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Abstract We characterize the relative compactness of subsets of the space BCm([0,+∞
[; E) of bounded and m-differentiable functions defined on [0,+∞[ with values in a Banach
space E . Moreover, we apply this characterization to prove the existence of solutions of a
boundary value problem in Banach spaces.
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1 Introduction

One of the most celebrated results on compactness characterization for continuous functions
is the Ascoli–Arzela Theorem for continuous functions defined on a compact topological
space Q. It has extensively been applied to many fields of mathematical analysis, such as

F. Cianciaruso · V. Colao · G. Marino (B)
Dipartimento di Matematica, Universitá della Calabria, 87036 Arcavacata di Rende, CS, Italy
e-mail: gmarino@unical.it

F. Cianciaruso
e-mail: cianciaruso@unical.it

V. Colao
e-mail: colao@mat.unical.it

H.-K. Xu
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
e-mail: xuhk@math.nsysu.edu.tw

H.-K. Xu
Department of Mathematics, College of Science, King Saud University,
P.O. Box 2455, Riyadh 11451, Saudi Arabia

123



408 F. Cianciaruso et al.

functional analysis, operator theory, nonlinear analysis, differential, and integral equations.
Moreover, this compactness theorem has been extended to more general settings.

Bartle [3] characterized, in several ways, the relatively compact subsets of the space
BC(Q) of real bounded and continuous functions defined on a topological space Q. For
example, we have the following result.

Theorem 1.1 [3]. The following statements are equivalent for a bounded subset
F ⊆ BC(Q) :
(1) F is conditionally (strongly) compact;
(2) F is equicontinuous on Q;
(3) If F0 is a denumerable subset of F and if {qn} is a sequence in Q for which { f (qn))}

converges for each f ∈ F0, then the convergence is uniform on F0;
(4) For any positive ε there is a partition Q = ∪n

i=1 Ai , such that if q ′, q ′′ belong to the
same Ai then | f (q ′) − f (q ′′)| < ε, f ∈ F.

Avramescu [1] considered the space Cl([0,+∞[; R
n) of the continuous functions defined

on [0,+∞[ with values in R
n , which admit finite limit at infinity.

More recently, De Pascale, Lewicki, and Marino [5] gave sufficient conditions for relative
compactness of subsets of the spaces BC(Q) and BC(Q; R

n) with some applications to
boundary value problems.

On the same line of [1], Xiao, Kim, and Huang [7] gave a necessary and sufficient condition
to characterize the relative compactness of the subsets of the space

Cm∗ ([0,+∞[; E) = {x ∈ Cm([0,+∞[; E) : lim
t→+∞ x (k)(t) = 0 for all k = 0, . . . , m},

where E is a real Banach space. Moreover, they gave an application to a class of second-order
boundary value problems in Banach spaces.

It is the purpose of this paper to characterize the relatively compact subsets of the space
BCm([0,+∞[; E) of bounded and m-differentiable functions defined on [0,+∞[ with val-
ues in a Banach space E . Moreover, we shall use this characterization to prove an existence
theorem of solutions of a second-order boundary value problem in Banach spaces.

2 Preliminaries

In this paper, we shall denote by E a Banach space and by BCm([0,+∞[; E) (m ≥ 0)

the space of all functions that are continuous and bounded with their derivatives up to (and
including) the m-th order, from [0,+∞[ to E , i.e.,

BCm([0,+∞[; E) := { f ∈ C([0,+∞[, E) : ∀k = 0, . . . , m,

f (k) is bounded and continuous}
We equip BCm([0,+∞[; E) with the norm:

‖y‖BCm =

⎧
⎪⎪⎨

⎪⎪⎩

‖y‖∞ := sup
t∈[0,+∞[

‖y(t)‖E , if m = 0,

m∑

k=0

‖y(k)‖∞, if m > 0.
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A compactness result for differentiable functions 409

It is worth noting that (BCm([0,+∞[; E), ‖ · ‖m) is a Banach space. For a subset H of
BCm([0,+∞[; E), we define

H (0) = H, H (k) =
{

y(k) : y ∈ H
}

⊂ BCm−k([0,+∞[; E), (1 ≤ k ≤ m);
H (k)(t) =

{
y(k)(t) : y ∈ H

}
⊂ E, (0 ≤ k ≤ m, t ∈ [0,+∞[).

