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Ray convergence in a flux-like propagation formulation

Chris H. Harrisona)
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(Received 16 November 2012; revised 20 March 2013; accepted 25 March 2013)

The energy flux formulation of waveguide propagation is closely related to the incoherent mode

sum, and its simplicity has led to development of efficient computational algorithms for reverbera-

tion and target echo strength, but it lacks the effects of convergence or modal interference. By start-

ing with the coherent mode sum and rejecting the most rapid interference but retaining beats on a

scale of a ray cycle distance it is shown that convergence can be included in a hybrid formulation

requiring minimal extra computation. Three solutions are offered by evaluating the modal intensity

cross terms using Taylor expansions. In the most efficient approach the double summation of the

cross terms is reduced to a single numerical sum by solving the other summation analytically. The

other two solutions are a local range average and a local depth average. Favorable comparisons are

made between these three solutions and the wave model Orca with, and without, spatial averaging

in an upward refracting duct. As a by-product, it is shown that the running range average is very

close to the mode solution excluding its fringes, given a relation between averaging window size

and effective number of modes which, in turn, is related to the waveguide invariant.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4802642]

PACS number(s): 43.30.Bp, 43.30.Cq, 43.30.Es [JAI]

I. INTRODUCTION

The flux approach to calculating propagation loss

(Weston, 1959, 1960, 1980a,b,c) and the incoherent mode

sum (Brekhovskikh and Lysanov, 2003, p. 129) can be

shown to be closely related (see, e.g., Harrison and Ainslie,

2010), and both predict a monotonic decay with range of

the form r�1
P

nexpð�anrÞ, i.e., “mode stripping.” This

approach has been successfully applied to find closed-form

reverberation assuming isovelocity water (Zhou, 1980) and

for both target echo and reverberation assuming isovelocity

and variable bathymetry (Harrison, 2003), bistatic geometry

(Harrison, 2005b) and limited refraction (Harrison, 2005a).

The sonar performance model Artemis (Harrison, 2011a)

handles variable bathymetry and sound speed in a general

way but still based on an incoherent mode sum. However,

if the sound speed profile causes significant refraction this

otherwise good approximation may be spoilt by conver-

gence, focusing, and caustics. These effects are familiar in

deep water as “convergence zones” (Urick, 1967, pp.

151–152; Tolstoy and Clay, 1987, p. 145–150; Beilis, 1983;

Baggeroer, et al., 2010) and also in shallow water as pat-

terns of caustics that are strongly dependent on source

depth (Brekhovskikh and Lysanov, 2003, p. 121). It is

straightforward to predict these effects using wave models

such as CSNAP (Ferla et al., 1993), RAM (Collins, 1993),

or ORCA (Westwood et al., 1996), but the benefit of this

incoherent mode approach is computational speed. The

objective of this paper is to extend these methods to include

convergence effects without compromising computation

time. Fundamentally, this will be done by retaining part,

but not all, of the interference field (i.e., coherence) while

adopting a formula that requires only very slight increase in

computation time over the incoherent calculation. In this

context, the approach rejects terms that result in interfer-

ence on a scale close to an acoustic wavelength and instead

concentrates on interference on a scale of a ray cycle dis-

tance, namely, interference between adjacent modes. This

contrasts with some earlier work where a similar starting

point provided insight into the waveguide invariant

(Harrison, 2011b) and multipath group velocities (Harrison,

2012a).

Note that convergence effects are most significant for

refracting paths, whether refracted in the water column or

seabed sediments. In practice, with simple bottom reflection

properties, convergence is important for paths whose turning

point velocities are within the range of the water column

sound speeds. In contrast the steeper paths reflecting from

both boundaries tend not to converge since they are rela-

tively straight. Nevertheless even in isovelocity water local-

ized peaks in depth are still possible (see Weston, 1980c).

In this paper propagation is calculated as a function of

range and depth with launch angle as a parameter. Since

angle is related to travel time, convergence can alternatively

be viewed as a function of time. The impulse response of a

point target, say, tends to have all the convergence effects

concentrated near the first return with late arrivals tending to

decay more or less monotonically with time (Harrison and

Nielsen, 2007). For the same reason reverberation may con-

sist of a mixture of monotonic decaying and convergent

paths. Long range reverberation requires propagation paths

to interact with at least one boundary, possibly disallowing a

large proportion of the angle range with potential for conver-

gence. Nevertheless significant convergence effects are still

possible with reverberation.

a)Author to whom correspondence should be addressed. Also at: Institute of

Sound and Vibration Research, University of Southampton, Highfield,

Southampton SO17 1BJ, United Kingdom. Electronic mail: harrison@

cmre.nato.int

CMRE Reprint Series CMRE-PR-2014-004

1

mailto:harrison@cmre.nato.int
mailto:harrison@cmre.nato.int
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4802642&domain=pdf&date_stamp=2013-06-01


Although the results will be seen to be closely related

to ray solutions some of the difficulties associated with ray

accounting are avoided by basing everything firmly on a

normal mode approach. Despite the links between rays and

modes being well known (Brekhovskikh and Lysanov,

2003, p. 140–143; DiNapoli and Deavenport, 1979,

p. 117–121) this approach shows the connection between a

running range average, a local depth average, and very

coarse modal interference fringes, all of which have poten-

tial for providing a convergence correction to cylindrical

spreading.

For clarity in the following development modal attenua-

tion is omitted. However, it is straightforward to include

modal decay because the derivations below rely on analyti-

cal summation of oscillatory terms which are only weakly

influenced by attenuation. The solutions are explicitly inte-

grals over angle (at the source), and for each angle the losses

accumulate additively in range.

