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In (R. Agliardi, 1995, Internat. J. Math. 6, 791–804) we proved the well-posedness
of the Cauchy problem in H. for some p-evolution equations (p \ 1) with real
characteristic roots. For this purpose some assumptions on the lower order terms
are needed, which, in the special case p=1, recapture well-known results for
hyperbolic operators. In (R. Agliardi, 1995, Internat. J. Math. 6, 791–804) the
leading coefficients are assumed to be constant. In this paper we allow them to be
variable. Our result is applicable to 2-evolution differential operators with real
characteristics, i.e., to Schrödinger type operators. This class of operators compre-
hends, for example, Schrödinger operator Dt−Dx or the plate operator D

2
t −D

2
x.

The Cauchy problem in H. for such evolution operators has been studied exten-
sively by Takeuchi when the coefficients in the principal part are constant and the
characteristic roots are distinct. © 2002 Elsevier Science (USA)

1. NOTATION AND MAIN ASSUMPTIONS

Let C j(W) denote the set of all functions with continuous jth-order
partial derivatives on W and let B j(W) denote the set of all functions whose
derivatives of order [ j are continuous and bounded in W. Let Sm denote
the class of the pseudo-differential operators p(x, Dx) whose symbol p(x, t)
satisfies the following condition:

sup
a, b ¥N

n
sup
x, t ¥ R

n

|t| \ B

|“atD
b
xp(x, t)| ·OtP

|a|−m <.

for some B \ 0. (Here OtP=`1+|t|2). For any real s we denote the
Sobolev space {u ¥SŒ(Rn); ODxP s u ¥ L2(Rn)} by H s(Rn) and set H.=
4s H s.
Consider a linear operator of the form

P=P2m(t, x, Dt, Dx)+C
m

j=r
aj(t, x, Dx) D

m−j
t , (1.1)



where

P2m(t, x, Dt, Dx)=D
r

j=1
(Dt−l

1
j (t, x, Dx)) · · · (Dt−l

sj
j (t, x, Dx)), (1.2)

where ; r
j=1 sj=m, sr \ sr−1 \ · · · \ s1. We assume that the l(t, x, t)’s

satisfy the following properties:

(i) “
k
t l
i
j ¥ S

2, k=0, ..., m−1,

(ii) l ij are real-valued and l
i
j−(l

i
j)* ¥ S

0,

(iii) l ij(t, x, t) ] l
h
k(t, x, t) if i ] h and t ] 0.

(1.3)

Moreover,

aj(t, x, Dx)= C
|a| [ 2(j−r)

aaj(t, x) D
a
x, (1.4)

where aaj ¥B([−T, T] ; B.(Rn)).
Let s̄j=; j

h=1 sh. Denote l
i
j by li if j=1 and by ls̄j−1+1 if j > 1. Let “i

denote Dt−li(t, x, Dx). If J=(j1, ..., jk) set {J}={j1, ..., jk}, |J|=k,
“J=“j1 · · ·“jk . Let I (1)

h ={J=(j1, ..., jh); j1 < · · · < jh, {J} … {1, ..., s1}}
and, for k=2, ..., r, I(k)

h ={J=(j1, ..., jh); j1 < ·· · < jh, {J}… {s̄k−1, ..., s̄k}}.
Thus P2m can be written in the form “J1 · · ·“Jr , with Jk ¥I (k)

sk .

Examples. Assume that P=;2m
h=0 P2m−h where P2m−h(t, x, Dt, Dx)=

;m
j=[(h+1)/2] ; |a|=2j−h aaj(t, x) D

a
xD

m−j
t and aaj ¥B([−T, T]; B.(Rn)).

Suppose that the characteristic roots are real with constant multiplicity;
that is, P2m can be written in the form

P2m(t, x; y, t)=D
k

i=1
(y−l i(t, x, t)) ri,

with ;k
i=1 ri=m, r=r1 \ · · · \ rk, l

i(t, x, t) ] lh(t, x, t) if i ] h and t ] 0.

(a) If the characteristic roots do not depend on t and x, then
P2m=P2m. We assume that P2m−h vanishes for h=1, ..., 2r−1.
(b) Let {. , .} denote the Poisson bracket with respect to the space

variables. Assume that

{li, lj} ¥B.([−T, T]; S2) (1.5)
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so that Lemma 2.2 holds with sJ ¥ S0. Therefore, in this case, if r=1, in
order to obtain the main result (Theorem 2.1), it suffices to assume that
P2m−1 vanishes.
Note that (1.5) holds if the characteristic roots do not depend on x.
(c) Suppose that P2m does not depend on x and has a double charac-

teristic root l(t, t), while the other roots are simple. Then a simple cal-
culation shows that our result holds if we assume the following conditions:
P2m−1 and P2m−3 vanish, and

L2m−2(t, x, t)=(P2m−2(t, x; y, t)+
1
2 “
2
yP2m(t, x; y, t) Dtl(t, t))y=l(t, t)

vanishes.