In the sequel, we shall denote by α, β, and γ the Kuratowski, Istratescu, and Hausdorff mea-
sures of noncompactness, respectively. Namely, if M is a bounded subset of a Banach space
X , then

α(M) := inf{ε > 0 : there exists M1, . . . , Mn ⊂ M, diamMi < ε,

i = 0, . . . , n, M ⊂
n⋃

k=0

Mk};

β(M) := sup{ε > 0 : there exists (xn)∞n=1 ⊂ M such that ‖xn − xm‖E ≥ ε, n �= m};

γ (M) := inf

{

ε > 0 : there exist balls B1, . . . , Bn of radius ε such that M ⊂
n⋃

k=0

Bk

}

.

It is well known (see for example [2]) that

• γ ≤ α ≤ β ≤ 2γ ;
• M is relatively compact if, and only if, φ(M) = 0 for φ ∈ {α, β, γ }.
For a fixed element l ∈ E, let Cl([0,+∞[; E) be the space of all continuous functions from
[0,+∞[ to E, converging to l as t → ∞. For this space, compactness can be characterized
as follows:

Proposition 2.1 Let E be a Banach space. A subset G ⊂ Cl([0,+∞[; E) is relatively com-
pact if and only if the following conditions are satisfied:

(1) G is bounded;
(2) G is equicontinuous;
(3) for any t0 ∈ [0,+∞[, G(t0) is a relatively compact set in E;
(4) as t → +∞, x(t) converges to l uniformly for x ∈ G.

Proof The proof is essentially given in [1] for functions with values in R
n . Condition (2.1)

ensures its validity on Cl([0,+∞[; E), where E is a general Banach space. ��
We need the following lemma in the last section. Here and throughout the paper, the

integral which appears is the Bochner integral.

Lemma 2.2 [6] Let E be a Banach space and H ⊂ C([0,+∞[; E). If H is a countable
set and there exists a positive function ρ ∈ L1(0,+∞) such that ‖u(t)‖E ≤ ρ(t) for all
t ∈ [0,+∞[, u ∈ H, then the function

t �→ α ({u(t) : u ∈ H})
is integrable on [0,+∞[ and

α

⎛

⎝

⎧
⎨

⎩

+∞∫

0

u(t)dt : u ∈ H

⎫
⎬

⎭

⎞

⎠ ≤ 2

+∞∫

0

α ({u(t) : u ∈ H}) dt. (2.1)
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410 F. Cianciaruso et al.

3 A compactness result

In this section, we introduce our main result. In particular, we shall prove a compactness
result for bounded functions with bounded derivatives on unbounded sets.

Theorem 3.1 A subset H ⊂ BCm([0,+∞[; E) is relatively compact if, and only if, the
following conditions are satisfied:

(C1) H (m) is relatively compact in BC([0,+∞[; E);
(C2) for all k = 0, . . . , m − 1 and for all ε > 0, there exists M = Mε > 0 such that

φBC([M,+∞[;E)

(

H (k)∣
∣[M,+∞[

)

< ε for φ ∈ {α, β, γ }.

Proof If H is relatively compact in BCm([0,+∞[; E), then H (k) is relatively compact in
BC([0,+∞[; E) for any k = 0, . . . , m; therefore, (C1) and (C2) follow.