II. DERIVATIONS

A. Sum of modes in terms of ray cycles

The ratio of the pressure-squared at r, zr to the pressure-

squared at unit distance from a source at 0, zs can be written

as the modulus square of the coherent sum of M modes

/m(z) in water of uniform density (Brekhovskikh and

Lysanov, 2003, p. 129)

P ¼ 2p

����XM

m¼1

/mðzsÞ/mðzrÞffiffiffiffiffiffiffiffi
Kmr
p expðiKmrÞ

����
2

¼ 2p
XM

n¼1

/n
2ðzsÞ/n

2ðzrÞ
Knr

þ 2p
XM

n¼1

Xn�1

m¼1

/nðzsÞ/nðzrÞ/mðzsÞ/mðzrÞffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

� 2cos½ðKn � KmÞr� � P1 þ P2: (1)

Note that the first term, P1, is the incoherent mode sum, and

the second, P2, consists of all the cross terms. Adopting

Wentzel–Kramers–Brillouin (WKB) modes with normaliza-

tion An as in Appendix A, writing the vertical wave number

cn in terms of the depth-dependent wave number k(z) and the

eigenvalue (horizontal wave number) Kn as

cnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � Kn

2
p

(2)

and using the shorthand for its integral (from the bottom ray

turning point zB to zo)

wnðzoÞ ¼
ðzo

zB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � Kn

2
p

dz� eB (3)

(eB is a small integration constant that has no effect on the

results, as will be seen),

P1 ¼ 2p
X

n

An
4sin2½wnðzsÞ�sin2½wnðzrÞ�

cnðzsÞcnðzrÞKnr
: (4)

Excluding the case where zr ¼ zs exactly (see Weston,

1980c) the local mean is

P1 ¼ 2p
An

4

4

X
n

1

cnðzsÞcnðzrÞKnr
: (5)

The second term on inserting WKB modes becomes

P2 ¼ 2p
XM

n¼1

Xn�1

m¼1

An
2Am

22 cos½ðKn � KmÞr�

� sin ½wnðzsÞ�sin½wmðzsÞ�sin½wnðzrÞ�sin½wmðzrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnðzsÞ cnðzrÞ cmðzsÞ cmðzrÞ

p ffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

:

(6)

Now the product of each pair of sines can be written in terms

of cosines of sum and difference:

S ¼ 2 sin½wnðzs;rÞ�sin½wmðzs;rÞ�

¼ cos½wnðzs;rÞ � wmðzs;rÞ� � cos½wnðzs;rÞ þ wmðzs;rÞ�:
(7)

If the rapidly oscillating second cosine term is rejected, then

P2 can be represented as the product of three cosines of

differences

P2 ¼ 2p
XM

n¼1

Xn�1

m¼1

An
2Am

2

2

cos½ðKn � KmÞr�cos½wnðzsÞ � wmðzsÞ�cos½wnðzrÞ � wmðzrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnðzsÞ cnðzrÞ cmðzsÞ cmðzrÞ

p ffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

:
(8)

Furthermore, it is easy to show that for arbitrary a, b, c,

cos a � cos b � cos c ¼ 1

4
fcosða� b� cÞ þ cosða� bþ cÞ þ cosðaþ b� cÞ þ cosðaþ bþ cÞg: (9)

The following shorthand can be used to cover all four terms

cos a � cos b � cos c ¼ 1

4

X
4

cosða 6 b 6 cÞ; (10)
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with a�ðKn�KmÞr; b�wnðzsÞ�wmðzsÞ; c�wnðzrÞ�wmðzrÞ, so

P2 ¼ 2p
XM

n¼1

Xn�1

m¼1

An
2Am

2

8

X
4

cosf½ðKn � KmÞr�6 ½wnðzsÞ � wmðzsÞ�6 ½wnðzrÞ � wmðzrÞ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnðzsÞ cnðzrÞ cmðzsÞ cmðzrÞ

p ffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

: (11)

Assuming that the most important effects come from modes

that are not too far apart, i.e., for which n � m¼ j is small,

these differences can all be Taylor expanded and expressed

in terms of the complete and partial ray cycle distances rc, rs,

rr (see Appendix B). (The partial cycle distances rs, rr are

measured from one side of the duct to the source or receiver

depth, respectively.) These are each related to the ray turning

point velocity and the modal eigenvalue Kn. Higher order

Taylor expansions will be investigated in Sec. III D and

Appendix B, but to first order P2 becomes

P2 ¼ 2p
X

j

X
n

An
4

8

1

cnðzsÞ cnðzrÞKn r

�
X

4

cos
2p ðr 6 rs 6 rrÞ

rc
j

� �� �
: (12)

Finally combining Eqs. (5) and (12) for P1 and P2, P becomes

P ¼ 2p
4

X
n

An
4

cnðzsÞ cnðzrÞKnr

� 1þ 2
X

j

X
4

1

4
cos

2p ðr 6 rs 6 rrÞ
rc

j

� �� � !

¼ 2p
16

X
n

An
4

cnðzsÞ cnðzrÞKnr

�
X

4

1þ 2
X

j

cos
2p ðr 6 rs 6 rrÞ

rc
j

� �( ) !
:

(13)

Having taken care to retain modal differences already the

summation over n can safely be assumed to contain no further

significant (large scale) fluctuations. Therefore, following ear-

lier approaches (Harrison, 2003; Harrison and Ainslie, 2010),

the sum is treated as a continuum first in n, then K, then ray

angle at the source hs, using K ¼ kðzsÞcos hs. Thus, substitut-

ing for the mode normalization An [Eq. (A9)] and using the

relation Eq. (A10) for dn/dK, leads to

P¼
ð

K

cðzsÞcðzrÞrcr

�
X

4

1þ2
X

j

cos
2pðr6rs 6rrÞ

rc
j

� �( ) !
dK

¼
ð

1

tanhrrcr

�
X

4

1þ2
X

j

cos
2p½r6rsðhsÞ6rrðhsÞ�

rcðhsÞ
j

� � !" �
dhs:

(14)

This representation of coarse scale modal interference is the

starting point for the three following solution methods: (1)

range-averaged eigenrays, (2) depth-averaged eigenrays, and

(3) a more efficient pre-summed cosine formula.

B. Representation as a sum of eigenrays

Regardless of the angle dependence of the cosine argu-

ment in Eq. (14) this first order formula is linear in j and so

it can be summed analytically for a given finite upper limit

N, and it can also be solved for an infinite upper limit by

using the Poisson sum formula (Morse and Feshbach, 1953,

pp. 1092–1100). In fact the summation over j is a summation

over mode number differences [see Eq. (12) cf. Eq. (11)]

and, thinking of the cross terms as a M�M matrix, where M
is the number of modes permitted by the water column,

clearly the upper limit of j (¼n � m) is not a fixed constant.

Nevertheless, the second order expansion, being proportional

to j2, might be expected to introduce an effectively constant

limit on j (i.e., a fixed distance from the matrix’s diagonal)

that is often much smaller than the true number of modes M.

