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Abstract

Motivated by spatial problems of allocations, we give a proof of the existence of an optimal
solution to a set-indexed formulation of the bandit problem. The proof is based on a compactiza-
tion of collections of fuzzy stopping sets and fuzzy optional increasing paths, and a construction
of set-indexed integrals. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Formulation of the problem

The aim of this paper is to present a formulation of the Bandit problem in the
framework of set-indexed processes, and to prove the existence of an optimal solution to
this problem. The multi-armed bandit problem was already studied by several authors.
We refer to Mandelbaum (1987, 1988) in which time is replaced by a partially ordered
set, or, more recently, Kaspi and Mandelbaum (1998) for motivation and description
of the state of art.
In this section, we give the notation and state the main existence result. In order to

prove it, we need two kinds of tools: the 9rst one are fuzzy stopping sets and fuzzy
optional increasing paths that will be the subject of the next section. The other tool
is a kind of set-indexed integration; it will be developed in Section 3. In Section 4,
we study an extension of the Baxter–Chacon topology (see Baxter and Chacon, 1977)
and we prove that fuzzy sets and fuzzy optional increasing paths are compact. The last
section is devoted to the proof of the main theorem.
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Our framework can be applied to many diAerent examples. A simple motivation in
which a natural model is provided by processes indexed by a collection of subsets of a
general space was already suggested by Gittins (1989) in the following close example:
A prospector looking for gold in some region, has to decide where to look and if he
prospects for any size of piece of land must repeatedly take further decisions in the
light of his successes to date. His decision problem is how to allocate the prospection of
the region in a sequential manner, so as to maximize his likely reward. This problem is
spatio-temporal since at each “instant”, the prospector has to decide where to excavate.
Another kind of example is concerned with the theory of optimal search for the location
of a speci9c object. Another example is related with aerial photography (see IvanoA
and Merzbach, 2002), in which at each time, an airplane pilot must decide what is the
optimal direction permitting better pictures. The instantaneous decisions maker has to
take into consideration diAerent random constraints like clouds, draughts, etc.
Our notation follows that of IvanoA and Merzbach (2000).
Let (T; d) be a compact complete metric space. Throughout the whole paper, if A∗

is any class of subsets of T , A∗(u) denotes the class of 9nite union of elements in A∗;
“(” indicates strict inclusion and “(·)” and “(·)◦” denotes, respectively, the closure and
the interior of a set. A∗(u) denotes the class of countable intersections of elements in
A∗(u). Under an assumption that is always satis9ed when T is a metric space, it is
proved in Aletti (2001) that A∗(u) is equal to the class of the closures of countable
unions of elements in A∗(u), when A∗ is an indexing collection as de9ned below.

De�nition 1. A nonempty class A of compact; connected subsets of T is called an
indexing collection if it satis9es the following:
(1) ∅; T ∈A; and A◦ �=A if A �= ∅ or T and A∈A.
(2) A is closed under arbitrary intersections and if A; B �= ∅ and A; B∈A; then A ∩

B �= ∅. If (Ai)i∈N is increasing and Ai ∈A; then
⋃

i Ai ∈A.
(3) �(A) = BT ; where BT is the collection of all Borel sets of T .
(4) Separability from above

There exists an increasing sequence of 9nite subclasses An ⊆ A; An={An
1; : : : ; A

n
kn}

closed under intersections with ∅; T ∈An; and a sequence of functions gn : A →
An(u) such that:
(a) gn preserves arbitrary intersections and 9nite unions (i.e. gn(

⋂
A∈A′ A) =⋂

A∈A′ gn(A) for any A′ ⊆ A; and if
⋃k

i=1 Ai =
⋃m

j=1 A
′
j; then

⋃k
i=1 gn(Ai) =⋃m

j=1 gn(A′
j));

(b) for each A∈A; A ⊆ (gn(A))
◦;

(c) gn(A) ⊆ gm(A) if n¿m;
(d) for each A∈A; A=

⋂
n gn(A);

(e) if A∈A and A′ ∈An; then gn(A) ∩ A′ ∈An;
(f) gn(∅) = ∅ ∀n.

Remark 1. Denote ∅′=⋂
n

⋂
A∈An;A �=∅ A=

⋂
A∈A;A �=∅ A. (The second equality is a result

of separability.) We have that ∅′ ∈A and ∅′ �= ∅; by the 9nite intersection property for
compact sets.
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Remark 2. Since gn preserves 9nite unions; A ⊆ B ⇒ gn(A) ⊆ gn(B). As well; gn

has a unique extension to A(u) which is de9ned as follows: for B∈A(u); gn(B) =⋃
A∈A;A⊆B gn (B). If B∈A(u); we de9ne gn(B) =

⋂
B′∈A(u);B⊆B′ gn(B′). In IvanoA and

Merzbach (2000) it is proved that gn : A(u) → An(u) is well de9ned. It preserves
countable intersections and 9nite unions and B ⊆ (gn(B))

◦.