To prove the converse, we assume that (C1) and (C2) hold. In order to show that H is
relatively compact in BCm([0,+∞[; E), we will use induction over j to prove that H (m− j)

is relatively compact in BC j ([0,+∞[; E).
If j = 0, the statement follows by assumption (C1). Assume that H (m− j+1) is relatively

compact in BC j−1([0,+∞[; E). We now show that H (m− j) must be also relatively com-
pact in BC j ([0,+∞[; E). Suppose on the contrary that H (m− j) is not relatively compact in
BC j ([0,+∞[; E); then, since H (m− j) is either unbounded or βBC j ([0,+∞[;E)

(
H (m− j)

)
> 0,

there exists a sequence ( fn)n∈N such that, for all p �= q ,

‖ f p − fq‖BC j =
j∑

k=0

∥
∥
∥ f (m−k)

p − f (m−k)
q

∥
∥
∥∞ ≥ 4η (3.1)

for some fixed η > 0.

From the inductive hypothesis, it follows that there exists a subsequence ( fnr )r∈N ⊂ H

such that ( f (m− j+1)
nr )r∈N is a Cauchy sequence in BC j−1([0,+∞[; E). Therefore, there

exists r0 ∈ N such that

‖ fn p − fnq ‖BC j−1 =
j−1∑

k=0

∥
∥
∥ f (m−k)

n p
− f (m−k)

nq

∥
∥
∥∞ < η for all p, q ≥ r0. (3.2)

It follows from (3.1) and (3.2) that
∥
∥
∥ f (m− j)

n p − f (m− j)
nq

∥
∥
∥∞ = sup

t∈[0,+∞[

∥
∥
∥ f (m− j)

n p (t) − f (m− j)
nq (t)

∥
∥
∥

E
≥ 3η

for all p, q ≥ r0, p �= q.

Then, for every p �= q , there exists tpq ∈ [0,+∞[ such that
∥
∥
∥ f (m− j)

n p (tpq) − f (m− j)
nq (tpq)

∥
∥
∥

E
≥ 2η.

We note that the sequence {tpq} ⊂ [0,∞[ is bounded. Indeed, let M0 ∈ [0,+∞[ be such
that

βBC([M0,+∞[;E)

(

H (m− j)∣
∣[M0,+∞[

)

< η (3.3)
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A compactness result for differentiable functions 411

and suppose the existence of a subsequence (tp j q j ) j∈N ⊂ [0,+∞[ such that tpi qi ≥ i M0.
Then,

∥
∥
∥ f (m− j)

n pi
− f (m− j)

nqi

∥
∥
∥∞ ≥

∥
∥
∥ f (m− j)

n pi
(tpi qi ) − f (m− j)

nqi
(tpi qi )

∥
∥
∥

E
≥ 2η

which contradicts (3.3). Thus, there exists a constant N > 0 such that tpq < N for any p
and q.

On the other hand, by choosing a further subsequence if necessary, we have
∥
∥
∥ f (m− j)

n p (M0) − f (m− j)
nq (M0)

∥
∥
∥

E
≤

∥
∥
∥ f (m− j)

n p − f (m− j)
nq

∥
∥
∥∞ < η for any n p �= nq .

Therefore,

η = 2η − η

≤ ‖ f (m− j)
n p (tpq) − f (m− j)

nq (tpq)‖E − ‖ f (m− j)
n p (M0) − f (m− j)

nq (M0)‖E

≤
∥
∥
∥

(
f (m− j)
n p (tpq) − f (m− j)

n p (M0)
)

−
(

f (m− j)
nq (tpq) − f (m− j)

nq (M0)
)∥
∥
∥

E

=

∥
∥
∥
∥
∥
∥
∥

M0∫

tpq

(
f (m− j+1)
n p (t) − f (m− j+1)

nq (t)
)

dt

∥
∥
∥
∥
∥
∥
∥

E

≤ |M0 − tpq |‖ f (m− j+1)
n p − f (m− j+1)

nq ‖∞
≤ (M0 + N )‖ f (m− j+1)

n p − f (m− j+1)
nq ‖∞.