The analytical sum is shown in Appendix C to be

XN

j¼1

cosðX jÞ ¼ sin½ðN þ 1ÞX=2�
sinðX=2Þ cosðNX=2Þ � 1 (15)

and by allowing N to tend to infinity or by using the Poisson

sum formula (Appendix B), it can be shown that the right hand

side becomes a row of delta functions in X with separation 2pm,

1þ
X1
j¼1

2 cosðXjÞ ¼
X1

j¼�1
expðiXjÞ

¼
X1

m¼�1
2p dðX þ 2p mÞ: (16)

By comparing this with Eq. (14) where

X ¼ 2p½r 6 rsðhsÞ6 rrðhsÞ�
rcðhsÞ

; (17)

it can be seen that the delta function locations are given by

r ¼ m rcðhsÞ7rsðhsÞ7rrðhsÞ (18)

and correspond exactly to eigenrays with the integer m repre-

senting the number of full ray cycles. A similar link from

modes to ray theory is shown in Brekhovskikh and Lysanov

(2003, p. 140–143) and Haskell (1951). Substituting the

delta functions in Eq. (14) leads to

P ¼
ð

1

tan hrrcr

�X
4

X1
m¼�1

2p dðX þ 2p mÞ
�

dhs; (19)
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which by using the definition of X and the delta function can

be written as

P¼
ð

1

tanhrrcr

�X
4

� X1
m¼�1

2pdðXþ2pmÞ
��

� dhs

dð2pr=rcÞ
dð2pr=rcÞ

¼
ð

1

tanhr r

X
4

X1
m¼�1

dhs

d r

 !" #
: (20)

It is interesting to compare this with the standard power-

down-a-ray-tube formula (see Brekhovskikh and Lysanov,

2003, p. 45).

E ¼ cos hs

r sin hr j d r
dhs
j
: (21)

When converted to ratio-of-pressure-squared by allowing for

the impedance difference at source and receiver (assuming

uniform density and sound speeds cs and cr), this becomes

P ¼ cr

cs

cos hs

r sin hr j d r
dhs
j
¼ 1

r tan hr j d r
dhs
j
:

On summing over all eigenrays, this is identical to Eq. (21).

III. USABLE FORMULAS

A. Gaussian running range average

Although it is gratifying to see the agreement in Eq.

(21) between simple ray flux and the original mode formula-

tion, the derivation is not new, and also the formulation leads

to all the well known housekeeping problems of ray tracing

(Jensen et al., 1994, pp. 155–185). As an alternative a local

range average [of Eq. (19)] can be set up to integrate in r
over nearby delta functions but retain the angle integral and

the quantities rc, rs, rr which are all functions of angle. The

normalized range average is assumed to be Gaussian

weighted, of width p and centered on range ro, (explicitly

excluding the cylindrical spreading in the averaging)

PðroÞ¼
ð

1

tanhrrcro

1

p
ffiffiffi
p
p
ð

exp½�ðr�roÞ2=p2�

�
�X

4

� X1
m¼�1

2pdðXþ2pmÞ
��

drdhs

¼ 1

ro

1

p
ffiffiffi
p
p
ð

1

tanhr

X
4

� X1
m¼�1

exp
�
�f½mrcðhsÞ

6rsðhsÞ6rrðhsÞ��rog2=p2
	�

dhs: (22)

This equation appears to suffer from the raytracing problem

that there is a singularity at ray turning points when hr¼ 0.

However, the denominator can be traced back to Eq. (14)

where the denominator of the WKB mode [Eq. (A2)] appears

as cðzsÞ and cðzrÞ. This can be rectified by substituting an

Airy function in this region for the WKB solution (see

Morse and Feshbach, 1953, p. 1098), and in the interests of

fast computer code one can use the crude but simple trick of

truncating the WKB amplitude with a frequency-dependent

ceiling value (Harrison, 2011a, p. 6). Thus ð1=tan hrÞ
½¼ ðcr=csÞðcos hs=sin hrÞ� reverts to ðcos hr sin hs kskrÞ=ðcscrÞ
[see Eq. (14)], where subscripts s,r denote the quantities at

source and receiver depths, respectively, and the WKB

denominators (i.e., 1/tan hr) are replaced as follows:

coshrsinhs MIN
1

sinhs
;ksBs


 �� �
MIN

1

sinhr
;krBr


 �� �
;

where

Bs;r ¼
2

3pjdðk2Þ=dzjs;rj

" #1=3

:

B. Range-varying depth average

Although rays may converge and diverge the intensity

averaged across the entire depth can only decay monotoni-

cally as cylindrical spreading (ignoring losses) as is shown

in Appendix D. Here the normalized Gaussian weighted av-

erage is adapted to be a vertical depth average of width q
centered on depth zo. Thus the depth average of Eq. (19)

becomes

P¼
ð

1

tanhrrcr

1

q
ffiffiffi
p
p
ð

expf�ðz�zoÞ2=q2g

�
�X

4

�X1
m¼�12pdðXþ2pmÞ

��
dzdhs: (23)

But according to Eq. (17) X ¼ f2p ½r 6 rsðhsÞ6 rrðhsÞ�g=
rcðhsÞ soð

dðX þ 2p mÞ drr 2p=rc ¼ 1: (24)

Therefore, the integral in z becomesð
dðXþ 2pmÞFðzÞdz¼

ð
dðXþ 2pmÞFðzÞ dz

drr
drr

¼ FðzrÞ
rc

2p
dz

drr
¼ FðzrÞ

rc

2p
tanhr;

(25)

where F is an arbitrary function of z, and zr means the depth

at which the ray arrives given the current launch angle hs

and the range r. So Eq. (23) becomes

P¼ 1

r

1

q
ffiffiffi
p
p
ð �X

4

n X1
m¼�1

exp½�ðzr � zoÞ2=q2�
o	

dhs:

(26)

Although this looks simple, zr has to be determined from rc

and rs given the current range which is the inverse of the
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usual procedure of finding the range given the receiver

depth.