We de9ne the HausdorA metric on the nonempty compact subsets of T : dH (A; B)=
inf{�: B ⊆ A� and A ⊆ B�}; where A�={t ∈T : d(t; A)6 �}, for any �¿ 0 and d(t; A)=
inf{d(t; s): s∈A}.
We require that A be compact in the HausdorA metric.

Remark 3. For the sake of simplicity; we required that T is compact and T ∈A.
Using AlexandroA compacti9cation; all our results will still hold supposing only that
T is locally compact.

Let (�;F;P) be a complete probability space. A set-indexed 4ltration is a family
{FA; A∈A} of sub-�-algebras of F which is:
• complete (F∅ contains all the P-null sets);
• increasing (if A ⊆ B, A; B∈A, then FA ⊆ FB);
• outer-continuous (F∩∞

n=1 An =
⋂∞

n=1 FAn , where {An} is a decreasing sequence in A).

Remark 4. Let Fr
B :=

⋂
n ∨A∈A;A⊆gn(B)FA. In IvanoA and Merzbach (2000; Lemma

1.4.1) it is stated that {Fr
B; B∈A(u)} is (complete) monotone outer continuous and

Fr
A =FA; for any A∈A. This allows us to naturally speak about a 9ltration indexed

by A(u).

De�nition 2. A random set � : � → A(u) is called a stopping set if {A ⊆ �}∈FA;
for any A∈A. A random set � : � → A(u) is called a generalized stopping set
if {A ⊆ �}∈FA; for any A∈A. An optional increasing path (o.i.p.) is a family
�= {�t ; t ∈ [0; 1]} of generalized stopping sets s.t.
(1) �0 = ∅′;
(2) �1 = T ;
(3) �s ⊆ �t if s6 t a.s.;
(4) ∀!∈�; �t(!) ⊆ gn(gn(�s(!)))=: g2n(�s)(!); if s6 t ¡ s + 2−�(n); where

limn→∞�(n) =∞ a.s.
The set of all o.i.p.’s will be denoted by �.

Remark 5. Following IvanoA and Merzbach (2000); our de9nition is “opposite” to that
of Kurtz (1980) and HMurzeler (1985); 2 and hence this paper is not a direct extension of
Dalang (1990). The formulation of the bandit problem will be done here for set-indexed
processes.
Condition 4 relates to |Zu|= u in Dalang (1990). It states that the speed of o.i.p.’s

growing is bounded. It will be necessary in Lemma 18 as |Zu|=u is in Dalang (1990).

2 We require that {A ⊆ �}∈FA instead of requiring {� ⊆ A}∈FA.
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Following the formulation of the bandit problem given in Dalang (1990), let X =
{XA: A∈A(u)} be a real-valued set-indexed process de9ned on (�;F;P) with upper-
semicontinuous sample paths such that E[supA∈A(u) |XA|]¡∞ and let V={Vs; s∈ [0; 1]}
be a bounded nonnegative right-continuous process with nondecreasing sample paths
(A is an indexing collection).

Main Theorem 1. For each �∈�; set R(�) = E(
∫
[0;1] X�tdVt). Then there exists an

optional increasing path �∗ ∈� s.t. R(�∗) = sup�∈�R(�); i.e.; �
∗ is an optimal o.i.p.

This theorem will be proved in the last section.

2. Fuzzy stopping sets

De�nition 3. Let B be the Borel sets of [0; 1]. A map � : � × [0; 1] → A(u) will be
called a fuzzy set if it is F⊗B-measurable and
(i) nondecreasing in the second variable: s6 t implies �(· ; s) ⊆ �(· ; t);
(ii) inner continuous in the second variable: if tn → t; tn6 t; then⋃

n

�(·; tn) = �(·; t);

(iii) outer continuous at 0 : �(· ; 0) =⋂
t¿0 �(· ; t);

and will be called a fuzzy stopping set if it is a fuzzy set and

{(!; r): A ⊆ �(!; r)}∈FA ⊗B

for any A∈A.

Also, any function on � will be considered de9ned on �×[0; 1] in the obvious way.
This implies that a stopping set  may be seen as a fuzzy stopping set (where

�(!; v) =  (!)).
Let � : �×[0; 1] → A be nondecreasing, inner continuous and outer continuous at 0.