It turns out that { f (m− j+1)
nk } contains no convergent subsequences in the space BCm−( j−1)([0,

+∞[; E). ��
Corollary 3.2 A subset H ⊂ BCm([0,+∞[; E) is relatively compact if, and only if, there
exists L > 0 such that the following conditions are satisfied:

(C3) H (m)∣
∣[0,L] is relatively compact in C([0, L]; E);

(C4) for all k = 0, . . . , m, H (k)∣
∣[L ,+∞[ is relatively compact in BC([L ,+∞; E).

Proof For the “if” part, note that conditions (C3) and (C4) imply condition (C1) of
Theorem 3.1. Furthermore, (C4) is stronger than (C2). The converse “only if” part is indeed
trivial. ��

4 An application to boundary value problems

In this section, we apply Theorem 3.1 to a second-order boundary value problem in a Banach
space E . More precisely, we shall prove the existence of a solution y ∈ C2([0,+∞[; E) for
the second-order boundary value problem

(P)

{
y′′ + m2 y′ = f (t, y) a.e. on [0,+∞[
y(0) = ξ, lim

t→+∞ y(t) ∈ L

where m ∈ R, f : [0,+∞[×E → E, ξ ∈ E, L ⊆ E .

123



412 F. Cianciaruso et al.

Our approach consists in converting (P) to an equivalent fixed point problem that involves
upper semi-continuous multivalued operators. To this end, let us recall some results on these
operators we shall use in the sequel.

Definition 4.1 Let E, F be Banach spaces and ∅ �= D ⊂ E . A multivalued operator T :
D → 2F\∅ is said to be upper semi-continuous (usc briefly) if T −1(A) is closed in D
whenever A ⊂ F is closed. Equivalently, T is usc if (yn)n∈N ⊂ D, A ⊂ F is closed,
yn → y ∈ D and T yn ∩ A �= ∅ for all n ∈ N, then also T y ∩ A �= ∅.

We need the following characterization of the upper-semicontinuity for multivalued opera-
tors:

Theorem 4.2 (see, for example, [4, Proposition 1.2]) Let D �= ∅ be a subset of a Banach
space E and T : D → 2E\∅ have closed values. Then, if graph(T ) is closed and T (D) is
relatively compact, T is usc.

Now, we can state the following fixed point theorem for multivalued operators:

Theorem 4.3 (Bohnenluest–Karlin (1950) [8]) Let D be a nonempty closed convex subset
of E and let T : D → 2D be a multivalued usc operator. Suppose that

(1) T (x) is nonempty, compact and convex for all x ∈ D;
(2) T (D) is relatively compact.

Then, there exists at least one y ∈ D such that y ∈ T y.

We begin to transform the boundary value problem (P) into an equivalent fixed point
problem for a multivalued operator.

Lemma 4.4 Let f : [0,+∞[×E → E be a continuous function and assume that

(1) there exist two positive functions p, q ∈ L1(0,+∞) such that:

‖ f (t, y)‖E ≤ p(t) + q(t)‖y‖E for every t ≥ 0, y ∈ E; (4.1)

(2)

lim
t→+∞ e−m2t

t∫

0

em2s p(s)ds = 0, (4.2)

lim
t→+∞ e−m2t

t∫

0

em2s q(s)ds = 0.

Define the multivalued operator T on C1([0,+∞, E) by

(T y)(t) :=
{

l + (ξ − l)e−m2t − 1

m2

+∞∫

t

f (s, y(s))ds

+e−m2t

m2

+∞∫

0

f (s, y(s))ds − e−m2t

m2

t∫

0

em2s f (s, y(s))ds : l ∈ L

}

.

