Cauchy Problem for Evolution Equations of Schrödinger Type

Rossella Agliardi

Department of Mathematics, University of Ferrara, 44100 Ferrara, Italy

Received May 4, 2000; revised November 14, 2000

In (R. Agliardi, 1995, *Internat. J. Math.* **6**, 791–804) we proved the well-posedness of the Cauchy problem in H^{∞} for some *p*-evolution equations ($p \ge 1$) with real characteristic roots. For this purpose some assumptions on the lower order terms are needed, which, in the special case p = 1, recapture well-known results for hyperbolic operators. In (R. Agliardi, 1995, *Internat. J. Math.* **6**, 791–804) the leading coefficients are assumed to be constant. In this paper we allow them to be variable. Our result is applicable to 2-evolution differential operators with real characteristics, i.e., to Schrödinger type operators. This class of operators comprehends, for example, Schrödinger operator $D_t - \Delta_x$ or the plate operator $D_t^2 - \Delta_x^2$. The Cauchy problem in H^{∞} for such evolution operators has been studied extensively by Takeuchi when the coefficients in the principal part are constant and the characteristic roots are distinct. @ 2002 Elsevier Science (USA)

1. NOTATION AND MAIN ASSUMPTIONS

Let $\mathscr{C}^{j}(\Omega)$ denote the set of all functions with continuous *j*th-order partial derivatives on Ω and let $\mathscr{B}^{j}(\Omega)$ denote the set of all functions whose derivatives of order $\leq j$ are continuous and bounded in Ω . Let S^{m} denote the class of the pseudo-differential operators $p(x, D_x)$ whose symbol $p(x, \zeta)$ satisfies the following condition:

$$\sup_{\substack{\alpha,\beta \in \mathbb{N}^n \\ |\xi| \ge B}} \sup_{\substack{x,\xi \in \mathbb{R}^n \\ |\xi| \ge B}} |\partial_{\xi}^{\alpha} D_x^{\beta} p(x,\xi)| \cdot \langle \xi \rangle^{|\alpha|-m} < \infty$$

for some $B \ge 0$. (Here $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$). For any real *s* we denote the Sobolev space $\{u \in \mathscr{S}'(\mathbb{R}^n); \langle D_x \rangle^s u \in L^2(\mathbb{R}^n)\}$ by $H^s(\mathbb{R}^n)$ and set $H^{\infty} = \bigcap_s H^s$.

Consider a linear operator of the form

$$P = \Pi_{2m}(t, x, D_t, D_x) + \sum_{j=r}^m a_j(t, x, D_x) D_t^{m-j}, \qquad (1.1)$$

0022-0396/02 \$35.00 © 2002 Elsevier Science (USA) All rights reserved.

where

$$\Pi_{2m}(t, x, D_t, D_x) = \prod_{j=1}^r (D_t - \lambda_j^1(t, x, D_x)) \cdots (D_t - \lambda_j^{s_j}(t, x, D_x)), \quad (1.2)$$

where $\sum_{j=1}^{r} s_j = m$, $s_r \ge s_{r-1} \ge \cdots \ge s_1$. We assume that the $\lambda(t, x, \xi)$'s satisfy the following properties:

(i) $\partial_t^k \lambda_j^i \in S^2$, k = 0, ..., m-1, (ii) λ_j^i are real-valued and $\lambda_j^i - (\lambda_j^i)^* \in S^0$, (1.3)

(iii)
$$\lambda_i^i(t, x, \xi) \neq \lambda_k^h(t, x, \xi)$$
 if $i \neq h$ and $\xi \neq 0$.

Moreover,

$$a_j(t, x, D_x) = \sum_{|\alpha| \leqslant 2(j-r)} a_{\alpha j}(t, x) D_x^{\alpha}, \qquad (1.4)$$

where $a_{\alpha j} \in \mathscr{B}([-T, T]; \mathscr{B}^{\infty}(\mathbb{R}^n))$.

Let $\bar{s}_j = \sum_{h=1}^{j} s_h$. Denote λ_j^i by λ_i if j = 1 and by $\lambda_{\bar{s}_{j-1}+1}$ if j > 1. Let ∂_i denote $D_t - \lambda_i(t, x, D_x)$. If $J = (j_1, ..., j_k)$ set $\{J\} = \{j_1, ..., j_k\}, |J| = k,$ $\partial_J = \partial_{j_1} \cdots \partial_{j_k}$. Let $\mathscr{I}_h^{(1)} = \{J = (j_1, ..., j_h); j_1 < \cdots < j_h, \{J\} \subset \{1, ..., s_1\}\}$ and, for $k = 2, ..., r, \mathscr{I}_h^{(k)} = \{J = (j_1, ..., j_h); j_1 < \cdots < j_h, \{J\} \subset \{\bar{s}_{k-1}, ..., \bar{s}_k\}\}$. Thus Π_{2m} can be written in the form $\partial_{J_1} \cdots \partial_{J_r}$, with $J_k \in \mathscr{I}_{s_k}^{(k)}$.