We denote for every v∈ [0; 1]

�v : � → A(u); �v(!) = �(!; v):

Proposition 1. Let � : � × [0; 1] → A(u) be nondecreasing; inner continuous and
outer continuous at 0. � is a fuzzy stopping set i9 �v is a generalized stopping set for
each v∈ [0; 1]. In particular; taking FA =F; � is a fuzzy set i9 �v is F-measurable
for each v∈ [0; 1].

Proof. If A* �(!; r); then there exists �¿ 0 s.t. A* �(!; r+ �) by inner continuity.
Hence we have that

{(!; r): A* �(!; r)}=
⋃

v∈Q∩[0;1]

({!: A* �(!; v)} × [0; v])

=
⋃

v∈Q∩[0;1]

({!: A* �v(!)} × [0; v]):
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Given a fuzzy set �, de9ne the “probability” P�(!; ·) on A(u) by

P�(!; A) =

{
inf{v∈ [0; 1]: A ⊆ (�(!; v))

◦} if A ⊆ (�(!; 1))
◦
;

1 if A* (�(!; 1))
◦
:

(1)

Remark 6. By inner continuity; when t ¿ 0 we have that

B ⊆ (�(!; t))
◦ ⇔ t ¿P�(!; B); B∈A(u) (2)

and hence

�(!; t) =




⋃
{A∈A: P�(!; A)¡t} if t ¿ 0;⋃
{A∈A: P�(!; A) = 0} if t = 0

(3)

by De9nitions 1(1) and 3(iii).

Proposition 2. P� satis4es the following properties:
• takes values in [0; 1]: P�(!; ∅) = 0; P�(!; T ) = 1;
• is nondecreasing: If A ⊆ B; then P�(!; A)6P�(!; B);
• is outer continuous: If A =

⋂
n An; then P�(!; An) → P�(!; A). (In fact; if A ⊆ B◦;

then there exists k0 s.t. Ak ⊆ B◦ for any k¿ k0.)

Denote by B (resp. B′) the set of the all nondecreasing, outer continuous processes
as {P(·; A); A∈A} taking values in [0; 1] which are measurable (resp. adapted).
Proposition 2 states that P� ∈B (resp. P� ∈B′) when � is a fuzzy (stopping) set.

The following proposition states the converse:

Proposition 3. Let P ∈B′ (resp. P ∈B′). Then the random set

�(!; t) =




Lev!; t if t ¿ 0;⋂
s

Lev!;s if t = 0; (4)

where

Lev!; t =
⋃

{A∈A: P(!; A)¡t}
is a fuzzy (stopping) set and P[P�(·; A) = P(·; A); any A] = 1.

Proof. It is a consequence of (2).

Corollary 4. P ∈B′ corresponds to a stopping set i9 P(·; A)∈{0; 1}.

The conditions that make a family of stopping sets be an optional increasing path
may be transported on

∏
[0;1] B

′ to fuzzy optional increasing paths in the following
way:

De�nition 4. A fuzzy optional increasing path is a family P = {Pt; t ∈ [0; 1]}∈∏
[0;1] B

′ s.t.
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(1) Pt ∈B′ ∀t ∈ [0; 1];
(2) P0(!; A) = 1; for any A∈A;
(3) P1(!; A) = 0; for any A∈A; A �=T ;
(4) Ps(!; ·)¿Pt(!; ·) if s6 t;
(5) Pt(!; g2n(A))¿Ps(!; A) if s6 t ¡ s+ 2−�(n).
We denote by P′ the set of all the fuzzy optional increasing paths.

Lemma 5. {Pt; t ∈ [0; 1]}∈P′ corresponds to an optional increasing path i9 Pt(· ; A)
∈{0; 1} for any t ∈ [0; 1].

Proof. It is a consequence of Corollary 4.

Remark 7. We only underline that; if s6 t ¡ s+ 2−�(n); we have

Pt(!; A)6Ps(!; A)6Pt(!; g2n(A)): (5)

3. Integration on A(u)

The set-indexed bandit problem is expressed here as the maximization of a function
$X de9ned on the set of the optional increasing paths by

(�t)t∈[0;1] �→ E
[∫

R+

X�t dVt

]
;

where {XA; A∈A(u)} is an (suNcient regular) integrable set-indexed stochastic pro-
cess and {Vt; t ∈ [0; 1]} is a bounded process with nondecreasing sample paths.
We note that

E
[∫

R+

X�t dVt

]
= E

[∫
R+

(∫
[0;1]