Then, problem (P) is equivalent to the fixed point problem:

Find y0 ∈ C1([0,+∞, E) such that y0 ∈ T y0.
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A compactness result for differentiable functions 413

Proof Setting u = y′ in the second-order differential equation

y′′ + m2 y′ = f (t, y) a.e. on [0,+∞[,
we obtain

u′ + m2u = f

⎛

⎝t,

t∫

0

u(σ )dσ + ξ

⎞

⎠

which admits the general solution

u(t) = e−m2t

⎛

⎝k +
t∫

0

em2s f

⎛

⎝s,

s∫

0

u(σ )dσ + ξ

⎞

⎠

⎞

⎠ ds, k ∈ R.

By integrating again, we derive

y(t) = − k

m2 e−m2t +
t∫

0

e−m2τ

τ∫

0

em2s f (s, y(s))dsdτ + c

= c − k

m2 e−m2t +
t∫

0

em2s f (s, y(s))

t∫

s

e−m2τ dτds

= c − k

m2 e−m2t + 1

m2

t∫

0

(1 − em2(s−t)) f (s, y(s))ds

= c − k

m2 e−m2t + 1

m2

t∫

0

f (s, y(s))ds − e−m2t

m2

t∫

0

em2s f (s, y(s))ds.

Imposing the boundary conditions and by (4.1) and (4.2), we obtain
⎧
⎪⎪⎨

⎪⎪⎩

c − k
m2 = ξ,

c + 1

m2

+∞∫

0

f (s, y(s))ds,∈ L

which finally yields

y(t) ∈
{

l + (ξ − l)e−m2t − 1

m2

+∞∫

t

f (s, y(s))ds + e−m2t

m2

+∞∫

0

f (s, y(s))ds

−e−m2t

m2

t∫

0

em2s f (s, y(s))ds, l ∈ L

}

= (T y)(t).

Now it is not hard, proceeding backward in the argument above, to see that the inclusion
y ∈ T y implies that y solves Problem (P). ��
Theorem 4.5 Assume that f : [0,+∞[×E → E is continuous and f (t, Br ) is relatively
compact for any r > 0 and for any t ≥ 0, where Br ⊂ E is the closed ball centered at 0 and
with radius r . Moreover, we suppose that
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(1) L is a nonempty convex compact subset of E;
(2) there exist two positive functions p, q ∈ L1(0,+∞) such that:

(a) ‖ f (t, y)‖E ≤ p(t) + q(t)‖y‖E for every t ≥ 0, y ∈ E;

(b) Q := ‖q‖L1(0,+∞) <
m2

2m2 + 3
;

(3) there hold the relations:

lim
t→+∞ e−m2t

t∫

0

em2s p(s)ds = 0, (4.3)

lim
t→+∞ e−m2t

t∫

0

em2sq(s)ds = 0.

Then, there exists at least a solution of Problem (P).

Proof Set

P := ‖p‖L1(0,+∞),

r0 :=
maxl∈L (‖l‖E + ‖ξ − l‖E ) + m2 maxl∈L ‖ξ − l‖E +

(
2 + 3

m2

)
P

1 −
(

2 + 3
m2

)
Q

and

D := {y ∈ BC1([0,+∞[; E) : ‖y‖BC1 ≤ r0}.
The idea of the proof is to use Theorem 4.3 to ensure the existence of a fixed point y0 for the
multivalued operator T introduced in Lemma 4.4, so that y0 solves the problem (P).

We shall divide the proof into four steps.

Step 1 T maps D to 2D, so that {T y} is uniformly bounded for all y ∈ D.