2. CAUCHY PROBLEM IN H.

If u ¥H s(Rn), its Sobolev norm ||ODxP s u||L2 will be denoted by ||u||s. Let
M, s ¥N be fixed. If u(t, x) ¥4M

j=0 C
j([−T, T]; H s+2(M−j)(Rn)), we shall

use the following notation:

|| ||u(t)|| ||2s, M=C
M

j=0
||“ jtu(t, .)||

2
s+2(M−j). (2.1)

The result we prove in this section is the following:

Theorem 2.1. If P satisfies the assumptions (1.1), (1.2), (1.3), (1.4), the
initial data gh are in H. and f ¥ C([−T, T]; H.), then the Cauchy problem

Pu(t)=f(t)

Dht u(0)=gh h=0, ..., m−1
(2.2)

has a solution u(t, · ) ¥H., -t ¥ [−T, T]. Moreover, the following energy
inequality holds for every s ¥N :

|| ||u(t)|| ||s, m−r [M(T) 3 || ||u(0)||s, m−1+:F
t

0
||f(y, · )||s dy : 4 . (2.3)

This theorem is proved at the end of this section. We premise a few
lemmas. Throughout all the following lemmas we assume that the l j’s
satisfy (1.3) (i). In writing the identities involving pseudo-differential
operators we shall omit the regularizers. Moreover, for the sake of brevity,
we shall only point out the properties of the pseudo-differential operators
with respect to the space variables, disregarding their behavior with respect
to time.
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Lemma 2.1. Assume that li and lj are distinct. Then, for any positive
integer N, we can write the identity in the following way:

Id.=d(N)ij (t, x, Dx) “j+d
(N)
ji (t, x, Dx) “i+r

(N)(t, x, Dx), (2.4)

where d (N)ij , d
(N)
ji ¥ S−2 and r (N) ¥ S−N.

Proof. Let us define dij(t, x, t)=(li(t, x, t)−lj(t, x, t))−1. (We modify
the l’s for small |t|, if it is the case.) Then we can write: Id.=
dij(t, x, Dx) “j+dji(t, x, Dx) “i+r(1)(t, x, Dx), where r (1) ¥ S−1. Reiteration
of this procedure on the last addendum yields the desired identity.

Lemma 2.2. Assume that the lj’s are distinct for j ¥ {1, ..., s} and let lm
be distinct from every lj with j ¥ {1, ..., s}. Denote Ih={J=(j1, ..., jh);
j1 < · · · < jh, {J} … {1, ..., s}} for h=1, ..., s. (We mean I0=” and “”=
Identity). Let I −

h denote Ih 2 {J=(j1, ..., jh−1, m); (j1, ..., jh−1) ¥Ih−1}.
Then, for every k=1, ..., s and for every J̃ ¥Ik, we have, for any arbitrary
integer N> 0,

[“m, “J̃]= C
J ¥IŒk

sJ(t, x, Dx) “J+C
k−1

h=0
C
J ¥IŒh

r (N)J (t, x, Dx) “J, (2.5)

where sJ ¥ S1 and r
(N)
J ¥ S−N. (Here [A, B] denotes AB–BA.)

Proof. Let us start with k=1. Since [“m, “i] ¥ S3, in view of Lemma
2.1 we have

[“m, “i]=[“m, “i](d
(N+3)
im “m+d

(N+3)
mi “i+r(N+3))

with d (N+3)im , d (N+3)mi ¥ S−2 and r (N+3) ¥ S−N−3. Thus we have established (2.5)
in this case. More generally, for J̃=(j1, ..., jk) ¥Ik, we have

“m “J̃=(“j1 “m+s
(1)
m “m+s

(1)
j1
“j1
+r(1)−N) “j2 · · ·“jk

for some s (1)m , s
(1)
j1

¥ S1 and r (1)−N ¥ S−N. By induction we obtain:

“m “J̃=(“j1+s
(1)
m ) 3“j2 · · ·“jk “m+ C

J ¥Iœk

s̃J“J+C
k−2

h=0
C
J ¥Iœh

r̃ (N+1)J “J
4

+s (1)j1 “J̃+r
(1)
−N “j2

· · ·“jk ,

where s̃J ¥ S1, r̃
(N+1)
J ¥ S−N−1, and IŒh={J; (j1, J) ¥I −

h}.
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Note that, for J ¥Iœk, (“j1+s
(1)
m ) s̃J=s̃J “j1+w

