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In this work, we study the optical soliton solutions of the generalized non-autonomous nonlinear Schrodinger
equation (NLSE) by means of the new Kudryashov’s method (NKM). The aforesaid model is examined with time-
dependent coefficients. We considered three interesting non-Kerr laws which are respectively the quadratic-cubic
law, anti-cubic law, andtriple power law. The proposed method, as a newly developed mathematical tool, is
efficient, reliable, and a simple approach for computing new solutions to various kinds of nonlinear partial

differential equations (NLPDEs) in applied sciences and engineering.

Introduction

The Optical fibers are commonly used incommunication, broad-
casting, medical field, industries, lighting and decorations, mechanical
inspections, defense, and have many commercial and scientific appli-
cations. Telecommunication companies totally work on optical fibers
such as in the transmission of telephone signals, internet communication
and cable television signals. It is very thin, lighter, and having highly
flexible nature. That is why it carries more data compared to copper
wires with high-speed having more accuracy. In medical industries, it
gives us information and images from the internal parts of the human
bodies by entering the hollow parts of the body. Surgeries, endoscopy,
microscopy, lasers, and biomedical research are working on optical fi-
bers. It is also used as sensors to pressure and temperature measurement.
Economically, it is used for safety purposes, lighting internally and
externally in automobiles, for decorations and research purposes in
testing. Engineers used the optical fibers to detect damages and faults in
pipes and for inspection in hard regions. These are used in aircraft
wirings and for the transmission of high-level confidential data.

Additionally, the field of optical soliton solutions of some nonlinear
equations are very interesting and has an important role in mathematics
and scientific applications. That is why different techniques shall be
used for the solutions of such problems [1-27]. Bright optical solitons
have been studied earlier for various non-Kerr law nonlinearities by
several scientists [28-32]. In this paper, ringing solitons are studied
along with nonlinear optics and nonlinear non-Kerr law. The four kinds
of bizarre non-Kerr laws deliberated in our work are the quadratic-cubic
law [33-36], an anti-cubic law [37-42] and a triple power law [43,44].
For the better understanding of optical solitons solutions, different
techniques were used by Arnous et al. [45,46]. Many other mathema-
ticians briefly discussed the different cases of optical solitons solutions
along with different conditions for finding the exact solutions such as
Biswas discussed for resonant optical solitons with nonlinear cubic law
and cubic-quintic-septic law nonlinearities [47], Bulut and Pandir
studied the nonlinear fractional Sharma-Tasso-Olver equation [48],
Demiray and Bulut worked on generalized Gardner equation [49], while
Fazli and Adibi used NLSE [50].

The following equation is NLSE having time-dependent coefficients
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[14,44].
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where §(t), A(t), u(t) and n represent the inter-modal dispersion, coef-
ficient of self-steepening, coefficient of higher-order dispersion and the
nonlinearity, respectively. The spatial variable x and temporal variablet
are the independent variables. The soliton profile is related to a complex
valued function q(x, t). The following transformation helps us in the
solution of Eq. (1)

!
q(x,1) = g(z)e("'/’(“"))7 7= x+21</ a(t)dr, ¢ =—-kx+o()r (2)
0

where « is the soliton frequency. Putting Eq. (2) in(1) and then sepa-
rating the real and imaginary parts as

8(1) + ((2n + 1)A(t) + 2nu(t) )g* =0, 3)

(a(t) +7(1))g" — (t0 () + (1) + Ka(t)
+«6(t) ) g — kA(1)g" ' + B(1)F (%) g
—0. ()]

In this work, we will study the optical soliton solutions of the
generalized non-autonomous NLSE in optical fibers with respect to the
three types of Ffunction that are given by

B1(H)v/q + B>(t)q, Quadratic - cubic law,
/J’(Z)F(Iq\z) =1{ B(0g 7+ By(t)g+ By(1)q*, Anti - cubic law,
B1(1)g" + B (1)g* + B5(1)g*, Triple power law,

where f, (t), f,(t) and p5(t) are the coefficients depend upon time. The
primary objective of this study is to discuss certain exact optical soliton
structures to the NLSEs having full nonlinearity using the NKM with the
help of the Maple. The optical solutions will be analyzed through a few
supportive illustrations. This paper is partitioned as follows: Sec. 1
present the introduction, Sec. 2 is devoted to the description of NKM.
Sec. 3 is described the application of NKM on generalized non-
autonomous NLSE in optical fibers, while the paper is concluded in
Sec. 4.