C. Analytically summed version of the cosine sum

It is shown in Appendix C that a good approximation to

the cosine sum in the inner curly brackets of Eq. (14) is

1þ 2
XN

j¼1

cosðX jÞ � ð1þ 2NÞ

� exp �ð1þ 2NÞ2

p
sinðX=2Þ2

" #
;

(27)

where N is an effective number of modes (to be discussed in

Sec. III D). So the coherent pressure-squared becomes

PðrÞ ¼
ð

1

tan hrrcr

X
4

ð1þ 2NÞexp �ð1þ 2NÞ2

p

 "(

� sin2 2p ½r 6 rsðhsÞ6 rrðhsÞ�
2 � rcðhsÞ

� ����
dhs: (28)

With the exception of the summation over four terms, this

has reduced to just the angle integral which implies the same

order of computation time as the incoherent sum [see Eq. (1)

when converted to an angle integral or Harrison and Ainslie,

2010, Eqs. (B3) and (B8)].

D. The relation between the effective number of
modes N and the waveguide invariant b

It is clear in all the formulas [Eqs. (22), (26), and (28)]

that variation of rc, rs, rr with angle in the integral will

smudge the peaks or convergences. Furthermore, reducing N
in Eq. (28) will also broaden the peaks.

A second order Taylor expansion of each cosine in the

sum can be written as

X1
j¼�1

expðiAjÞ expðiBj2Þ (29)

with

A � �2pðr 6 rs 6 rrÞ=rc; (30)

B � p
rc
� d

dK

2pðr 6 rs 6 rrÞ
rc

� �
: (31)

Appendix B shows that there is a width ðrc=pÞ
ffiffiffiffiffiffi
jBj

p
associ-

ated with the second order Taylor expansion. Comparing it

with the width rc=ðp NÞ caused by the finite number of terms

N in Eq. (C5), the effective number of modes can be seen to

be N � jBj�1=2
. In the first order Taylor expansion B is 0, and

[before angle integration, Eq. (14)] there is perfect focusing

with constant cycle distance. The second order term allows

for cycle distance to increase or decrease with angle. This is

reminiscent of the behavior of the waveguide invariant b
(Chuprov, 1982) as seen from the point of view of a multipath

impulse response (Harrison, 2011b): for a perfectly focusing

duct (cosh profile) b tends to infinity; for cycle distance

decreasing with angle b is positive, and for cycle distance

increasing with angle b is negative. In particular, b is þ1 for

isovelocity and �3 for the upward refracting duct considered

later in this paper. It is shown in Appendix B that, in fact, B is

directly related to the waveguide invariant b by

B ¼ � p r

rcb M
: (32)

Therefore, the number of terms in the sum, or the effective

number of modes, is

N ¼ 1ffiffiffiffiffiffi
jBj

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rcjbjM

p r

r
¼

ffiffiffiffiffiffiffiffiffiffi
jbjM
p m

r
; (33)

where M is the actual number of modes and m is the number

of ray cycles. Similarly, the ratio � of number of effective to

actual modes is

� ¼
ffiffiffiffiffiffiffiffiffiffiffi
jbj

p mM

r
: (34)

E. The relation between the effective number of
modes N and the horizontal smoothing width p

Comparing the range average, Eq. (22) with Eq. (28)

[which is an approximation to the cosine sum, Eq. (14)] it

can be seen that they are very similar in form near the peaks.

In fact, the numerators and exponents can be made identical

near the peaks by putting

1þ 2N ¼ rc=ðp
ffiffiffi
p
p
Þ: (35)

So for large N there is a rough equivalence between the num-

ber of terms N (i.e., effective number of modes) and the re-

ciprocal of range averaging window size p.

The equivalence when p is small compared with rc

implies that the range average [Eq. (22)] can also be written

as the more efficient computation

PðrÞ ¼
ð

1

tan hrr

1

p
ffiffiffi
p
p

X
4

ð1þ 2NÞexp � rc
2

p2p2


�(

� sin2 2p ½r 6 rsðhsÞ6 rrðhsÞ�
2 � rcðhsÞ

� ���)
dhs: (36)

For p approaching, or larger than, rc one needs to revert to

Eq. (22), or alternatively to regard Eq. (36) still as a range

average with a “characteristic width” p but with a modified

weighting function.

F. The relation between the actual mode number M
and the vertical smoothing width q

One might expect the vertical and horizontal averaging

to be similarly blurred if one sets q=p � tan h which, on sub-

stituting for p leads to q � tan h rc=ðNpÞ � ð2HÞ=ðNpÞ. On
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the other hand, the vertical resolution of a mode sum is set

by the vertical correlation length (a fraction of the vertical

wavelength) of the highest mode which is roughly related to

water depth H by H=ðMpÞ.

G. Extension to range-dependent environments

Though not tackled in this paper, it is interesting to note

that handling range-dependent environments using this

approach is quite straightforward. If Eq. (1) were based on

the adiabatic mode sum the cross terms would have con-

tained integrals of wave number over range whose differen-

ces would have appeared as

exp i

ð
Kndr �

ð
Kmdr


 �� �
¼ exp i

ð
2p
rc

dr j


 �
: (37)

So Taylor expansions are still possible but the argument of

the sine term in Eq. (28) becomes range-dependent when rc

is range-dependent. In fact the ray cycle distance can be seen

to function as a “period” in the sine term when the two par-

tial cycle distances (rs and rr), evaluated, respectively, at

source and receiver ranges, act as “phases.”

IV. SUMMARY OF SOLUTIONS

Three potentially useful solutions have been derived,

each showing slightly different but very similar ray conver-

gence behavior.

(1) Running range average (smoothing length p)

PðrÞ¼ 1

rp
ffiffiffi
p
p �

ð
1

tanhr

X
4

� X1
m¼�1

expð�f½mrcðhsÞ

6rsðhsÞ6rrðhsÞ��rg2=p2Þ
�

dhs: (22)

(2) Running range average hybrid for p � rc

PðrÞ ¼
ð

1

tan hrr

1

p
ffiffiffi
p
p

X
4

ð1þ 2NÞexp � rc
2

p2p2


�(

�sin2 2p ½r 6 rsðhsÞ6 rrðhsÞ�
2 � rcðhsÞ

� ���)
dhs: (36)

Although this formula is shown explicitly here for complete-

ness, it does not constitute a separate solution since it is

merely Eq. (28) with the substitution Eq. (35).