EXAMPLES. Assume that $P = \sum_{h=0}^{2m} P_{2m-h}$ where $P_{2m-h}(t, x, D_t, D_x) = \sum_{j=[(h+1)/2]}^{m} \sum_{|\alpha|=2j-h} a_{\alpha j}(t, x) D_x^{\alpha} D_t^{m-j}$ and $a_{\alpha j} \in \mathscr{B}([-T, T]; \mathscr{B}^{\infty}(\mathbb{R}^n))$. Suppose that the characteristic roots are real with constant multiplicity; that is, P_{2m} can be written in the form

$$P_{2m}(t, x; \tau, \xi) = \prod_{i=1}^{k} (\tau - \lambda^i(t, x, \xi))^{r_i},$$

with $\sum_{i=1}^{k} r_i = m, r = r_1 \ge \cdots \ge r_k, \lambda^i(t, x, \xi) \ne \lambda^h(t, x, \xi)$ if $i \ne h$ and $\xi \ne 0$.

(a) If the characteristic roots do not depend on t and x, then $P_{2m} = \prod_{2m}$. We assume that P_{2m-h} vanishes for h = 1, ..., 2r-1.

(b) Let $\{.,.\}$ denote the Poisson bracket with respect to the space variables. Assume that

$$\{\lambda_i, \lambda_j\} \in \mathscr{B}^{\infty}([-T, T]; S^2)$$
(1.5)

so that Lemma 2.2 holds with $s_J \in S^0$. Therefore, in this case, if r = 1, in order to obtain the main result (Theorem 2.1), it suffices to assume that P_{2m-1} vanishes.

Note that (1.5) holds if the characteristic roots do not depend on x.

(c) Suppose that P_{2m} does not depend on x and has a double characteristic root $\lambda(t, \xi)$, while the other roots are simple. Then a simple calculation shows that our result holds if we assume the following conditions: P_{2m-1} and P_{2m-3} vanish, and

$$L_{2m-2}(t, x, \xi) = (P_{2m-2}(t, x; \tau, \xi) + \frac{1}{2}\partial_{\tau}^{2}P_{2m}(t, x; \tau, \xi) D_{t}\lambda(t, \xi))_{\tau = \lambda(t, \xi)}$$

vanishes.

2. CAUCHY PROBLEM IN H^{∞}

If $u \in H^{s}(\mathbb{R}^{n})$, its Sobolev norm $\|\langle D_{x} \rangle^{s} u\|_{L^{2}}$ will be denoted by $\|u\|_{s}$. Let $M, s \in \mathbb{N}$ be fixed. If $u(t, x) \in \bigcap_{j=0}^{M} \mathscr{C}^{j}([-T, T]; H^{s+2(M-j)}(\mathbb{R}^{n}))$, we shall use the following notation:

$$\|\|u(t)\|\|_{s,M}^{2} = \sum_{j=0}^{M} \|\partial_{t}^{j}u(t,.)\|_{s+2(M-j)}^{2}.$$
(2.1)

The result we prove in this section is the following:

THEOREM 2.1. If P satisfies the assumptions (1.1), (1.2), (1.3), (1.4), the initial data g_h are in H^{∞} and $f \in \mathscr{C}([-T, T]; H^{\infty})$, then the Cauchy problem

$$Pu(t) = f(t)$$

$$D_t^h u(0) = g_h \qquad h = 0, ..., m-1$$
(2.2)

has a solution $u(t, \cdot) \in H^{\infty}$, $\forall t \in [-T, T]$. Moreover, the following energy inequality holds for every $s \in \mathbb{N}$:

$$\|\|u(t)\|\|_{s,m-r} \leq M(T) \left\{ \|\|u(0)\|_{s,m-1} + \left| \int_0^t \|f(\tau, \cdot)\|_s \, d\tau \right| \right\}.$$
(2.3)

This theorem is proved at the end of this section. We premise a few lemmas. Throughout all the following lemmas we assume that the λ_i 's satisfy (1.3) (i). In writing the identities involving pseudo-differential operators we shall omit the regularizers. Moreover, for the sake of brevity, we shall only point out the properties of the pseudo-differential operators with respect to the space variables, disregarding their behavior with respect to time.