Description of new Kudryashov’s method

The key steps of the NKM for the solutions of Eq. (1) are:
Step 1. We consider the nonlinear PDE for g(x, t) of the form

F(4, 41y d Guxs ) =0, (5)

where g = q(x, t) is an unknown function.
Step 2. We introduce the wave transformation as

qlx, 1) = g(2)e”™,  z=x—bt, (6)

where b is an unknown constant. Eq. (5) can be converted to the
following nonlinear ODE with the help of Eq. (6) as

H(g7 g’? 8”7 ) =0, 7)

where the prime denotes the derivative concerning z.
Step 3. Along with NKM, solutions of (7) in terms of Q(z) can be
written as the following finite series
N .
8@ = > ¢(0QR), o #0, ®)
j=0

J

where Nis a positive integer, and Q(2) is defined as
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where c¢o,c1,¢2,C3,...,cy,P and R are the arbitrary constants to be
determined. The function ¢(z) satisfying the following nonlinear ODE

X @ - 1), (10)

The general solution of Eq. (10) is

1

— 11
1 4 de?’ G

?(2)

where d is an arbitrary parameter.

Step 4. The N can be finding from Eq. (7). For this homogeneous
balance principle helps in equating the nonlinear terms in Eq. (7) with
higher derivatives. For N = 1, Eq. (8) can be written as

8(z) = co+¢10(z). 12)

Step 5. Putting Eq. (8) in (7) and then equating the coefficients of

Q(z) to zero, we get a nonlinear algebraic system containing the con-
stantscy, ¢, C2, Cs, ..., Cy and b.

Step 6. Putting Eq. (11) in Eq. (9) and then putting Eq. (9) along with
constants b, o, ¢1, ¢2, C3, ..., Cy in Eq. (8), we get optical soliton solutions
of Eq. (7) with the help of Maple.

Optical soliton solutions

Here NKM is used to find the new optical soliton solutions for the
generalized nonautonomous NLSE in optical fibers. The following three
cases are solved with the help of Maple.

Quadratic-cubic law

By substituting ﬂ(t)F(\qF) = p1(t)\/8+pP2(t)g in (4), for n = 1, we
get

(a(t) +y(1))g" — (tw/s(t) +w(t) + *alr)

+x8(1) ) g —kA(1)g + P (1) + B, (1)g
=0. (13)
By balancing principle, we obtain N = 1. Therefore, the solution of
Eq. (13) can be considered as Eq. (12). Substituting Eq. (12) into Eq. (13)

and then equating the coefficients of Q/(z) to zero, the following
nonlinear algebraic system is obtained as follows:

—t0 ()co +ﬂ2(t)cg —*a(t)co — k6(t)co — Kﬂ(l)cg —w(t)co + f, (t)cg =0,
14)

—i2a(t)e) — 3xA(1)cEer 4 3B, (t)c2er — w(t)ey — kd(t)ey + ey (t) — ta (1)
+ cla(t) + Zﬂ] (l)CoCl = 07

(15)
—3c1y(t) = 3kA(t)coc? + 3B, (t)coc? — 3era(t) + B, (1)t =0, (16)
Bo(t)c —kA(t)c} +2c10 + 2¢;a(t) = 0. a7

This system is solved with the help of Maple to get following two sets:
Set 1.

=0, ca=c, of)= %/Ot( — a(t) — k8(t) + y(1) + a(r) )dt,
Bi(1) = S(G(I)CJIV r(t) )7 (1) = —KkA(t)c? +622a(t) + Zy(t).

18
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Substituting Eq. (11) in (9) and then putting Egs. (9), (18) into (12),

we have
)

¢, Pelib)

(14 dez) (P+R<H#—

qi(x,1) = 19

where
!
z=x+ 2K/ a(t)dt, ¢ = —kx+o(1)t.
0
Fig. 1 illustrates the dark soliton solution |q; | forx = 1.5,c; = 1,d =

25,P =1,R =2,y(t) = 2t,6(t) =t + e'and a(t) = tanh(3t).
Set 2.

co=-c, c=c, o= %/Ot( —k(ka(t) —6(2)) +r(¢) + alt) )dt,
i) = _S(a(t): 1) Balt) = —cA(t) + iga(z) +r(0)