(3) Range-varying depth average (smoothing depth q)

Pðr;zoÞ¼
1

r

1

q
ffiffiffi
p
p
ð�X

4

n X1
m¼�1

exp½�ðzr�zoÞ2=q2�
o	

dhs:

(26)

(4) Analytical cosine sum (effective number of modes N)

PðrÞ ¼
ð

1

tan hrrcr

X
4

ð1þ 2NÞexp �ð1þ 2NÞ2

p

 "(

�sin2 2p ½r 6 rsðhsÞ6 rrðhsÞ�
2 � rcðhsÞ

� ��#)
dhs: (28)

All formulas need to be integrated over angle, as shown. Both

the range average and the depth average contain an extra sum-

mation compared with the analytical cosine sum (and the

range average hybrid). When compared with propagation cal-

culations based on the incoherent sum (see e.g., Harrison,

2003; Harrison and Ainslie, 2010; Harrison, 2011a) the angle

integral in Eq. (28) has simply substituted the term in the

outer curly brackets with no change to the angle integration

scheme or to the term 1/(rrctan hr). It is true that this new for-

mula requires complete and partial cycle distances as a func-

tion of angle, but these can be tabulated beforehand. In a

practical implementation such as Artemis (Harrison, 2011a)

much of the computational effort goes into calculating the

boundary losses. Although ignored in this paper, this inevita-

ble computational overhead makes the additional computation

time due to convergence effects even less significant.

The range average is straightforward to implement given

complete and partial cycle distances as a function of angle,

but the depth average is slightly more difficult. This is

because, given a source depth, a receiver depth, and a sound

speed profile (SSP), one can immediately calculate rs and rr,

but given a receiver range r, it is possible, but more compli-

cated, to calculate the depth zr at which the ray arrives. All

SSPs considered here are piecewise linear so this “receiver

depth inversion” can be done without requiring interpolation.

As discussed in Sec. III A a standard problem with

WKB modes is that there is a singularity at the depth of the

source (and its complementary depth) (Weston, 1980c). This

is tackled here (in the running range average and the analyti-

cal cosine sum) in the same way as in the incoherent

Artemis—essentially the transition region between the Airy

function and WKB is approximated by imposing a

frequency-dependent (and SSP-dependent) ceiling value on

the WKB function (see Harrison, 2011a, p. 6).

In the running range average if the set of receiver depths

and source angles is sparse then there may be a lack of data

points (essentially ray arrivals) near ray turning points such

that the Gaussian averaging window finds no points. An

obvious and fail-safe solution is to increase the averaging

window size. An elementary calculation of the worst case

data point separation defines the necessary ray density and

receiver depth density for the given window size p.

The relation between the three approaches [Eqs. (22),

(26), (28)] and the ray intensity shows that, despite the fact

that they were all derived from a coherent mode sum, they

each bear a strong resemblance to a weighted sum of incoher-

ent rays, which is distinct from an incoherent sum of modes.

V. COMPARISONS BETWEEN THE THREE
SOLUTIONS AND THE WAVE MODEL ORCA

Disregarding computation time and computational diffi-

culties, the three formulations of Sec. IV are first evaluated

CMRE Reprint Series CMRE-PR-2014-004

6



numerically, and their results compared with each other.

Then they are compared with the well established wave

model Orca (Westwood et al., 1996). In each case the degree

of spatial averaging will also be varied. An upward refract-

ing uniform gradient SSP is taken as the test case. Two other

test environments that also exhibit strong convergence were

included in Harrison (2012b): a six-point shallow sound

channel, and a thousand-point deep Munk profile. The quan-

tity plotted is one-way propagation loss in dB re 1 m.

The upward refracting duct shown in Fig. 1 is chosen

because a clear and well known pattern of caustics is

expected (see Brekhovskikh and Lysanov, 2003, p. 121).

Each caustic line can be thought of as the envelope of the

upward curving ray arcs from the source.

A. Three formulations: Fine detail

Each of the three formulations summarized in Sec. IV

has a free parameter: for the range average [Eq. (22)], it is

the width p; for the depth average [Eq. (26)], it is the width

q; for the cosine sum [Eq. (28)], it is N. We expect similar

amounts of smoothing if the relations between N, p, and q of

Secs. III D to III F are utilized. The number of modes [using,

e.g., Eq. (A6)] at frequencies of 100, 1000, 10 000 Hz is 2,

18, 180, so at a high frequency Eq. (33), with M¼ 180,

b¼� 3, m¼ 1, leads to N¼ 13. To optimize the detail in the

illustrations (without introducing spurious pixel sampling

issues), N is taken somewhat arbitrarily to be N¼ 20, then

this is roughly matched with p � 15 m according to Eq. (35)

and taking rc to be 1 km, and q � 0.5 m since there are �180

modes in 100 m of water. Numerical calculations for the

range average, depth average, and cosine sum are shown in

Figs. 2(a), 2(b), and 2(c) with, respectively, p¼ 15 m,

q¼ 0.5 m, and N¼ 20. The three plots are almost identical,

and not surprisingly, there is a strong resemblance to ray

tracing images with clear ray cycling, refraction ducting,

bottom reflection, and caustic features. From the first ray

cycle on, there is a focus when the receiver is at the source

depth, and this is followed by a pair of caustic lines going

towards and away from the sea surface. The surface-bound

caustic line is then reflected in the surface adding aFIG. 1. Sound speed profile (SSP) for the Upward Refracting Linear Duct.

FIG. 2. (Color online) Propagation loss (dB re 1 m) for upward refracting

linear SSP with source at depth 25 m, (a) “Running range average,” Eq. (22)

with p¼ 15 m, (b) “Range-varying depth Average,” Eq. (26) with q¼ 0.5 m,

and (c) “Analytical cosine sum,” Eq. (28) with N¼ 20.

J. Acoust. Soc. Am., Vol. 133, No. 6, June 2013 Chris H. Harrison: Flux-like propagation including convergence 3783
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descending caustic. This behavior is identical to that shown

on p. 121 of Brekhovskikh and Lysanov (2003).

A glance at Eqs. (22), (26), (28), and (36) shows that

they are not directly sensitive to frequency, and the effective

number of modes N behaves like an independent parameter.

Nevertheless with the exception of Eq. (26), the formulas are

sensitive to small angles when either the source or the re-

ceiver happens to be close to a ray turning point. One solu-

tion would be to introduce the frequency-dependent Airy

correction to the WKB function as in Sec. III A. Instead, to

retain the frequency independence a simple angle limit of

0.01 rad was used throughout.

