ie{l,...,8 and IPUP(A) C IdSYP(B;) for somei =1, 2, 3.

Proof. By [7, Theorem 2] supexpt) > 1 if and only if eitherldS'P(A) < IdSYP(B;)
for somei = 1,2,3 or Id®"(A) C Id®“A(G ) for somej = 1,2 whereG1 = G is the
Grassmann algebra with trivial grading a6d = G© & G is the Grassmann algebra
with the natural grading.

We next claim thatd®"P(A) ¢ 1dS“N(G1), I1dSUP(G>). In fact, as remarked before, we
may assume thatt is a finite-dimensional superalgebra. Hence, sidé® is a finite
dimensional, it is well know thatd(G1) 2 Id(A©@). We have:ldS"(G1) = Id(G1) 2
Id(A©@) D 1dSUP(A).

Let now

Sty(x1,..., %) = Z (ng)xo(l) ©Xo(n)

o€eS,

be the standard polynomial of degreeNotice that forany: > 1, ife1, ..., ¢, € GO are
generating elements @f, thenSt, (e1, ..., e,) =nle1---e, # 0. HenceSt,(z1, ...,2,) ¢
IdSUP(G>), for anyn > 1. On the other hand, sincg is finite-dimensional superalgebra,
Stn(z1, ..., 2n) € 1d3UP(A) for anyn > dimp AD. It follows that 1dSUP(G1) 2 1dSUP(A).
This establishes the claim.

The proof of the corollary now follows from Theorem 1203

5. Further properties
In this section we collect further properties of finite-dimensional superalgebras and their
superexponent.
We start by comparing exg) with supexpgA). By [8, Lemma 4.7], for any
superalgebra satisfying an ordinary polynomial identity, we have that
cn(A) < cp N(A) < 2'eq(A).

In caseA is finitely generated, these inequalities imply the following lemma.

Lemma 15. If A is a finitely generated superalgebra satisfying an ordinary polynomial
identity, then

exp(A) < supexpA) < 2exgA).
Next natural question is:
How large can be the gap betweerp(A) and supexgA)? In other words, given any

positive integerg/ and0 < k < d, does there exist a finitely generated superalgebra
such thatexp(A) = d andsupexpA) =d + k?
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The answer is yes as the following proposition shows.

Theorem 16. Given integersi > k > 0, there exists a finitely generated superalgeldra
such thatexp(A) = d andsupexpgA) =d + k.

Proof. Let us denote by the algebra

FZZKZ §>\a,beF}.

This algebra isZo-graded, F, = F\> @ F" where F\¥ = F(e11 + e20), F° =
F(e12+ e21) and clearlyFo = F @ cF.

We writed 4+ k = 2k + (d — k) and we letU (k, d — k) be the algebra of upper block
triangular matrices oveF of the type(é g) where

F> *
A= C My (F)
0 F>

is an algebra of upper block triangular matrices ave€ = UT,_(F), andB is the space
of 2k x (d — k) matrices ovelF’. The Wedderburn—Malcev decomposition of this algebra
is

Uk,d—k)=F,®6-- - @FR0F®---®&F+J
k d—k

whereJ consists of all strictly upper block triangular matrices.

Recalling the defining properties of &4 and supexpA) (see [11] and Section 3
above)itis easy to check that éXp(k, d —k)) = k+d —k = d and supex@/ (k, d —k)) =
2k+d—k=d+k. O

We next characterize finite-dimensional superalgebras whose sequence of graded codi-
mensions is polynomially bounded (i.e., supexp< 1). We have

Theorem 17. Let A be a finite-dimensional superalgebra over an algebraically closed
field F. ThensupexpA) < 1if and only if

(1) expA) <1
(2) A= B + J whereB is a maximal commutative semisimple subalgebra with trivial
inducedZ,-grading.

Proof. Suppose that supegp) < 1. Then by [8], for alln, c,(A) < ¢;"XA) < an’
for some constanta, 7, and the sequence of codimensions is polynomially bounded.
From Section 3, by the definition of the superexponent it follows that for any maximal



438 F. Benanti et al. / Journal of Algebra 269 (2003) 422-438

semisimple superalgebBC A, thenB = B1 & --- ® By, and, for alli, B; = F has trivial
Zp-grading. This proves the first part of the theorem.

Conversely, suppose that= B + J whereB=B1 & ---® B, and, foralli, B; = F
with trivial Z,-grading. In this case, i € A, we writta =b+ j,be B=B®, jec J.
Thena —a© = j — j©@ ¢ JandA® c J follows.

Notice that if we assume that(A) is polynomially bounded, thes} ,,—, (A) < ¢, (A) <
an', for somea, 1, for all r > 0. Let J¢ = 0. SinceA™D c J, then for allr < n — ¢,
Ven—r N1d5U(A) =V, ,_, andc,,—,(A) = O follows. Hence, for alk, we obtain:

n

n q—1
SPay=Y" (’j) Crnr(A)<an’ Y (’;) —an' Y (f) Sy
r=0

r=0 r=n—q+1

andc,,"’(A) is polynomially bounded. O
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