X�t(·;v) dv
)
dVt

]
;

since the fuzzy set obtained by a stopping set is constant.
We give a de9nition of integration on A(u) s.t.∫

f(A)P�(·; dA) =
∫
[0;1]

f(�(·; v)) dv;

so that $X : �→ R will be extended to an aNne function &X : P′ → R by setting:

(Pt)t∈[0;1] �→ E
[∫

R+

(∫
A

XA Pt(·; dA)
)
dVt

]
:
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Let f be any bounded Borel function on A and � be a fuzzy set. We denote

f ˆ(�)(!) =
∫
[0;1]

max(f[�(!; v)]; 0) dv;

f P(�)(!) =
∫
[0;1]

max(−f[�(!; v)]; 0) dv:

De�nition 5. We say that a function f : A → R is integrable (and we denote it by
f∈L1

B[A]) if; for any fuzzy set �; f (̂�)(!)¡ +∞ and fP(�)(!)¡ +∞; and we
de9ne

f(�)(!) := f ˆ(�)(!)− f P(�)(!): (6)

Let A; B∈A(u). We de9ne

'B(A) =

{
0 if B ⊆ (A)

◦
;

1 otherwise;
1A(B) =

{
1 if B ⊆ A;

0 otherwise

so that, for any B∈A

'B(�(!; v)) =

{
0 if B ⊆ (�(!; v))

◦
;

1 otherwise;
1(�(!;v))◦(B) =

{
1 if B ⊆ (�(!; v))

◦
;

0 otherwise:

Following this de9nition and (2), we have that

P(!; B) =
∫
[0;1]

'B(�(!; v)) dv=
∫
[0;1]

(1− 1(�(!;v))◦(B)) dv:

Remark 8. Let I be an interval of R+ of the form [0; s]. It is natural to denote

'I (t) =

{
0 if I ⊆ [0; t);

1 otherwise;
1I (t) =

{
1 if [0; t] ⊆ I;

0 otherwise

and this fact explains our choice.

Let f : A → R+ ∪ {+∞} be a nonnegative extended real function on A. Let
if : R→ A(u),

if(t) :=
⋃

{A∈A: f(A)¡t}:
We have if(s) ⊆ if(t) when s6 t.

De�nition 6. We say that a bounded nonnegative real function f : A(u) → R is
regular iA f(A) = limnfn(A); for any A∈A(u); where

fn(A) =
n2n−1∑
i=0

i2−n['if([i+1]2−n)(A)− 'if(i2−n)(A)]:
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We denote by L[A] the monotone class generated by the linear combinations of
regular functions which are integrable.

Proposition 6. C(A(u))∩L1
B[A] ⊆ L[A] (C(A(u)) is the set of continuous function

on A(u)).

Proof. It is suNcient to prove that; given a set B∈A(u); the function 1B(A) belongs to
L[A] (in fact; the monotone class generated by linear combinations of 1B; B∈A(u)
contains both C(A(u)) and L1

B[A]).
For any n∈N, we de9ne

fB
n (A) = min

A∗∈An(u)
A∗*(gn(B))

'A∗(gn(A))

= 1− max
A∗∈An(u)
A∗*gn(B)

[1− 'A∗(gn(A))]

= 1− f′B
n (A):

We note that, if A ⊆ B, then A∗ * gn(A), for any A∗ * gn(B), and hence 'A∗(gn(A))=1
and fB

n (A) = 1, for any n∈N.
If A * B, there will be an n∈N s.t. gn(A) * gn(B). Then fB

n (A) = 0 and so
1B = inffB

n = 1− supf′B
n .

Since An ⊆ An+1, then {fB
n ; n∈N} is a monotone sequence of functions on A

and then we have only to prove that f′B
n ∈L[A], for each n∈N. Since 'A∗ is a

regular function, then f′B
n ∈L[A].

Proposition 7. The space L[A] is the space of the integrable functions on A(u).

Proof. The proof follows by Proposition 6 and the fact that

'B(A) = sup
f∈C(A(u))
06f61

f(A)

f(A) = 0 when B ⊆ A
◦

since L1
B[A] is a monotone class.

• Let f be a bounded positive regular function on A and � be a fuzzy set. We de9ne∫
f(A)P�(!; dA)

:= lim
n

n2n−1∑
i=0

i2−n[P�(!;if([i + 1]2−n))− P�(!;if(i2−n))]:
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We have

f(�)(!) =
∫
[0;1]

(
lim
n

fn(�(!; v))
)
dv

= lim
n

n2n−1∑
i=0

i2−n
∫
[0;1]

['if([i+1]2−n)(�(!; v))− 'if(i2−n)(�(!; v))] dv

= lim
n

n2n−1∑
i=0

i2−n[P�(!;if([i + 1]2−n))− P�(!;if(i2−n))]

=
∫

f(A)P�(!; dA): (7)

• It is not diNcult to show that the extension (via linear combinations and mono-
tone class, as usual) of the integral operator to L[A] gives coherent de9nitions
and all those de9nitions are well posed. We only underline that, for any f∈L[A];
f(�)(!) =

∫
f(A)P�(!; dA) and

∫
f(A)P�(!; dA) is a linear function on B′.