(2)
J with w

(2)
J ¥ S2. There-

fore, inspecting our expression, we see that, in order to put it in the form
(2.5), we only have to examine the terms containing w (2)J . For every J ¥Iœk
there exists n ¥ {2, ..., k+1} such that J lacks jn. (We have set jk+1=m.)
Let us denote such a J by Jn. Then, in view of Lemma 2.1, we have w

(2)
Jn=

s̊n “j1+ẘn “jn+rn where s̊n, ẘn ¥ S
0 and rn ¥ S−N. Therefore, in the sum

;J ¥Iœk
w (2)J “J, the only term that requires further handling is:

C
k+1

n=2
ẘn “jn “Jn .

Again induction enables us to write “jn “Jn in the desired ordering, so that
each term is included in the formula (2.5).

Lemma 2.3. Assume that the l j’s are distinct for j ¥ {1, ..., s}. We define
Ih, h=1, ..., s, as in Lemma 2.2. For h=1, ..., s−1, let S h be a subset of
{1, ..., s} with h+1 elements. Then, for any positive integer N, we can write
the identity as the following sum:

C
J ¥Ih
{J} … Sh

d (N)J (t, x, Dx) “J+C
h−1

k=0
C
J ¥Ik
{J} … Sh

r (N)J (t, x, Dx) “J, (2.6)

where d (N)J ¥ S−2h and r (N)J ¥ S−N.

Proof. First note that the case h=1 follows from Lemma 2.1. More
generally, if 1 < h [ s−1 and S h is given, then (2.6) can be proved induc-
tively. Let a=min{i; i ¥ S h} and define S h−1=S h−{a}. Suppose that

Id.= C
J ¥Ih−1
{J} … Sh−1

d̃ (N)J (t, x, Dx) “J+C
h−2

k=0
C
J ¥Ik

{J} … Sh−1

r̃ (N)J (t, x, Dx) “J,

where d̃ (N)J ¥ S−2h+2 and r̃ (N)J ¥ S−N. For every J in the first sum let
ij ¥ S h−1−{J}. Thus, inserting Id=dij a “a+daij “ij+r̃̃

(N)
J (with dija, daij ¥ S

−2

and (̃̃N)
J ¥ S−N, as in Lemma 2.1) between d̃ (N)J and “J, we obtain

C
J ¥Ih−1
{J} … Sh−1

d −(N)J “a “J+ C
J ¥Ih−1
{J} … Sh−1

d'(N)J “ij “J+C
h−1

k=0
C
J ¥Ik

{J} … Sh−1

r −(N)J (t, x, Dx) “J ,

where d −(N)J , d
'(N)
J ¥ S−2h and r −(N)J ¥ S−N. We just have to put the second

term in the desired form. This can be accomplished by using Lemma 2.2 to
set “ij “J in the right ordering. Since some pseudo-differential operators of
order 1-2h appear, we insert a suitable term of the form (2.4) to lower their
order. A final application of Lemma 2.2 gives the form (2.6).
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Lemma 2.4. Let the l j’s be as in Lemma 2.3. Then for all k=0, ..., s−1
and for any positive integer N we can write

D s−1−kt = C
J ¥Is−1

c (k)J (t, x, Dx) “J+C
s−2

h=0
C
J ¥Ih

rJ(t, x, Dx) “J (2.7)

for some c (k)J and rJ depending on N and belonging to S−2k and S−N,
respectively.

Proof. For h=1, ..., s−1, let S h be a subset of {1, ..., s} with h+1
elements. First we prove that, for any S h and for any positive integer N,

Dht= C
J ¥Ih
{J} … Sh

b (N)J (t, x, Dx) “J+ C
h−1

m=0
C
J ¥Im
{J} … Sh

r (N)J (t, x, Dx) “J (2.8)

holds with b (N)J ¥ S0 and r (N)J ¥ S−N.
If i ] j, let cij(t, x, t)=lj(t, x, t)/(lj(t, x, t)−li(t, x, t)). Then, if
S 1={i, j}, we can write Dt=cij(t, x, Dx) “i+cji(t, x, Dx) “j+r̃1 where
r̃1 ¥ S−1. Applying Lemma 2.1 to the last addendum we obtain (2.8) for
arbitrary N. The general case h > 1 can be proved by induction. Let N
and S h be given. For the following notation we refer to the proof of
Lemma 2.3. Then