LEMMA 2.1. Assume that λ_i and λ_j are distinct. Then, for any positive integer N, we can write the identity in the following way:

$$\text{Id.} = d_{ij}^{(N)}(t, x, D_x) \,\partial_j + d_{ji}^{(N)}(t, x, D_x) \,\partial_i + r^{(N)}(t, x, D_x), \tag{2.4}$$

where $d_{ij}^{(N)}$, $d_{ji}^{(N)} \in S^{-2}$ and $r^{(N)} \in S^{-N}$.

Proof. Let us define $d_{ij}(t, x, \xi) = (\lambda_i(t, x, \xi) - \lambda_j(t, x, \xi))^{-1}$. (We modify the λ 's for small $|\xi|$, if it is the case.) Then we can write: Id. = $d_{ij}(t, x, D_x) \partial_j + d_{ji}(t, x, D_x) \partial_i + r^{(1)}(t, x, D_x)$, where $r^{(1)} \in S^{-1}$. Reiteration of this procedure on the last addendum yields the desired identity.

LEMMA 2.2. Assume that the λ_j 's are distinct for $j \in \{1, ..., s\}$ and let λ_m be distinct from every λ_j with $j \in \{1, ..., s\}$. Denote $\mathscr{I}_h = \{J = (j_1, ..., j_h);$ $j_1 < \cdots < j_h, \{J\} \subset \{1, ..., s\}\}$ for h = 1, ..., s. (We mean $\mathscr{I}_0 = \emptyset$ and $\partial_{\emptyset} = I$ dentity). Let \mathscr{I}'_h denote $\mathscr{I}_h \cup \{J = (j_1, ..., j_{h-1}, m); (j_1, ..., j_{h-1}) \in \mathscr{I}_{h-1}\}$. Then, for every k = 1, ..., s and for every $\tilde{J} \in \mathscr{I}_k$, we have, for any arbitrary integer N > 0,

$$\left[\partial_m, \partial_{\tilde{J}}\right] = \sum_{J \in \mathscr{I}'_k} s_J(t, x, D_x) \,\partial_J + \sum_{h=0}^{k-1} \sum_{J \in \mathscr{I}'_h} r_J^{(N)}(t, x, D_x) \,\partial_J, \qquad (2.5)$$

where $s_J \in S^1$ and $r_J^{(N)} \in S^{-N}$. (Here [A, B] denotes AB-BA.)

Proof. Let us start with k = 1. Since $[\partial_m, \partial_i] \in S^3$, in view of Lemma 2.1 we have

$$[\partial_m, \partial_i] = [\partial_m, \partial_i](d_{im}^{(N+3)}\partial_m + d_{mi}^{(N+3)}\partial_i + r^{(N+3)})$$

with $d_{im}^{(N+3)}$, $d_{mi}^{(N+3)} \in S^{-2}$ and $r^{(N+3)} \in S^{-N-3}$. Thus we have established (2.5) in this case. More generally, for $\tilde{J} = (j_1, ..., j_k) \in \mathscr{I}_k$, we have

$$\partial_m \partial_{\tilde{j}} = (\partial_{j_1} \partial_m + s_m^{(1)} \partial_m + s_{j_1}^{(1)} \partial_{j_1} + r_{-N}^{(1)}) \partial_{j_2} \cdots \partial_{j_k}$$

for some $s_m^{(1)}$, $s_{j_1}^{(1)} \in S^1$ and $r_{-N}^{(1)} \in S^{-N}$. By induction we obtain:

$$\partial_m \partial_{\tilde{J}} = (\partial_{j_1} + s_m^{(1)}) \left\{ \partial_{j_2} \cdots \partial_{j_k} \partial_m + \sum_{J \in \mathscr{I}_k^n} \tilde{s}_J \partial_J + \sum_{h=0}^{k-2} \sum_{J \in \mathscr{I}_h^n} \tilde{r}_J^{(N+1)} \partial_J \right\} \\ + s_{j_1}^{(1)} \partial_{\tilde{J}} + r_{-N}^{(1)} \partial_{j_2} \cdots \partial_{j_k},$$

where $\tilde{s}_J \in S^1$, $\tilde{r}_J^{(N+1)} \in S^{-N-1}$, and $\mathscr{I}'_h = \{J; (j_1, J) \in \mathscr{I}'_h\}.$