• If � does not depend on the second variable for some !0 (�(!0; v) = A, for any
v∈ [0; 1]), we have

f(�)(!0) =
∫
[0;1]

f(�(!0; v)) dv= f(A):

Then &X : P′ → R, where

&X ((Pt)t∈[0;1]) = E
[∫

R+

(∫
A

X (A)Pt(·; dA)
)
dVt

]

is an aNne function on P′ that extends $X : �→ R.

4. Compactness of fuzzy stopping sets and fuzzy o.i.p.

We wish to study the convergence of generalized stopping sets and of the associated
stopping variables, as in Baxter and Chacon (1977).
Let G be a 9xed �-algebra contained in F.

De�nition 7. Let {�n; n∈N} and � be fuzzy sets. �n will be said to converge weakly

to � on G (�n
G⇒ �) if the distribution of �n(!; v) on G × [0; 1] converges weakly to

that of �(!; v) on G × [0; 1] for any G ∈G. That is; if we de9ne f(�n) and f(�) as
in (6);

�n
G⇒ � ⇔ E(f(�n)|G) a:s:→E(f(�)|G) when n → ∞

for each f∈C(A(u)) ∩L[A]; where C(A(u)) is the set of continuous functions on
A(u).
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Let +=+({FA}) be the set of all fuzzy stopping sets. For any Y ∈L1(�;G;P) and
any f∈C(A(u)), let -(Y; f) : + → R be de9ned by -(Y; f)(�) = E[Yf(�)]. Let I the
collection of all such - and T=T(G) be the topology on + generated by all - in I .

Proposition 8. T is generated by -('G; f); obtained as G runs over an L1-dense
subset of G and f runs over a sup-norm-dense subset of C(A(u)) ∩L[A].

Corollary 9. �n
G⇒ � if and only if �n

T→�.

For any Y ∈L1(�;F;P) and f∈L[A], let

.�(Y; f) := -(Y; f)(�) = E[Yf(�)]

.� will be called the distribution map for �. By (7), we have

.�(Y; f) = E[Yf(�)]

= E
[
Y
(∫

[0;1]
f(�v) dv

)]

= E
[
Y
(∫

f(A)P�(·; dA)
)]

:

For H ∈F write .�('H ; f) as .�(H;f) and similarly for K ∈A(u) let .�(Y; 'K) =
.�(Y; K).

Proposition 10. Let f∈L[A] such that f(A) �=0 only if A ⊆ B (we will also
write that f ≡ 0 on (B; T ]). If � is a fuzzy stopping set; then

∫
f(A)P�(·; dA)

is FB-measurable. Conversely; if P ∈B and
∫
f(A)P(·; dA) is FB-measurable for

every function f∈L[A] ∩ C(A(u)) with support on [0; B]; then P ∈B′.

Proof. It is a consequence of Proposition 1 and the fact that

P�(·; B∗) =
∫
[0;1]

'B∗(�(·; v)) dv:

Remark 9. For any fuzzy set �; let us temporally restrict the distribution map .� to
L1(�;F;P)× {L[A] ∩ C(A(u))}. Then .� has the following properties:
(i) .� is a bilinear function on L1(�;F;P)× {L[A] ∩ C(A(u))}.
(ii) • Y ¿ 0; f¿ 0 imply .�(Y; f)¿ 0.

• .�(1; 1) = 1.
• |.�(Y; f)|6 ‖Y‖1‖f‖∞ for all Y; f.

(iii) .�(Y; f)=.�(E[Y |FB; f) for any Y ∈L1(�;F;P) and any function f∈L[A]∩
C(A(u)) with support on [0; B].