B. Comparison with Orca

The Orca results for the upward refraction case at

10 kHz and 1 kHz are shown in Figs. 3(a) and 3(b). The most

noticeable difference between these plots and the three solu-

tions in Figs. 2(a), 2(b), and 2(c) is the fine fringes of the in-

terference patterns. This interference is exactly what has

been deliberately left out in the solutions derived here—to

be precise, it is the step between Eqs. (7) and (8) where the

cos½wnðzs;rÞ þ wmðzs;rÞ� terms were rejected. Otherwise the

general picture of shadow zones, convergences, caustics, and

refraction is identical.

C. Three formulations: Medium detail

To make a fairer comparison, one can apply wider aver-

aging windows to the three formulas and to Orca: a range av-

erage, Eq. (22) with p¼ 300 m, is shown in Fig. 4(a), and a

depth average, Eq. (26) with q¼ 10 m, is shown in Fig. 4(b).

The ray cycling behavior is still visible in each although the

details are different.

D. Numerical range and depth averages of Orca

A numerical range and depth average of the 10 kHz

Orca result of Fig. 3(a) is shown in Fig. 5(a) and 5(b). There

is a strong resemblance between the two range averages

[Figs. 4(a) and 5(a)] and the two depth averages [Figs. 4(b)

and 5(b)] but not so much between all four, which is not sur-

prising—they are different quantities.

E. Comparison of range-varying depth average

Although the plots of propagation loss against range and

depth show that the main features of all three proposed

FIG. 3. (Color online) Propagation loss (dB re 1 m) for the upward refract-

ing linear SSP with source at depth 25 m using the wave model Orca at (a)

10 kHz, (b) 1 kHz.

FIG. 4. (Color online) Analytically smoothed propagation loss for (a)

“Running range average,” Eq. (22) with p¼ 300 m, (b) “Range-varying

depth Average,” Eq. (26) with q¼ 10 m.
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methods agree well with Orca, a more quantitative compari-

son is obtained by taking slices at fixed ranges and plotting

these against depth. For this purpose the slices are taken

from Figs. 4(b) and 5(b) which are equivalently depth aver-

aged. In Fig. 6, three ranges are chosen (1.0, 2.7, 7.5 km) to

show examples of peaks and troughs without crowding the

graph. The solid lines are Orca and the dashed lines are Eq.

(26) all with q¼ 10 m. The fit is extremely good—well

within 0.5 dB and centered on the Orca line.

F. Depth plot of range average

In passing, it is interesting to plot the average over all

ranges against depth. Figure 7 shows the numerical average

over range of rP(r) from Eq. (28) for N¼ 20. Notice the

strong peak at the source depth as pointed out by Weston

(1980a) and the strong similarity in shape to his “depth

factor.”

VI. CONCLUSIONS

The ultimate aim of this work is to be able to calculate

reverberation and target echoes very rapidly in an opera-

tional research context where many military scenarios with

many possible sonar parameters in many environments need

to be evaluated. Consequently there is a need to minimize

the number of computer operations in calculating sound

propagation. An energy flux or incoherent mode sum

approach has been very successful in this respect except that,

to date, it is restricted to mode stripping superimposed on cy-

lindrical spreading. This leads to a monotonic decay in range

with the possible exception of minor deviations from mono-

tonic in a range-dependent environment.

This paper has derived three formulations from the

coherent mode sum: a running range average with variable

window width p; a range-varying depth average with vari-

able width q; and an analytical cosine sum with parameter N
equal to the number of terms in the sum. This number is

related to, but a lot less than, the number of water-borne

modes. An upward refracting linear SSP environment was

chosen to demonstrate performance of these formulations.

Very similar plots are produced for large N and relatively

small p and q. As p and q are increased and N decreased,

FIG. 5. (Color online) Numerical average of Orca wave solution at 10 kHz:

(a) on a range scale of 300 m, and (b) on a depth scale of 10 m.

FIG. 6. Comparison between range-varying depth average of Orca (solid)

and Eq. (26) (dashed). Slices are taken at fixed ranges of 1.0, 2.7, and

7.5 km through the depth-range surfaces shown in Figs. 5(b) and 4(b),

respectively.

FIG. 7. Range-averaged pressure-squared vs depth [hr PðrÞi from Eq. (28)]

with source at 25 m.
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they all start to deviate from each other, as one might expect.

Comparisons with the wave model Orca run at various fre-

quencies with, and without, averaging show very good

agreement allowing for the obvious presence of its interfer-

ence fringes.

From the point of view of number of computation opera-

tions, it is clear from Eq. (28) that the analytical cosine sum

consists of the same integral over angle as in the Artemis

implementation of the incoherent mode sum. The only differ-

ence is that the integrand is more complicated and that it

includes the partial ray cycle distances from the source and re-

ceiver depths as well as the complete cycle distance. In this

respect the computation time of Artemis will not be compro-

mised by substituting this formulation for convergence.

As a by-product the derivation has shown that a running

range average [Eq. (22)] is always extremely close to the an-

alytical cosine sum [Eq. (28)] given the relation (Sec. III E)

between averaging window size and number of terms in the

sum, which, in turn, is the effective number of modes. This

effective number is usually much smaller than the actual

number and depends on the variation of ray cycle distance

(or mode separation in wave number) with angle. The effec-

tive number was shown to be closely related to the wave-

guide invariant. Both solutions are close to the mode

solution at any reasonably high frequency with the interfer-

ence fringes taken out.

An interesting observation is that the three solutions-

with-convergence bear strong resemblance to an incoherent

ray sum—Eq. (21) explicitly represents power-down-a-ray-

tube, and the other formulas are just the power sum of terms

like this. Although this was derived from the modulus square

of the coherent mode sum, it is distinctly different from the

incoherent mode sum that does include mode stripping but

does not include convergence.
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APPENDIX A: DEFINITIONS

1. WKB modes

The acoustic intensity at depth zr and range r with a

source at depth zs in a range-independent medium can be

written in terms of its normal modes /n(z) with eigenvalues

Kn as

P ¼ 2p

����X
n

/nðzsÞ/nðzrÞ expðiKnrÞffiffiffiffiffiffiffiffi
Knr
p

����
2

¼ 2p
X

n

/n
2ðzsÞ/n

2ðzrÞ
Knr

þ 2p
X

m

X
n

/nðzsÞ/nðzrÞ/mðzsÞ/mðzrÞffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

� cos½ðKn � KmÞr�: (A1)