Proof of Step 1 Let y ∈ D and z ∈ T y be fixed; then, there exists l ∈ L such that

z(t) = l + (ξ − l)e−m2t − 1

m2

+∞∫

t

f (s, y(s))ds

+e−m2t

m2

+∞∫

0

f (s, y(s))ds − e−m2t

m2

t∫

0

em2s f (s, y(s))ds. (4.4)

Then, for fixed t ∈ [0,+∞[,

‖z(t)‖E =
∥
∥
∥
∥l + (ξ − l)e−m2t − 1

m2

+∞∫

t

f (s, y(s))ds

+e−m2t

m2

+∞∫

0

f (s, y(s))ds − e−m2t

m2

t∫

0

em2s f (s, y(s))ds

∥
∥
∥
∥

E
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A compactness result for differentiable functions 415

≤ ‖l‖E + ‖ξ − l‖E + 3

m2

+∞∫

0

‖ f (s, y(s))‖E ds

≤ ‖l‖E + ‖ξ − l‖E + 3

m2

+∞∫

0

(p(s) + r0q(s)) ds

≤ ‖l‖E + ‖ξ − l‖E + 3

m2 (P + Qr0) .

From this last relation, it follows that

‖z‖∞ ≤ ‖l‖E + ‖ξ − l‖E + 3

m2 (P + Qr0) .

Moreover,

‖z′(t)‖E =
∥
∥
∥
∥
∥
∥

m2(l − ξ)e−m2t + e−m2t

t∫

0

em2s f (s, y(s))ds

−e−m2t

+∞∫

0

f (s, y(s))ds

∥
∥
∥
∥
∥
∥

E

≤ m2‖ξ − l‖E + 2

+∞∫

0

‖ f (s, y(s))‖E ds

≤ m2‖ξ − l‖E + 2

+∞∫

0

(p(s) + r0q(s))ds

≤ m2‖ξ − l‖E + 2(P + Qr0),

which implies that

‖z′‖∞ ≤ m2‖ξ − l‖E + 2(P + Qr0). (4.5)

Finally, we get

‖z‖BC1 ≤ max
l∈L

(‖l‖E + ‖ξ − l‖E ) + m2 max
l∈L

‖ξ − l‖E +
(

2 + 3

m2

)

(P + Qr0)

= r0 −
(

2 + 3

m2

)

Qr0 +
(

2 + 3

m2

)

Qr0 = r0

for any z ∈ D. ��
Step 2 For any fixed y ∈ D, T y is compact and convex.

Proof of Step 2 Let (zn)n∈N be a sequence in T y and let (ln)n∈N ⊂ L be such that

zn(t) = ln + (ξ − ln)e−m2t − 1

m2

+∞∫

t

f (s, y(s))ds + e−m2t

m2

+∞∫

0

f (s, y(s))ds

for all t ∈ [0,+∞[.
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416 F. Cianciaruso et al.

Since only the first two terms depend on {ln}, we can rewrite this last expression as

zn(t) = ln + (ξ − ln)e−m2t + (Fy)(t),

where

(Fy)(t) := − 1

m2

+∞∫

t

f (s, y(s))ds + e−m2t

m2

+∞∫

0

f (s, y(s))ds. (4.6)

By compactness assumption on L ,, we may extract a subsequence (lnk )k∈N such that
lim

k→+∞ lnk = l ∈ L , thus obtaining

lim
k→+∞ znk (t) = l + (ξ − l)e−m2t + (Fy)(t) =: z(t) ∈ (T y)(t),

for any fixed t ∈ [0,+∞[. It turns out that

‖znk − z‖BC1 ≤ (2 + m2)‖lnk − l‖E → 0 as k → ∞.

This verifies that T y is compact.
The convexity of T y easily follows from (4.6) and the convexity assumption on L . ��

Step 3 T (D) is relatively compact.

Proof of Step 3 To prove this step, we shall apply Theorem 3.1, i.e., we have to show that

(a) The set A := {z′ : z ∈ T (D)} is relatively compact in BC([0,+∞[; E);
(b) For every ε > 0 there exists M > 0 such that

γBC([M,+∞[;E)

(

(T (D))∣∣[M,+∞[

)

< ε.