Lemma 11. Let . be a map satisfying (i)–(iii) in Remark 9. Then there exists a
unique (P× 0[0;1]) fuzzy stopping set � s.t. .� = .. (Note: 0[0;1] denotes the Lebesgue
measure on [0; 1].)
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Proof. For any Y ∈L1(�;F;P) with 06Y 6 1;

‖Y‖1 + ‖1− Y‖1 = 1 = .(1; 1) = .(Y; 1) + .(1− Y; 1)

and ‖Y‖1¿ .(Y; 1); ‖1 − Y‖1¿ .(1 − Y; 1). Hence .(Y; 1) = ‖Y‖1. By continuity;
.(Y; 1) = E[Y ] for any Y ∈L1(�;F;P).
For any Y ∈L1(�;F;P), the map .(Y; ·) is linear on L[A] ∩ C(A(u)) and hence

1(B) = .(Y; 1B) de9nes a bounded Borel measure on BT . 1(T ) = E[Y ], and if Y ¿ 0
then 1(·)¿ 0. One may extend . to all Y ∈L1(�;F;P), and all functions f∈L[A]
by de9ning .(Y; f) =

∫
T f(A) .(Y; dA). Clearly . is bilinear, Y ¿ 0, f¿ 0 imply

.(Y; f)¿ 0, .(Y; 1) = E[Y ] and |.(Y; f)|6 ‖Y‖1 ‖f‖∞.
Using the outer continuity of {FA} and the fact that .(Y; ·) is continuous

under bounded pointwise limits, it is easy to see that (iii) in Remark 9 holds for
all Y ∈L1(�;F;P) and any bounded Borel function f s.t. f = 0 on (B; T ].
For B in a countable base of A(u), let c(B) be a bounded FB-measurable function

such that .(Y; B)=E[Yc(B)] for any Y ∈L1(�;F;P). We may choose c(B) s.t. c(T )=1,
c(B)¿ 0. Clearly, c(B)6 c(B∗) whenever B ⊆ B∗ (P-a.s.), so we may assume that
c(B)6 c(B∗) everywhere, by replacing c(B∗) by sup{c(B): B ⊆ B∗}.
Let P(!; ·) be the probability on A(u) such that

P(!; B) = inf{c(B∗; !): B ⊂ B∗}

for each B∈A(u) (P(!; T ) = 1, P(!; ∅) = 0). By outer continuity, P(·; B) is FB-
measurable for any B∈A and hence P ∈B′. By Proposition 3, there exists � s.t.
P�(!; B) = P(!; B). For any Y ∈L1(�;F;P) and B∈A(u)

.(Y; B) = inf
B⊂B∗ ;B∗∈An(u)

.(Y; B∗)

= inf
B⊂B∗ ; B∗∈An(u)

{E[Yc(B∗)]}

= E
[
Y inf

B⊂B∗ ; B∗∈An(u)
{c(B∗)}

]

= E[YP�(·; B)]
= .�(Y; B):

Hence .= .�. � is unique by Lemma 12, so the lemma is proved.

Let + = +({FA}) be the set of fuzzy stopping sets, and let 3 = 3({FA}) be the
set of maps . satisfying (i)–(iii) in Remark 9. There exists a natural map 4 : + → 3
which takes each member of + to its distribution map

4(�) = .: (8)

Lemma 11 says that if {FA; A∈A(u)} is outer continuous then 4 is an onto map,
and 4 is one-to-one (P× 0[0;1]-a.s.).
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It is easy to check that �(!; v) is the intersection of the largest sets B such that∫
f(A)P�(!; dA)¡v+� for some nonincreasing f in C(A(u))∩L[A] with 06f6 1

and f = 0 on [B; T ]. Let 5 be another fuzzy set. Clearly the following statements are
equivalent:
• �(!; ·) ⊆ 5(!; ·).
• P�(!; ·)¿P5(!; ·).
• ∫

f(A)P�(!; dA)¿
∫
f(A)P5(!; dA), for all nonincreasing functions f∈{C(A(u))

∩L[A]}.

Lemma 12. Let � and 5 be fuzzy sets. Suppose .�(Y; f)¿ .5(Y; f) for every Y ¿ 0
in L1(�;F;P) and every nonincreasing f in {C(A(u)) ∩L[A]}. Then � ⊆ 5 (P×
0[0;1]-a.s.).

Proof. Choose a countable dense set D of nonincreasing functions in C(A(u))∩L[A].
For any f∈D;∫

Y
[∫

f(A)P�(!; dA)
]
dP¿

∫
Y
[∫

f(A)P5(!; dA)
]
dP

for all Y ¿ 0 in L1(�;F;P). Hence∫
f(A)P�(·; dA)¿

∫
f(A)P5(·; dA); P-a:s:

Let �1 ∈F with P[� \ �1] = 0 s.t.∫
f(A)P�(!; dA)¿

∫
f(A)P5(!; dA)

for all f∈D; !∈�1. Then the same inequality holds on �1 for all nonincreasing
f∈{C(A(u))∩L[A]}. Then; as stated above; � ⊆ 5 on �1; so the lemma is proved.