(20)

Substituting Eq. (11) in (9) and then putting Egs. (9), (20) into (12),
we have
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P

weaer(ren(i 1))

7= x+21</t a(t)dr, ¢ =—kx+ o)t
0

@)= —c|l- i), 1)

where

Anti-cubic law

By substituting ﬁ(t)F(|q\2> = P ()82 +P,()g +pB5(t)g? in (4), we get
the below equation
(a(t) +7(1))g" — (10 (¢) + w(t) + Ka(t)
+x8(1) ) g — kA0 +B1(10)8 7+ pr(0)g” + B3 ()8
—0. (22)

Balancing g"and g° in Eq. (22) leads to N = 1. Then by virtue of the
transformation

g= (23)
andn = 1,Eq. (22) modifies to

(b)

Fig. 1. The 3D (a), contour (b) and 2D (c) surfaces of the soliton solution of Eq. (19) given by |q;| forxk =1.5,c; =1,d =2.5,P = 1,R = 2, a(t) = tanh(3t),y(t) = 2t,

§(t) =t+e', and t = 1 for the 2D graphics.
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(@(r) +7(0)) (= (@) +2r7") — 4t (1) + 0 (1) + (1)
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+x6(1) )y* —Akd(0)y’ +4(B, (1) + B0 + Bs (1))
=0.

=0, ¢ =cy, ﬁl(t):(m
24)

By balancing principle, we obtain N = 1. Therefore, the solution of

By(1) = (e1+2¢0)(y(t) +a(t)) +xA(1)E
Eq. (24) can be considered as (12). Substituting Eq. (12) into Eq. (24)

120 ((at) +0)),

_ 3a)+r@)
C% 3 ﬂB (t) - _4 C% )
: . !
and then equating the coefficients of Q/(z) to zero, the following ()= ! / (Lz (—4ck(xa(r) +8(t)) + (3 +6¢ico+6¢2) (a(t) +7(1))) ) dr.
nonlinear algebraic system is obtained tJo \4ci
— 4x5(1)ch — 41w (1)ch + 4B () cy — A a(t)cl — dw(t)c) — 4xA(t)cy + 4B, (1)
+4p,(1)cg =0,

— 8k6(t)c1co — 81w (f)cico — 8ita(t)erco + 2a(t)cico — 8w(t)eyco

26) @x1)=
+ 126, (f)cicy + 1685 (t)cich + 27 (t)erco — 12kA(f)cicy = 0,

C1P
co+

i)
(1 +dez)<P+R(ﬁ— 1

—4Ca(n)e — 6a(t)eico — 4m(t)c? — 41w (1)t — 12kA(1)coc? — 6ycico @7 where
+24B5(1)cet +a(t)ct +r()et — 4xd(t)ct + 128, (Heoe; =0,

dycico + 16f5(t)coct — dyc? +4da(t)cico — dkA(t)e; — da(f)c? +4p,(f)ci = 0,

z =x+21</t a(t)dr, ¢ =—kx+ o)t
0
(28)
4B, (1)ct +3a(r)ct +3y(1) = 0.

¢g=1,d=25P=15R=0.75y(t) = e*,5(t) = tanh(t) and a(t)
29 sech (—t).
This system is solved by using Maple to get following:

(a)

) (b)

T

T

~
-20 -10

Fig. 2. The 3D (a), contour (b) and 2D (c) surfaces of the soliton solution of Eq. (31) given by |g3| for k =1.5,c;1 =1, ¢o =1,d =2.5,P=1.5,R=0.75,a(t) =
sech(—t),y(t) = e*,5(t) = tanh(t), and t = 1 for the 2D graphics.

(30)
Substituting Eq. (11) into (9) and then putting Egs. (9), (30) into (12)
along with (23), we have
(25)

(31)

Fig. 2 demonstrates the bright soliton solution |gz|for k = 1.5,¢; = 2,
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Triple-power law

By substituting ﬂ(t)F<|q\2> = B1(6)8% +B,(t)g% +h5(t)g3 in (4), we

get the following equation

(a(t) +7(0))g" — (0 (1) + (1) + Ka(r)
+x8(1) ) g — kAN + B + B, ()" + By (1)g™ !
=0. (32)