The relations below follow from the Appendix in Harrison

and Ainslie [2010, Eqs. (B3) and (B8)]. Wenzel-Kramers-

Brillouin (WKB) modes are assumed

/n ¼ An

sin

�ðzs

zB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � Kn

2
p

dz� e

�
½k2ðzÞ � Kn

2�1=4
; (A2)

which may be normalized by settingð
/n

2ðzÞ dz ¼ 1 ¼ 1

2

ð
An

2

½k2ðzÞ � Kn
2�1=2

dz ¼ An
2

2
L (A3)

introducing the term L,

L ¼
ð

1

½k2ðzÞ � Kn
2�1=2

dz (A4)

so that An
2 ¼ 2=L,

/n
2ðzÞ ¼ 1

½k2ðzÞ � Kn
2�1=2

�ð
1

½k2ðzÞ � Kn
2�1=2

dz:

(A5)

Differentiating the phase integral (Morse and Feshbach,

1953, pp. 1092–1100)

pðn� eÞ ¼
ð H

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � Kn

2
p

dz (A6)

leads to

dn

dK
¼ �K

p

ð
1

½k2ðzÞ � Kn
2�1=2

dz ¼ �K

p
L: (A7)

Also, by definition, the ray cycle distance is

rc ¼ 2

ð
K

½k2ðzÞ � K2�1=2
dz ¼ 2KL: (A8)

Thus the mode normalization, the inverse of mode separation

[i.e., ðdK=dnÞ�1
], and ray cycle distance are related through

the integral L. Particularly useful relations are

An
2 ¼ 4Kn=rc; (A9)

dn

dK
¼ � rc

2p
: (A10)

APPENDIX B: TAYLOR EXPANSIONS AND POISSON
SUM FORMULA

1. Taylor expansions

Each cosine term in Eqs. (11) and (12), when summed

and expanded to second order, is of the form

X1
j¼�1

expðiAjÞ expðiBj2Þ: (B1)
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The three differences constituting the argument of the

cosines are Taylor expanded as follows. The first is

Kn � Km ¼ j
dK

dn
þ j2

2

d2K

dn2
þ � � � (B2)

where j ¼ n� m and

dK

dn
¼ � 2p

rc
: (B3)

Similarly, the second and third are

wnðzs;rÞ � wmðzs;rÞ ¼ j
dw

dn
þ j2

2

d2w

dn2
þ � � � (B4)

and since

wnðzoÞ ¼
ðzo

zB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � Kn

2
p

dz� eB; (B5)

dw

dn
¼ dw

dK

dK

dn
¼
ðzs;r

zB

K

½k2ðzÞ � K2�1=2
dz

2p
rc

(B6)

and this remaining integral is just the partial cycle distances

rs,r from the lower ray turning point to either the source or

receiver depth. So

dwðzs;rÞ
dn

¼ 2p rs;r

rc
: (B7)

Thus, the first order term in the exponent of Eq. (B1) is

A � �2pðr 6 rs 6 rrÞ=rc, and the sum over the four permu-

tations of cosða 6 b 6 cÞ as in Eq. (11) becomesX
4

cos
2pðr 6 rs 6 rrÞ

rc
j

� �
:

The second order Taylor expansion is just [1/2] d/dn of the

first term, i.e.,

B � 1

2

dA

dn
¼ 1

2

dA

dK

dK

dn
¼ � p

rc

dA

dK

¼ p
rc

d

dK

2pðr 6 rs 6 rrÞ
rc

� �
:

2. Poisson sum

Having established formulas for A and B in Eq. (B1), if

the limits are taken as infinite, the summation can be eval-

uated using the Poisson sum formula. Felsen (1981)

discusses the utility of the Poisson sum in the context of ray-

mode equivalence and finding more succinct representations.

As stated in Morse and Feshbach (1953) the formula isX1
n¼�1

f ðanÞ ¼ 1

a

X1
m¼�1

Fð2p m=aÞ; (B8)

where n is an integer and a is an arbitrary constant, while x,

K are continuous variables in the Fourier transform pair f(x),

F(K) defined as

FðKÞ ¼
ð

f ðxÞ eiKxdx; (B9)

f ðxÞ ¼ 1

2p

ð
FðKÞ e�iKxdK: (B10)

The relevant form of f for first order Taylor expansion is

f ðxÞ ¼ expðiAxÞ ) expðiAnÞ (B11)

so

FðKÞ ¼
ð

eiAx eiKxdx ¼ 2p dðAþ KÞ (B12)

and on setting a¼ 1 in Eq. (B8) and substituting for f and F
one finds

X1
n¼�1

expðiAnÞ ¼
X1

m¼�1
2p dðAþ 2p mÞ: (B13)

The relevant form of f for the second order Taylor expansion

is

f ðxÞ ¼ expðiAxÞ expðiB x2Þ ) expðiAnÞ expðiB n2Þ
(B14)

so

FðKÞ ¼
ð
ðeiAx eiB x2Þ eiKxdx ¼

ffiffiffiffiffi
ip
B

r
exp �i

ðAþ KÞ2

4B

" #
:

(B15)

On substituting for f and F in Eq. (B8) again with a¼ 1 one

finds

X1
n¼�1

expðiAnÞ expðiBn2Þ

¼
X1

m¼�1

ffiffiffiffiffi
ip
B

r
exp �i

ðAþ 2p mÞ2

4B

" #
: (B16)

Comparing Eq. (B16) with (B13), it can be seen that the

sequence of delta functions has been replaced with a

sequence of Fresnel-type functions, each with width 2
ffiffiffi
B
p

in

the quantity A, so if the second order Taylor term is signifi-

cant then the delta functions are effectively broadened to a

certain extent. Because A � 2pðr 6 rs 6 rrÞ=rc, this smudg-

ing has a width in range r of ðrc=pÞ
ffiffiffi
B
p

.