Lemma 13. Let � and 5 be fuzzy sets. Let G be a sub-�-algebra of F. The following
conditions are equivalent:
(i) .�(Y; f) = .5(Y; f); for all Y ∈L1(�;G;P); f∈{C(A(u)) ∩L[A]}.
(ii) E(f(�)|G) = E(f(5)|G); for any f∈C(A(u)) ∩L[A].

The proof is immediate.

Lemma 14. Let � be a fuzzy set. Let G be a sub-�-algebra of F. Then there exists
a unique (P× 0[0;1]-a.s.) G-fuzzy set 5 for which (ii) in Lemma 13 holds.

Proof. Restrict .� to L1(�;G;P)×C(T ). Apply Lemma 11 with F=FA=G to obtain
5. Apply Lemma 13 to conclude that (ii) holds. Uniqueness follows also from Lemma
11 with F=FA = G.
It is easy to check that if � happens to be a fuzzy stopping set then 5 can be chosen

to be a {FA∩G}-fuzzy stopping set provided that {FA; A∈A(u)} is outer continuous
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and

E[E[ · |G] |FA] = E[ · |GA ∩ G] for all A∈A(u):

Theorem 15. If {FA; A∈A(u)} is outer continuous then (+;T) is compact.

Proof. Let 4 be the map de9ned in (8). For each Y ∈L1(�;F;P) and f∈C(T ); let
 : 3 → R be de9ned by  (Y; f)(.) = .(Y; f). Let 8 be the set of all such  . Let C
be the topology on 3 generated by all  in 8. It is easy to see that T=4−1(C). C
is compact; by the same argument used to prove that unit ball in the dual of a normed
linear space is compact. Since 4 is onto by Lemma 11; T is also compact.

Theorem 16. The set B (resp. B′) has the following properties:
(i) B (resp. B′) is convex.
(ii) The set of the extremal elements in B′ is the set of those which correspond to

the set of the generalized stopping set.
(iii) B (resp. B′) is compact in the topology induced by (+;T).

Proof.
(i) The convex combination of two (adapted) increasing outer continuous processes

with values in [0; 1] is an (adapted) increasing outer continuous process with
values in [0; 1].

(ii) Suppose that there exists A s.t. P[{!: 0¡P(!; A)¡ 1}]¿ 0. Then we may
choose a convenient 0 such that if

P′(!; B) =
P(!; B) ∧ 0

0

and

P′′(!; B) =
(P(!; B)− 0) ∨ 0

1− 0

for any B∈A; then P′ and P′′ are distinct. We have P = 0P′ + (1 − 0)P′′.
Moreover; P′ and P′′ are nondecreasing; compatible and outer continuous; since
P is. By Corollary 4; if P does not correspond to a stopping set; it cannot be one
of the extremal elements of B′.

(iii) It is a consequence of Theorem 15.

Proposition 17. The set P′ has the following properties:
(i) P′ is convex.
(ii) The set of the extremal elements in P′ is the set of those which correspond to

the set of the optional increasing path.
(iii) P′ is compact for the product topology.

Proof.
(i) It is a consequence of Theorem 16 and the fact that a convex combination is a

linear function.
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(ii) If P={Pt; t ∈ [0; 1]}∈P′; we can de9ne two elements 1P and 2P by the formulas
1Pt(!; A) = min(2Pt(!; A); 1);

2Pt(!; A) = max(2Pt(!; A)− 1; 0):

It is easy to check that 1P; 2P∈P′ and 2P=1P+1P and so P can be an extremal
element in P′ only if P=1P=2P. Then Pt(!; A)∈{0; 1} and the proof is 9nished
via Lemma 5.

(iii) It is suNcient to note that P′ is a closed subset of
∏

[0;1] B
′ and thus is compact

(as in Dalang; 1990; this set is closed since it is de9ned by (1)–(5) of De9nition
4).

5. Proof of the Main Theorem

Let M denotes the deterministic elements of P′, i.e., � = {Pt; t ∈ [0; 1]}∈M pro-
vided each 9t : A(u) → [0; 1] is a nondecreasing outer continuous function such that
9t(T ) = 1 and

• 9s(·)¿ 9t(·) if s6 t,
• 9t(g2n(A))¿ 9s(A) if s6 t ¡ s+ 2−�(n).