Note that, for $J \in \mathscr{I}_k''$, $(\partial_{j_1} + s_m^{(1)}) \tilde{s}_J = \tilde{s}_J \partial_{j_1} + w_J^{(2)}$ with $w_J^{(2)} \in S^2$. Therefore, inspecting our expression, we see that, in order to put it in the form (2.5), we only have to examine the terms containing $w_J^{(2)}$. For every $J \in \mathscr{I}_k''$ there exists $v \in \{2, ..., k+1\}$ such that J lacks j_v . (We have set $j_{k+1} = m$.) Let us denote such a J by J_v . Then, in view of Lemma 2.1, we have $w_{J_v}^{(2)} =$ $\hat{s}_v \partial_{j_1} + \hat{w}_v \partial_{j_v} + r_v$ where \hat{s}_v , $\hat{w}_v \in S^0$ and $r_v \in S^{-N}$. Therefore, in the sum $\sum_{J \in \mathscr{I}_k''} w_J^{(2)} \partial_J$, the only term that requires further handling is:

$$\sum_{\nu=2}^{k+1} \, \mathring{w}_{\nu} \, \partial_{j_{\nu}} \, \partial_{J_{\nu}}.$$

Again induction enables us to write $\partial_{j_{\nu}} \partial_{J_{\nu}}$ in the desired ordering, so that each term is included in the formula (2.5).

LEMMA 2.3. Assume that the λ_j 's are distinct for $j \in \{1, ..., s\}$. We define \mathscr{I}_h , h = 1, ..., s, as in Lemma 2.2. For h = 1, ..., s - 1, let Σ_h be a subset of $\{1, ..., s\}$ with h+1 elements. Then, for any positive integer N, we can write the identity as the following sum:

$$\sum_{\substack{J \in \mathcal{J}_h \\ t_J \subset \Sigma_h}} d_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-1} \sum_{\substack{J \in \mathcal{J}_k \\ \{J\} \subset \Sigma_h}} r_J^{(N)}(t, x, D_x) \,\partial_J, \qquad (2.6)$$

where $d_J^{(N)} \in S^{-2h}$ and $r_J^{(N)} \in S^{-N}$.

Proof. First note that the case h = 1 follows from Lemma 2.1. More generally, if $1 < h \le s - 1$ and Σ_h is given, then (2.6) can be proved inductively. Let $\ell = \min\{i; i \in \Sigma_h\}$ and define $\Sigma_{h-1} = \Sigma_h - \{\ell\}$. Suppose that

$$\text{Id.} = \sum_{\substack{J \in \mathscr{I}_{h-1} \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{d}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \tilde{r}_J^{(N)}(t, x, D_x) \,\partial_J + \sum_{k=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_k \\ \{J\} \in \mathcal{D}_{h-1} }} \mathcal{T}_{h-1} } \mathcal{T}_{h-1} \mathcal{T}_{h-1} } \mathcal{T}_{h-1} } \mathcal{T}_{h-1} \mathcal{T}_{h-1} \mathcal{T}_{h-1} \mathcal$$

where $\tilde{d}_{J}^{(N)} \in S^{-2h+2}$ and $\tilde{r}_{J}^{(N)} \in S^{-N}$. For every J in the first sum let $i_{j} \in \Sigma_{h-1} - \{J\}$. Thus, inserting $\mathrm{Id} = d_{i_{j}\ell}\partial_{\ell} + d_{\ell i_{j}}\partial_{i_{j}} + \tilde{\tilde{r}}_{J}^{(N)}$ (with $d_{i_{j}\ell}, d_{\ell i_{j}} \in S^{-2}$ and $\tilde{J}_{J}^{(N)} \in S^{-N}$, as in Lemma 2.1) between $\tilde{d}_{J}^{(N)}$ and ∂_{J} , we obtain

$$\sum_{\substack{J \in \mathcal{I}_{h-1} \\ \{J\} \subset \mathcal{L}_{h-1}}} d_J^{\prime(N)} \,\partial_\ell \partial_J + \sum_{\substack{J \in \mathcal{I}_{h-1} \\ \{J\} \subset \mathcal{L}_{h-1}}} d_J^{\prime\prime(N)} \partial_{i_j} \partial_J + \sum_{k=0}^{h-1} \sum_{\substack{J \in \mathcal{I}_k \\ \{J\} \subset \mathcal{L}_{h-1}}} r_J^{\prime(N)}(t, \, x, \, D_x) \,\partial_J \,,$$

where $d'_{J}^{(N)}$, $d''_{J}^{(N)} \in S^{-2h}$ and $r'_{J}^{(N)} \in S^{-N}$. We just have to put the second term in the desired form. This can be accomplished by using Lemma 2.2 to set $\partial_{i_j} \partial_J$ in the right ordering. Since some pseudo-differential operators of order 1-2h appear, we insert a suitable term of the form (2.4) to lower their order. A final application of Lemma 2.2 gives the form (2.6).