(a) Let (zn)n∈N ⊆ T (D), (yn)n∈N ⊆ D and (ln)n∈N ⊆ L be such that

zn(t) = ln + (ξ − ln)e−m2t + (Fyn)(t),

hence

z′
n(t) = m2(ln − ξ)e−m2t + e−m2t

t∫

0

em2s f (s, yn(s))ds − e−m2t

+∞∫

0

f (s, yn(s))ds.

Using Proposition 2.1, we will prove that (z′
n)n∈N is relatively compact in BC([0,+∞[; E).

Note that the boundedness of A follows from Step 1. Moreover, {z′
n, n ∈ N} is equicontin-

uous. Indeed, for fixed ε > 0 and n ∈ N, we have

123



A compactness result for differentiable functions 417

‖z′
n(t1) − z′

n(t2)‖E ≤ m2‖ln − ξ‖E

∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣

+
∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣

t1∫

0

e−m2s‖ f (s, yn(s))‖E ds

+ e−m2t2

∣
∣
∣
∣
∣
∣

t2∫

t1

‖ f (s, yn(s))‖E ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣

+∞∫

0

‖ f (s, yn(s)‖E ds

≤ m2 max
l∈L

‖l − ξ‖E

∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣

+ 2
∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣

+∞∫

0

‖ f (s, yn(s))‖E ds

+
∣
∣
∣
∣
∣
∣

t2∫

t1

‖ f (s, yn(s))‖E ds

∣
∣
∣
∣
∣
∣

≤ m2 max
l∈L

‖l − ξ‖E

∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣

+2
∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣ (P + r0 Q) +

∣
∣
∣
∣
∣
∣

t2∫

t1

(p(s) + r0q(s))ds

∣
∣
∣
∣
∣
∣
.

Set

C := max{m2 max
l∈L

‖l − ξ‖E , 2(P + r0 Q)}

and choose δ > 0 such that, for any t1, t2 ∈ [0,+∞[ with |t1 − t2| < δ, we have

∣
∣
∣e−m2t1 − e−m2t2

∣
∣
∣ <

ε

3C
and

∣
∣
∣
∣
∣
∣

t2∫

t1

(p(s) + r0q(s))ds

∣
∣
∣
∣
∣
∣
<

ε

3
.

Consequently, we obtain

‖z′
n(t1) − z′

n(t2)‖E < ε for all n ∈ N.

Now, we verify the condition (2.1) of Proposition 2.1, that is, for any fixed t0 ∈ [0, 1],
the set {z′

n(t0), n ∈ N} is relatively compact in E . Let α be the Kuratowski measure of
noncompactness. Then, we have

α
({

z′
n(t0), n ∈ N

})

= α

⎛

⎝

⎧
⎨

⎩
m2(ln − ξ)e−m2t0 + e−m2t0

t0∫

0

em2s f (s, yn(s))ds
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−e−m2t0

+∞∫

0

f (s, yn(s))ds, n ∈ N

⎫
⎬

⎭

⎞

⎠

≤ α
({

m2(ln − ξ)e−m2t0 : n ∈ N

})
+ α

⎛

⎝

⎧
⎨

⎩
e−m2t0

t0∫

0

em2s f (s, yn(s))ds : n ∈ N

⎫
⎬

⎭

⎞

⎠

+α

⎛

⎝

⎧
⎨

⎩
e−m2t0

+∞∫

0

f (s, yn(s))ds, n ∈ N

⎫
⎬

⎭

⎞

⎠ .

By compactness of L and Lemma 2.2, we obtain

α
({

z′
n(t0), n ∈ N

})

≤ 2e−m2t0

t0∫

0

α
({

em2s f (s, yn(s)), n ∈ N

})
ds

+ 2e−m2t0

+∞∫

0

α ({ f (s, yn(s)), n ∈ N}) ds

≤ 2e−m2t0

t0∫

0

em2sα
({

f (s, w), w ∈ Br0

})
ds

+ 2e−m2t0

+∞∫

0

α
({

f (s, w),w ∈ Br0

})
ds.