As in (5), we may aNrm that if s6 t ¡ s+ 2−�(n),

9t(A)6 9s(A)6 9t(g2n(A)): (9)

Let x be an integrable function on A(u), and let �(x) : [0; 1] → R be de9ned by

�(x)(t) =




∫
T
x(A)9t(dA) when t ∈ [0; 1);

x(T ) when t = 1:

Lemma 18. If x : A(u) → R is a continuous function on A(u); then {�(x); �∈M}
is an equicontinuous set of functions on [0; 1]; i.e.; for all �¿ 0; there exists ;¿ 0
such that if |t − Qt |¡; then

|�(x)(t)− �(x)(Qt )|¡� (10)

for any �∈M.

Proof. Since a continuous function on a compact set is uniformly continuous; then
(10) has to be checked for all 9xed t ∈ [0; 1]. The case t=1 follows immediately from
the continuity of x at 1; so we assume t ∈ [0; 1). Now

|�(x)(t)− �(x)(Qt)|=
∣∣∣∣
∫
A

x(A)[9t(dA)− 9 Qt(dA)]
∣∣∣∣

=
∣∣∣∣
∫
[0;1]

[x(�t(v))− x(� Qt(v))] dv
∣∣∣∣ : (11)
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We must prove that for any n∈N; there exists k ∈N s.t.

|t − Qt|¡ 2−k ; �∈M ⇒
∣∣∣∣
∫
T
x(A)[9t(dA)− 9 Qt(dA)]

∣∣∣∣¡ 2−n:

Since x is uniformly continuous on a compact set by Remark 3; then d(A; B)¡;�

implies |x(A)− x(B)|¡� and hence; by (11); we can prove that |t − Qt|¡ 2−k implies
d(�t(v); � Qt(v))¡; for any v∈ [0; 1].
First, let us choose N ∈N s.t. supAd(A; g

2
N (A))¡;. By (9) and (4), if k = �(N ),

|t − Qt|¡ 2−k implies d(�t(v); � Qt(v))¡; for any v∈ [0; 1].

The proof of the following result will follow that of Dalang (1990). We will write
it for completeness.

Lemma 19. Suppose E[supA∈A(u) |XA|]¡∞. Then &X is continuous on P′.

Proof. Let V k denote the increasing process de9ned by

V k
t =

2k∑
j=1

SV k
j I{j2−k6t} where SV k

j = Vj2−k − V(j−1)2−k :

Since E[supA∈A(u) |XA|]¡∞; it is not diNcult to see using Lemma 18 that

sup
9∈=A

∣∣∣∣
∫
[0;1]

9(X )(t) dVt −
∫
[0;1]

9(X )(t) dV k
t

∣∣∣∣ →
k→∞

0 P-a:s:

Fix �¿ 0. Again since E[supA∈A(u) |XA|]¡∞; it follows that we may choose k ∈N
s.t.

E
[
sup
9∈=A

∣∣∣∣
∫
[0;1]

9(X )(t) dVt −
∫
[0;1]

9(X )(t) dV k
t

∣∣∣∣
]
¡

�
3
: (12)

Fix P∈P′; and de9ne an open set O of P′ by

O=
{
P̃∈P′: |E[(P̃(X )(j2−k)− P(X )(j2−k))SV k

j ]|¡
�
3
2−k ; j = 1; : : : ; 2k

}
:

Using (12); we see that for P̃∈O;∣∣∣∣E
[∫

[0;1]
P̃(X )(t) dVt

]
− E

[∫
[0;1]

P(X )(t) dVt

]∣∣∣∣
¡ 2

�
3
+
∣∣∣∣E

[∫
[0;1]

P̃(X )(t) dV k
t

]
− E

[∫
[0;1]

P(X )(t) dV k
t

]∣∣∣∣¡�

by the de9nitions of O and V k . This completes the proof.

Proof of the Main Theorem. This proof is now similar to that of Dalang (1990);
Mazziotto and Millet (1987).
Note that (A(u); d) is a metric space s.t. its topology has a countable space (and

hence, by Bourbaki (1966, IX, Section 2.8 Proposition 12), it is homeomorphic to a
subspace of IN, where I is the interval [0; 1] in R).
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Then, by the proof of Dalang (1989, Proposition 7.1), there is a nonincreasing
sequence of processes (X n

A )n∈N (where E[supA∈A(u) |X n
A |]¡∞) s.t.

XA(!) = lim
n→∞ ↓ X n

A (!); ∀A∈A(u); ∀!∈�:

Since dVt is a nonnegative measure, we obtain

lim
n→∞ ↓ &Xn(P) = &X (P); ∀P∈P′:

By Lemma 19, this shows that & is upper semicontinuous on P′. Hence & attains
its maximum on P′ and since & is aNne, this maximum is attained at an extremal
element of P′ (see Bourbaki, 1981, II.58, Proposition 1). Proposition 17 completes the
proof.
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