By virtue of the transformation

g =7 (33)
and n = 3a, Eq. (32) modifies to
(@(t) + () ) (1 = 2a)(y )’ + 2a7" ) — 4a® (10 (1) + o0(t) + (1)
+x8(1) )7 — 4’ k(1) +4a* (B, (1) + Bo(07" + B3 ()7 )
—0. (34)

By balancing principle, we obtain N = 1. Therefore, the solution of
Eq. (34) can be considered as (12). Substituting Eq. (12) into Eq. (34)
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and then equating the coefficients of Q(z) to zero, the following
nonlinear algebraic equations are obtained
—4a’k*a(t)cl — 4a*kd(t)ck — 4a*kA(t)cy + 4a* B, (t)cy + 4> Bs (t)c)

. (35)
—4dw(f)ca +4a>p, (t)cy — da*tw (1)t = 0,

12a%B, (1) cher +20a° B4 (t)cger — 8aPk*a(t)coct — 20a*kA(f)cyer + 2y (t)acico
—8a*tw (1)coc, — 8a*w(t)cocy — 8a*kd(t)cocy + 2a(t)acico
+16a’B,(t)cyer =0,

(36)
—4d’o(t)cl — 6y(t)acco — 6a(t)acico — 40a2kA(t)cyet + 12a* B, (f)coct
+40a2B5(1) 32 — 4a’k8(1) 2 — 4Pt (1)¢? — da*KCa(r)c?
+24d’B,(1)ciet +7(t)e; +a(t)c; =0,
37)

dy(t)acico +4a B, (t)e; — 2y(t)cl + 4a(t)acico + 16a2B, (1) coc; — 2a(t)cla
—2y(t)cla+40a*B, (1) ciel — 2a(t)e — 40a>kA(t)caci = 0,
(38)

(b)

=)
s

02

(©)

Fig. 3. The 3D (a), contour (b) and 2D (c) surfaces of the soliton solution of Eq. (42) given by |q4| for k = 0.75,c; =2,d =1.5,P=0.5,R=1,a =4,a(t) = 2,y(t) =

2sin(t), 5(t) = sinh(t), and t = 1 for the 2D graphics.
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20?5 (t)coc + a(t)ed —20a*kA(t)coct + 4a*B, (1) et + 2y (1) a+ y(t)c?
+2a(t)cla = 0,
(39)

—4a*kA(t)c; +4d> By (1)) = 0. (40)

The above equations are solved by using Maple to get following two
sets:

Set 1.
=0, co=c, B(t) =xA0),
Pi0) = 55 (10 + a0) + r(Da + (o),
1 (41)
Palt) = s (Cattla +7(0) + 20)a + (1)),
a‘cy

o) =1 [[( = (et — o)+ 4ax50) ~0) .

Substituting Eq. (11) into (9) and then putting Egs. (9), (41) into (12)
along with (33), we have

aP (#(x0) (42)

wlen = | (1+dez)(P+R<'#71>> |

where

!
z=x+ 2K/ a(t)dr, ¢ =—kx+ o)t
0

Fig. 3 illustrates the bright soliton solution |g4| for k = 0.75,¢; = 2,
d=15P=05,R=1,a=4,y(t) = 2sin(t),5(t) = sinh(t) and a(t) = 2.
Set 2.

a=-c o =cn fi0 =5 @ +10))
pa) = - D (0 +a), 40 = 20), (43

o) =1 /0 ( - % (4ax(3(r) + xa(t)) — (1) — a(t)) )dz.

Substituting Eq. (11) in (9) and then putting Egs. (9), (43) into (12)
along with (33), we have

a P .
’ —c1 |1 = e(")’()(-,f))7 (44)

u+déKP+R(ﬁE—1))

!
z=x+ 2K/ a(t)dt, ¢ = —kx+o(1)t.
0

gs(x,1) =

where

Conclusion

In this work, we investigate the optical soliton solutions of the
generalized non-autonomous NLSE with time-dependent coefficients
through the use of the new Kudryashov’s method. The approach is a very
powerful scheme that first transforms the generalized NLSE to an ODE
through a complex wave transformation and then the coefficients of
equal powers are compared in the obtained ODEs, to get some nonlinear
algebraic equations which are later solved by Maple. We considered
three interesting non-Kerr laws which are categorized as the quadratic-
cubic law, anti-cubic law, and triple power law. From our results, we
suggest that the method is very effective, powerfully, and a well-defined

Results in Physics 24 (2021) 104179

algorithm.
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