3. Relation of the second order Taylor term B to the
waveguide invariant b

The waveguide invariant b is a well known parameter

that classifies the behavior of the interference fringes with

frequency and range (Chuprov, 1982, and many other more

recent references). From the point of view of a multipath

impulse response Harrison (2011b) derived formulas for b in

terms of cycle distance and cycle time, verifying them with a

number of special cases. In particular his Eq. (A24) and

(A26) can be written as

b ¼ rc
2

2p M � 1
2


 �� drc

dK
: (B17)

Note that for an isovelocity SSP cycle distance decreases

with angle, therefore, it increases with K and so, as is well

known, b is positive. [The sign is printed ambiguously in

Harrison’s Eqs. (A24)–(A26).]
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Comparing Eq. (B17) with the definition of the second

order term B in Eq. (B1) and assuming that rs, rr are small

compared with r one finds that they are related by

B ¼ � 2p2r

rc
3

drc

dK
¼ � p r

rc b M � 1
2


 � : (B18)

So the effective number of modes N (from Sec. III D) for

large M is

N ¼ 1ffiffiffiffiffiffi
jBj

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rcjbjM

p r

r
¼

ffiffiffiffiffiffiffiffiffiffi
jbjM
p m

r
; (B19)

where m is the number of ray cycles, and the ratio � of effec-

tive to actual number of modes is

� ¼
ffiffiffiffiffiffiffiffiffiffiffi
jbj

p mM

r
: (B20)

APPENDIX C: FAST, ANALYTICALLY PRE-SUMMED
COSINE SERIES

The cosine sum [Eq. (14)] can be expanded as a sum of

complex exponentials [as in Eq. (29) with B¼ 0] which then

form a geometric series with the exact solution

XN

j¼1

cosðX jÞ ¼ sin½ðN þ 1ÞX=2�
sinðX=2Þ cosðNX=2Þ � 1: (C1)

This function repeats when X=2 is a multiple of 2p, and its

peak value is N. The Taylor expansion in X in the vicinity of

a peak is

ðN þ 1Þ 1� ½ðN þ 1ÞX=2�2=6

1� ðX=2Þ2=6
½1� ðNX=2Þ2=2� � 1

¼ ðN þ 1Þ 1� ðX=2Þ2 ðN þ 1Þ2 � 1

6
þ N2

2

" #( )
� 1

¼ ðN þ 1Þ 1� ðX=2Þ2 ð2N2 þ NÞ
3

� �� �
� 1

¼ N 1� ðX=2Þ2 ð2N þ 1ÞðN þ 1Þ
3

� �� �
: (C2)

For reasonably large N this can be fitted with the slightly

smoother function N � exp½�A sin2ðX=2Þ� which retains the

multiple peak, peak height, and peak width behavior.

Equating Taylor expansions results in

A ¼ ð2N þ 1ÞðN þ 1Þ
3

; (C3)

and so

XN

j¼1

cosðXjÞ¼ sin½ðNþ1ÞX=2�
sinðX=2Þ cosðNX=2Þ�1

�Nexp �ð2Nþ1ÞðNþ1Þ
3

sin2ðX=2Þ
� �

:

(C4)

Retaining the correct peak value of 2Nþ 1 and the mean of

zero in between peaks in Eq. (14) requires

1þ 2
XN

j¼1

cosðX jÞ

� ð1þ 2NÞexp � ð2N þ 1ÞðN þ 1Þ
3

sin2ðX=2Þ
� #

:

(C5)

Notice that the 1 on the left hand side represents the incoher-

ent sum; the true solution in Eq. (C1) oscillates in between

peaks and may take values above or below the incoherent

sum. On the right of Eq. (C5) the 1 no longer represents the

incoherent sum, it is merely ensuring a correct peak value.

Other peak width compromises are possible, for instance

one can put A ¼ N2 which leads to

1þ 2
XN

j¼1

cosðX jÞ � ð1þ 2NÞexp½�N2 sin2ðX=2Þ�:

(C6)

In the current context, the peaks in the exponential function

behave like broadened delta functions, so it is their integral

that should be equated to the integral of the exact form

in Eq. (C1). Since
Ð 2p

0
fsin½ðNþ1ÞX=2�=sinðX=2ÞgcosðNX=

2ÞdX¼2p [as may be shown by integrating both sides of

Eq. (C1)], one finds

1þ 2
XN

j¼1

cosðX jÞ � ð1þ 2NÞ

� exp �ð2N þ 1Þ2

p
sin2ðX=2Þ

" #
:

(C7)

The four expressions: Eqs. (C1), (C5), (C6), and (C7) are

shown in Fig. 8.

FIG. 8. Comparisons between the cosine sum of Eq.((C1)) (thick gray), the

Taylor expansion formula of Eq. (C5) (black dashed), the simpler compro-

mise peak width formula of Eq. (C6) (gray dashed), and the integral-of-

peaks formula of Eq. (C7) (black solid), all for N¼ 5. The peak value for all

formulas is 2Nþ 1¼ 11 in this case. The second peak occurs at X¼ 2p.
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APPENDIX D: AVERAGE OVER ENTIRE DEPTH

In this appendix three quantities are evaluated and

shown to have the same (cylindrical spreading) range de-

pendence. Strictly these are ratios of mean-square-pressure

at the source and receiver and differ from true intensity by a

factor of the ratio of impedances which is very close to unity

for angles of sonar interest.

1. The incoherent mode sum

P ¼ 2p
X

n

/n
2ðzsÞ/n

2ðzrÞ
Knr

: (D1)

2. Depth average of the incoherent mode sum

hPi¼
ðH

0

PðzrÞdzr¼2p
X

n

/n
2ðzsÞ

ðH

0

/n
2ðzrÞdzr

Knr

¼2p
X

n

/n
2ðzsÞ

Knr
: (D2)

3. Depth average of the coherent mode sum

The coherent mode sum is

P ¼ 2p
X

n

/n
2ðzsÞ/n

2ðzrÞ
Knr

þ 2p
X

m

X
n

/nðzsÞ/nðzrÞ/mðzsÞ/mðzrÞffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

� cos½ðKn � KmÞr�: (D3)

The depth integral of the first term is exactly the same as Eq.

(D2), but the depth integral of the second term

P2 ¼ 2p
X

m

X
n

/nðzsÞ/mðzsÞ
ðH

0

/nðzrÞ /mðzrÞdzrffiffiffiffiffiffiffiffiffiffiffi
KnKm

p
r

� cos½ðKn � KmÞr� (D4)

is exactly 0, by the orthogonality condition. So the depth av-

erage of the coherent intensity is the same as the depth aver-

age of the incoherent intensity.

As a consequence, regardless of any real focusing and

convergence, the depth average (when multiplied up by 2pr)

is range-invariant—in a loss-free environment all the sound

goes somewhere—at each range, convergence at one depth

is balanced by divergence at another.
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