LEMMA 2.4. Let the λ_j 's be as in Lemma 2.3. Then for all k = 0, ..., s-1 and for any positive integer N we can write

$$D_{t}^{s-1-k} = \sum_{J \in \mathscr{I}_{s-1}} c_{J}^{(k)}(t, x, D_{x}) \,\partial_{J} + \sum_{h=0}^{s-2} \sum_{J \in \mathscr{I}_{h}} r_{J}(t, x, D_{x}) \,\partial_{J} \qquad (2.7)$$

for some $c_J^{(k)}$ and r_J depending on N and belonging to S^{-2k} and S^{-N} , respectively.

Proof. For h = 1, ..., s - 1, let Σ_h be a subset of $\{1, ..., s\}$ with h+1 elements. First we prove that, for any Σ_h and for any positive integer N,

$$D_{t}^{h} = \sum_{\substack{J \in \mathcal{J}_{h} \\ \{J\} \subset \Sigma_{h}}} b_{J}^{(N)}(t, x, D_{x}) \,\partial_{J} + \sum_{m=0}^{h-1} \sum_{\substack{J \in \mathcal{J}_{m} \\ \{J\} \subset \Sigma_{h}}} r_{J}^{(N)}(t, x, D_{x}) \,\partial_{J} \qquad (2.8)$$

holds with $b_J^{(N)} \in S^0$ and $r_J^{(N)} \in S^{-N}$.

If $i \neq j$, let $c_{ij}(t, x, \xi) = \lambda_j(t, x, \xi)/(\lambda_j(t, x, \xi) - \lambda_i(t, x, \xi))$. Then, if $\Sigma_1 = \{i, j\}$, we can write $D_t = c_{ij}(t, x, D_x) \partial_i + c_{ji}(t, x, D_x) \partial_j + \tilde{r}_1$ where $\tilde{r}_1 \in S^{-1}$. Applying Lemma 2.1 to the last addendum we obtain (2.8) for arbitrary N. The general case h > 1 can be proved by induction. Let N and Σ_h be given. For the following notation we refer to the proof of Lemma 2.3. Then

$$D_t^{h-1} = \sum_{\substack{J \in \mathscr{I}_{h-1} \\ \{J\} \subset \mathcal{\Sigma}_{h-1}}} \tilde{b}_J^{(N+1)} \partial_J + \sum_{m=0}^{h-2} \sum_{\substack{J \in \mathscr{I}_m \\ \{J\} \subset \mathcal{\Sigma}_{h-1}}} \tilde{r}_J^{(N+1)} \partial_J$$

for some $\tilde{b}_{I}^{(N+1)} \in S^{0}$ and $\tilde{r}_{I}^{(N+1)} \in S^{-N-1}$.

For every J in this sum there exists $i_i \in \Sigma_{h-1} - \{J\}$ and then we can write

$$D_{t}^{h} = \sum_{\substack{J \in \mathscr{I}_{h-1} \\ \{J\} \in \Sigma_{h-1} \\ m = 0 \ \{J\} \in \mathscr{I}_{h-1} \\ \{J\} \in \mathscr{I}_{h-2} \\ \{J\} \in \mathscr{I}_{h-1} \\ \{J\} \in \mathscr{I}_{h-1} \\ \{J\} \in \Sigma_{h-1} \end{bmatrix}} (c_{\ell i_{j}} \partial_{\ell} + c_{i_{j}\ell} \partial_{i_{j}} + \mathring{r}_{J}^{(N)}) \, \widetilde{r}_{J}^{(N+1)} \partial_{J}$$

where $c_{\ell i_i}, c_{i_i \ell} \in S^0$ and $\mathring{r}_J^{(N)} \in S^{-N}$. The above expression is of the form

$$\begin{split} &\sum_{\substack{J \in \mathcal{I}_{h-1} \\ \{J\} \subset \mathcal{I}_{h-1} \\ m = 0}} \left\{ \hat{\beta}_J \partial_\ell + \beta_J \partial_{i_j} + \gamma_J + \hat{r}_J^{(N)} \right\} \partial_J \\ &+ \sum_{\substack{h-2 \\ m = 0}}^{h-2} \sum_{\substack{J \in \mathcal{I}_m \\ \{J\} \subset \mathcal{I}_{h-1} \\ m = 0}} \left\{ \hat{\rho}_J^{(N+1)} \partial_\ell + \rho_J^{(N+1)} \partial_{i_j} + \hat{r}_J^{(N)} \right\} \partial_J, \end{split}$$