Dh−1t = C
J ¥Ih−1
{J} … Sh−1

b̃ (N+1)J “J+ C
h−2

m=0
C
J ¥Im

{J} … Sh−1

r̃ (N+1)J “J

for some b̃ (N+1)J ¥ S0 and r̃ (N+1)J ¥ S−N−1.
For every J in this sum there exists ij ¥ S h−1−{J} and then we can write

Dht= C
J ¥Ih−1
{J} … Sh−1

(caij “a+cija “ij+r̊
(N)
J ) b̃

(N+1)
J “J

+ C
h−2

m=0
C
J ¥Im

{J} … Sh−1

(caij “a+cija “ij+r̊
(N)
J ) r̃

(N+1)
J “J

where caij , cija ¥ S
0 and r̊ (N)J ¥ S−N. The above expression is of the form

C
J ¥Ih−1
{J} … Sh−1

{b̂J “a+bJ “ij+cJ+r̂
(N)
J } “J

+ C
h−2

m=0
C
J ¥Im

{J} … Sh−1

{r̂ (N+1)J “a+r
(N+1)
J “ij+r̂̂

(N)
J } “J,
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where the b’s belong to S0, c to S1, the r’s to S−N−1, and the r’s to S−N. By
applying Lemma 2.1 we insert a term of the form daij “a+dija “ij+r̊

(N+1)
J

between cJ and “J, thus replacing cJ “J with (d̂J “a+dJ “ij+r
−(N)
J ) “J, where

the dŒs belong to S−1. Now we put the terms in “ij “J in order, by using
Lemma 2.2. The only terms which are not yet in the desired form are some
terms arising from bJ “ij “J: they include pseudo-differential operators of
order 1. However they eventually reduce to the desired form, if we apply
Lemma 2.1 and Lemma 2.2.
Now we prove (2.7). If k=0, then setting h=s−1 in (2.8), we obtain
(2.7). If k > 0, let S s−1−k={j1, ..., jk}. In view of (2.7) we have

D s−1−kt = C
Jœ ¥Is−1−k
{Jœ} … S s−1−k

bJœ “Jœ+ C
s−2−k

m=0
C
J ¥Im

{J} … S s−1−k

r (N)J “J (2.9)

with bJœ ¥ S0 and r
(N)
J ¥ S−N. Denoting {1, ..., s}−{Jœ} by Sg

Jœ and applying
Lemma 2.3 to each term of the former sum in the right-hand side of (2.9),
we get

C
Jœ ¥Is−1−k
{Jœ} … S s−1−k

bJœ 1 C
JŒ ¥Im
{JŒ} … S*Jœ

dJŒ “JŒ+ C
k−1

m=0
C
JŒ ¥Im
{JŒ} … S*Jœ

r (N+1)JŒ “JŒ
2 “Jœ

with dJ ¥ S−2k and r
(N+1)
JŒ ¥ S−N−1. Now (2.7) is nearly established, with only

the order of some terms in “JŒ “Jœ reversed. Therefore, as above, we use
Lemma 2.2 and, if it is the case, Lemma 2.1 to obtain the desired form (2.7).

Proposition 2.1. If the operator P satisfies (1.1), (1.2), (1.3), (1.4),
then, for any positive integer N, P can be written in the following form
(modulo regularizers),

P2m+ C
J1 ¥I

(1)
s1 −1

, ..., Jr ¥I
(r)
sr −1

ãJ1, ..., Jr (t, x, Dx) “J1 · · ·“Jr

+ C
hi=0, ..., si −1
i=1, ..., r

C
Ji ¥I

(i)
hi

rJ1, ..., Jr “J1 · · ·“Jr , (2.10)

where ãJ1, ..., Jr ¥B([−T, T]; S0) and rJ1, ..., Jr ¥B([−T, T]; S−N).

Proof. If sr=1 then r=m andP=P2m+ar(t, x, Dx), which is in the form
(2.10). If sr > 1 we can write P in the form P2m+Qr(t, x, Dt, Dx) D

sr −1
t +

; r
j=1 Kj(t, x, Dt, Dx), whereQr(t, x, Dt, Dx)=ar(t, x, Dx) D

s̄r−1+1−r
t ,Kr(t, x,

Dt, Dx)=; sr −1
h=1 ar+h(t, x, Dx) D

m−r−h
t , and for j=1, ..., r−1, Kj(t, x, Dt, Dx)

=; h ar+h(t, x, Dx) D
m−r−h
t , where the sum ; h runs over all h=

; r
k=j+1 (sk−1)+1, ...,; r

k=j (sk−1). Of course Kj is found in the sum only
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if sj > 1. If sr−1=1, since m−r=sr−1, in view of Lemma 2.4, we write P
in the form:

P2m+Qr 1 C
Jr ¥I

(r)
Sr −1

c (o)Jr “Jr+C
sr −2

i=0
C

Jr ¥I
(r)
1

r (N)Jr “Jr
2

+C
sr −1

h=1
ar+h(t, x, Dx) 1 C

Jr ¥ I
(r)
sr −1

c (h)Jr “Jr+C
sr −2

i=0
C

Jr ¥I
(r)
1

r (N+2h)Jr “Jr
2 ,

with c (h)Jr ¥ S−2h and r (M)Jr ¥ S−M.
Thus P is in the form (2.10). If sr−1 > 1, but sr−2=1, by applying Lemma
2.4 to Qr, Kr, and Kr−1, and a combination of Lemmas 2.1 and 2.2, if it is
necessary, we can write P in the form (2.10). More generally, if sr−k > 1,
but sr−k−1=1 for some k, 1 [ k [ r−1, then we can apply Lemma 2.4 to
each Kr−j, j=0, ..., k, which is written in the form

Kr−j= C
sr−j−1

h=1
ar−j+h+sr+· · ·+sr−j+1 (t, x, Dx) D

sr−k −1
t

· · ·D sr−j−1 −1t D sr−j −1−ht for j [ k−1,

and for j=k,

Kr−k= C
Sr−k −1

h=1
ar−k+h+sr+· · ·+sr−k+1 (t, x, Dx) D

sr−k −1−h
t ,

and to:

Qr(t, x, Dt, Dx) D
sr −1
t =ar(t, x, Dx) D

sr−k −1
t · · ·D sr−1 −1t D sr −1t .

Applying a combination of Lemmas 2.1 and 2.2 when necessary, we
obtain (2.10).
Now we are going to prove Theorem 2.1. In what follows, let F denote
{J=(J1, ..., Jr); Ji ¥I (i)

hi for some hi ¥ {0, ..., si} i=1, ..., r} and let “J
denote “J1 · · ·“Jr if J ¥F.

Proof of Theorem 2.1. We reduce our Cauchy problem to a Cauchy
problem for a first-order system with diagonal principal part. The 2m−1
entries of the unknown vector valued function U=(UJ)J ¥F, |J| [ m−1 are
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defined as U0=u and UJ=“Ju if 0 < |J| [ m−1. For every J=(j1, ..., jh)
¥F, 1 [ |J| [ m−1, we set UJ=“j1U(j2, ..., jh) if h > 1 and UJ=“j1U0 if
h=1. In view of Proposition 2.1, Pu=f can be written as

“1U(2, ..., m)+ C
J ¥F, |J| [ m−r

agJ(t, x, Dx) UJ=f,

with agJ ¥B([−T, T]; S0). Thus we are led to consider a system of the
form

DtU−D(t, x, Dx) U−A(t, x, Dx) U=F(t, x)

U(t=0)=Y,

where the entries of the diagonal matrix D are the lŒs, the entries of A
belong to B([−T, T]; S0), and the initial values Y of U are determined as
follows:

U0(t=0)=g0,

Uj(t=0)= C
l [ |J|

j1, ..., jk ¥ {J}
j1 < · · · < jk

d (J)k (0, x, Dx) g|J|−k, if 0 < |J| [ m−1,

for some d (J)k (t, x, Dx) ¥B([−T, T]; S2k). Then we have the energy
estimate ||U(t)||s [ C(T)(||Y||s+|> t0 ||F(y, · )||s dy|), which yields:

C
|J| [ m−1

||UJ(t)||s [ CŒ(T) 3 C
m−1

j=0
||gj ||s+2(m−1−j)+:F

t

0
||f(y, · )||s dy : 4. (2.11)

Now note that we can write

||“ jtu(t, · )||s+2(m−r−j) [ C
|J| [ m−1

cJ ||UJ(t)||s (2.12)

for some positive constants cJ. Indeed, we can write ||“
j
tu(t, · )||s+2(m−r−j)

=||“;
r
k=1 (sk −1−hk)
t u(t, · )||s+2h, for some hk such ; r

k=1 hk=m−r−j and
sk−1−hk \ 0. Applying Lemma 2.4 with N \ 2h to each “ sk −1−hkt , we
obtain “ jtu(t, · )=;J ¥F, |J| [ m−r c̃

(h)
J (t, x, Dx) “J, for some c̃

(h)
J ¥B([−T, T];

S−2h), which yields (2.12). Finally, combining (2.11) with (2.12), we get the
energy estimate (2.3).
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