where the β 's belong to S^0 , γ to S^1 , the ρ 's to S^{-N-1} , and the *r*'s to S^{-N} . By applying Lemma 2.1 we insert a term of the form $d_{\ell i_j}\partial_{\ell} + d_{i_j\ell}\partial_{i_j} + \mathring{r}_J^{(N+1)}$ between γ_J and ∂_J , thus replacing $\gamma_J \partial_J$ with $(\hat{\delta}_J \partial_{\ell} + \delta_J \partial_{i_j} + r'_J^{(N)}) \partial_J$, where the δ 's belong to S^{-1} . Now we put the terms in $\partial_{i_j}\partial_J$ in order, by using Lemma 2.2. The only terms which are not yet in the desired form are some terms arising from $\beta_J \partial_{i_j} \partial_J$: they include pseudo-differential operators of order 1. However they eventually reduce to the desired form, if we apply Lemma 2.1 and Lemma 2.2.

Now we prove (2.7). If k = 0, then setting h = s - 1 in (2.8), we obtain (2.7). If k > 0, let $\Sigma_{s-1-k} = \{j_1, ..., j_k\}$. In view of (2.7) we have

$$D_{t}^{s-1-k} = \sum_{\substack{J'' \in \mathcal{I}_{s-1-k} \\ \{J''\} \subset \Sigma_{s-1-k}}} b_{J''} \partial_{J''} + \sum_{m=0}^{s-2-k} \sum_{\substack{J \in \mathcal{I}_{m} \\ \{J\} \subset \Sigma_{s-1-k}}} r_{J}^{(N)} \partial_{J}$$
(2.9)

with $b_{J''} \in S^0$ and $r_J^{(N)} \in S^{-N}$. Denoting $\{1, ..., s\} - \{J''\}$ by $\Sigma_{J''}^*$ and applying Lemma 2.3 to each term of the former sum in the right-hand side of (2.9), we get

$$\sum_{\substack{J'' \in \mathcal{I}_{s-1-k} \\ \{J''\} \subset \mathcal{\Sigma}_{s-1-k}}} b_{J''} \left(\sum_{\substack{J' \in \mathcal{I}_m \\ \{J'\} \subset \mathcal{\Sigma}_{J''}}} d_{J'} \partial_{J'} + \sum_{m=0}^{k-1} \sum_{\substack{J' \in \mathcal{I}_m \\ \{J'\} \subset \mathcal{\Sigma}_{J''}}} r_{J'}^{(N+1)} \partial_{J'} \right) \partial_{J'}$$

with $d_J \in S^{-2k}$ and $r_{J'}^{(N+1)} \in S^{-N-1}$. Now (2.7) is nearly established, with only the order of some terms in $\partial_{J'} \partial_{J''}$ reversed. Therefore, as above, we use Lemma 2.2 and, if it is the case, Lemma 2.1 to obtain the desired form (2.7).

PROPOSITION 2.1. If the operator P satisfies (1.1), (1.2), (1.3), (1.4), then, for any positive integer N, P can be written in the following form (modulo regularizers),

$$\Pi_{2m} + \sum_{J_{1} \in \mathscr{I}_{s_{1}-1}^{(1)}, \dots, J_{r} \in \mathscr{I}_{s_{r}-1}^{(r)}} \tilde{a}_{J_{1}, \dots, J_{r}}(t, x, D_{x}) \partial_{J_{1}} \cdots \partial_{J_{r}} \\ + \sum_{\substack{h_{i} = 0, \dots, s_{i}-1 \\ i=1, \dots, r}} \sum_{J_{i} \in \mathscr{I}_{h_{i}}^{(i)}} \rho_{J_{1}, \dots, J_{r}} \partial_{J_{1}} \cdots \partial_{J_{r}}, \qquad (2.10)$$

where $\tilde{a}_{J_1, \dots, J_r} \in \mathscr{B}([-T, T]; S^0)$ and $\rho_{J_1, \dots, J_r} \in \mathscr{B}([-T, T]; S^{-N})$.

Proof. If $s_r = 1$ then r = m and $P = \prod_{2m} + a_r(t, x, D_x)$, which is in the form (2.10). If $s_r > 1$ we can write P in the form $\prod_{2m} + Q_r(t, x, D_t, D_x) D_t^{s_r-1} + \sum_{j=1}^r K_j(t, x, D_t, D_x)$, where $Q_r(t, x, D_t, D_x) = a_r(t, x, D_x) D_t^{s_{r-1}+1-r}$, $K_r(t, x, D_t, D_x) = \sum_{h=1}^{s_{h-1}} a_{r+h}(t, x, D_x) D_t^{m-r-h}$, and for $j = 1, ..., r-1, K_j(t, x, D_t, D_x) = \sum_{h=1}^r A_{r+h}(t, x, D_x) D_t^{m-r-h}$, where the sum \sum_h runs over all $h = \sum_{k=j+1}^r (s_k-1)+1, ..., \sum_{k=j}^r (s_k-1)$. Of course K_j is found in the sum only

if $s_j > 1$. If $s_{r-1} = 1$, since $m - r = s_r - 1$, in view of Lemma 2.4, we write *P* in the form:

$$\begin{aligned} \Pi_{2m} + Q_r \left(\sum_{J_r \in \mathscr{I}_{S_{r-1}}^{(r)}} c_J^{(o)} \partial_{J_r} + \sum_{i=0}^{s_r-2} \sum_{J_r \in \mathscr{I}_1^{(r)}} \rho_{J_r}^{(N)} \partial_{J_r} \right) \\ + \sum_{h=1}^{s_r-1} a_{r+h}(t, x, D_x) \left(\sum_{J_r \in \mathscr{I}_{S_{r-1}}^{(r)}} c_{J_r}^{(h)} \partial_{J_r} + \sum_{i=0}^{s_r-2} \sum_{J_r \in \mathscr{I}_1^{(r)}} \rho_{J_r}^{(N+2h)} \partial_{J_r} \right), \end{aligned}$$

with $c_{J_r}^{(h)} \in S^{-2h}$ and $\rho_{J_r}^{(M)} \in S^{-M}$.

Thus *P* is in the form (2.10). If $s_{r-1} > 1$, but $s_{r-2} = 1$, by applying Lemma 2.4 to Q_r , K_r , and K_{r-1} , and a combination of Lemmas 2.1 and 2.2, if it is necessary, we can write *P* in the form (2.10). More generally, if $s_{r-k} > 1$, but $s_{r-k-1} = 1$ for some k, $1 \le k \le r-1$, then we can apply Lemma 2.4 to each K_{r-j} , j = 0, ..., k, which is written in the form

$$K_{r-j} = \sum_{h=1}^{s_{r-j}-1} a_{r-j+h+s_r+\dots+s_{r-j+1}}(t, x, D_x) D_t^{s_{r-k}-1}$$

$$\cdots D_t^{s_{r-j-1}-1} D_t^{s_{r-j}-1-h} \quad \text{for} \quad j \le k-1,$$

and for j = k,

$$K_{r-k} = \sum_{h=1}^{S_{r-k}-1} a_{r-k+h+s_r+\cdots+s_{r-k+1}}(t, x, D_x) D_t^{s_{r-k}-1-h},$$

and to:

$$Q_r(t, x, D_t, D_x) D_t^{s_r-1} = a_r(t, x, D_x) D_t^{s_{r-k}-1} \cdots D_t^{s_{r-1}-1} D_t^{s_r-1}.$$

Applying a combination of Lemmas 2.1 and 2.2 when necessary, we obtain (2.10).

Now we are going to prove Theorem 2.1. In what follows, let \mathscr{F} denote $\{J = (J_1, ..., J_r); J_i \in \mathscr{I}_{h_i}^{(i)} \text{ for some } h_i \in \{0, ..., s_i\} i = 1, ..., r\}$ and let ∂_J denote $\partial_{J_1} \cdots \partial_{J_r}$ if $J \in \mathscr{F}$.

Proof of Theorem 2.1. We reduce our Cauchy problem to a Cauchy problem for a first-order system with diagonal principal part. The $2^m - 1$ entries of the unknown vector valued function $\mathscr{U} = (U_j)_{j \in \mathscr{F}, |j| \le m-1}$ are

defined as $U_0 = u$ and $U_J = \partial_J u$ if $0 < |J| \le m-1$. For every $J = (j_1, ..., j_h) \in \mathscr{F}$, $1 \le |J| \le m-1$, we set $U_J = \partial_{j_1} U_{(j_2, ..., j_h)}$ if h > 1 and $U_J = \partial_{j_1} U_0$ if h = 1. In view of Proposition 2.1, Pu = f can be written as

$$\partial_1 U_{(2,\ldots,m)} + \sum_{J \in \mathcal{F}, |J| \leq m-r} a_J^*(t, x, D_X) U_J = f,$$

with $a_J^* \in \mathscr{B}([-T, T]; S^0)$. Thus we are led to consider a system of the form

$$\begin{aligned} D_t \mathcal{U} - \mathcal{D}(t, x, D_x) \ \mathcal{U} - \mathcal{A}(t, x, D_x) \ \mathcal{U} &= \mathcal{F}(t, x) \\ \mathcal{U}(t=0) &= \Psi, \end{aligned}$$

where the entries of the diagonal matrix \mathscr{D} are the $\lambda's$, the entries of \mathscr{A} belong to $\mathscr{B}([-T, T]; S^0)$, and the initial values Ψ of \mathscr{U} are determined as follows:

$$U_0(t=0) = g_{0}$$

$$U_{j}(t=0) = \sum_{\substack{I \leq |J| \\ j_{1}, \dots, j_{k} \in \{J\} \\ j_{1} < \dots < j_{k}}} \delta_{k}^{(J)}(0, x, D_{x}) g_{|J|-k}, \quad \text{if} \quad 0 < |J| \leq m-1,$$

for some $\delta_k^{(J)}(t, x, D_x) \in \mathscr{B}([-T, T]; S^{2k})$. Then we have the energy estimate $\|\mathscr{U}(t)\|_s \leq C(T)(\|\Psi\|_s + |\int_0^t \|\mathscr{F}(\tau, \cdot)\|_s d\tau|)$, which yields:

$$\sum_{|J| \leqslant m-1} \|U_J(t)\|_s \leqslant C'(T) \left\{ \sum_{j=0}^{m-1} \|g_j\|_{s+2(m-1-j)} + \left| \int_0^t \|f(\tau, \cdot)\|_s \, d\tau \right| \right\}.$$
(2.11)

Now note that we can write

$$\|\partial_t^j u(t, \cdot)\|_{s+2(m-r-j)} \leq \sum_{|J| \leq m-1} c_J \|U_J(t)\|_s$$
 (2.12)

for some positive constants c_J . Indeed, we can write $\|\partial_t^j u(t, \cdot)\|_{s+2(m-r-j)}$ = $\|\partial_t^{\sum_{k=1}^r (s_k-1-h_k)} u(t, \cdot)\|_{s+2h}$, for some h_k such $\sum_{k=1}^r h_k = m-r-j$ and $s_k-1-h_k \ge 0$. Applying Lemma 2.4 with $N \ge 2h$ to each $\partial_t^{s_k-1-h_k}$, we obtain $\partial_t^j u(t, \cdot) = \sum_{J \in \mathscr{F}, |J| \le m-r} \tilde{c}_J^{(h)}(t, x, D_x) \partial_J$, for some $\tilde{c}_J^{(h)} \in \mathscr{B}([-T, T]; S^{-2h})$, which yields (2.12). Finally, combining (2.11) with (2.12), we get the energy estimate (2.3).

REFERENCES

- 1. R. Agliardi, Cauchy problem for non-Kowalewskian equations, Internat. J. Math. 6 (1995), 791-804.
- S. Mizohata and Y. Ohya, Sur la condition de E. E. Levi concernent des équations hyperboliques, *Publ. RIMS Kyoto Univ.* 4 (1968), 511–526.
- 3. J. Takeuchi, A necessary condition for the well-posedness of the Cauchy problem for a certain class of evolution equations, *Proc. Japan. Acad.* **50** (1974), 133–137.

- J. Takeuchi, Some remarks on my paper "On the Cauchy problem for some nonkowalewskian equations with distinct characteristic roots," J. Math. Kyoto Univ. 24 (1984), 741–754.
- J. Takeuchi, "Le Problème de Cauchy pour Certaines Equations aux Dérivées Partielles du Type de Schrödinger," Thèse de Doctorat de l'Université Paris 6, 1995.
- J. Takeuchi, Le problème de Cauchy pour quelques équations aux dérivées partielles du type de Schrödinger, II, C. R. Acad. Sci. Paris Série I 310 (1990), 855–858.
- J. Takeuchi, Le problème de Cauchy pour certaines équations aux dérivées partielles du type de Schrödinger, VII, C. R. Acad. Sci. Paris Série I 314 (1992), 527–530.
- M. Zeman, The well-posedness of the Cauchy problem for partial differential equations with multiple characteristics, *Comm. Partial Differential Equations* 2 (1977), 223–249.