Since by hypothesis α
({

f (t, Br0)
}) = 0 for any t ∈ [0,+∞[, we can conclude that

α
({

z′
n(t0), n ∈ N

}) = 0,

i.e., (z′
n(t0))n∈N is relatively compact in E for any fixed t0.

Finally, from (4.3), it follows that lim
n→+∞ z′

n(t) = 0 uniformly on n.

(b) Let ε > 0 be fixed and l1, . . . , ln be such that L ⊆
n⋃

i=1

B
(

li ,
ε

2

)
. By (4.2), there exists

Mε > 0 such that for any t ≥ Mε

max
l∈L

‖ξ − l‖E e−m2t + 1

m2

+∞∫

t

(p(s) + r0q(s)) ds

+e−m2t

m2

+∞∫

0

(p(s) + r0q(s)) ds + e−m2t

m2

t∫

0

em2s (p(s) + r0q(s)) ds <
ε

2
. (4.7)

Let z ∈ T (D)∣∣[Mε ,+∞[ be fixed and let l ∈ L and y ∈ D be such that

z(t) = l + (ξ − l)e−m2t + (Fy)(t).
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Let i be such that ‖l − li‖E ≤ ε

2
; then for every t ≥ Mε we have

‖z(t) − li‖E ≤ ‖z(t) − l‖E + ‖l − li‖E

< ‖ξ − l‖E e−m2t + 1

m2

+∞∫

t

‖ f (s, y(s))‖E ds

+e−m2t

m2

+∞∫

0

‖ f (s, y(s))‖E ds + e−m2t

m2

t∫

0

em2s‖ f (s, y(s))‖E ds + ε

2

≤ max
l∈L

‖ξ − l‖E e−m2t + 1

m2

+∞∫

t

(p(s) + r0q(s))ds

+e−m2t

m2

+∞∫

0

(p(s) + r0q(s))ds + e−m2t

m2

t∫

0

em2s(p(s) + r0q(s))ds + ε

2
.

Then, from (4.7), it follows that

sup
t∈[Mε ,+∞[

‖z(t) − li‖E < ε,

i.e.,

γBC([Mε ,+∞[;E)

(

(T (D))∣∣[Mε ,+∞[

)

< ε.

��

Step 4 T is upper semicontinuous.

Proof of Step 4 Using Theorem 4.2, we need to show that Graph(T (D)) is closed, that is,
if (yn)n∈N ⊆ D is a sequence converging to an element y ∈ D, (zn)n∈N is a sequence con-
verging to z and such that zn ∈ T yn for any n ∈ N, then z ∈ T y.
For this purpose, let (ln)n∈N such that

zn(t) = ln + (ξ − ln)e−m2t + (Fyn)(t).

Let (lnk )k∈N be a subsequence of (ln)n∈N converging to l ∈ L . Let z̃ ∈ T y be defined by

z̃(t) = l + (ξ − l)e−m2t + (Fy)(t).

We claim that z̃ = z.
To see this, fix ε > 0. Since znk → z by hypothesis, there exists k0 ∈ N such that if

k ≥ k0, then

‖znk − z‖∞ < ε/3. (4.8)

Moreover, by following the proof of Step 2, we can fix k1 ∈ N such that for any k ≥ k1

sup
t∈[0,+∞[

‖lnk + (ξ − lnk )e
−m2t + (Fy)(t) − (l + (ξ − l)e−m2t + (Fy)(t))‖E < ε/3. (4.9)
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On the other hand, for any fixed t ∈ [0,+∞[ and by (4.6), we get

‖(Fyn)(t) − (Fy)(t)‖E

=
∥
∥
∥
∥
∥
∥
− 1

m2

+∞∫

t

f (s, yn(s))ds + e−m2t

m2

+∞∫

0

f (s, yn(s))ds

−
⎛

⎝− 1

m2

+∞∫

t

f (s, y(s))ds + e−m2t

m2

+∞∫

0

f (s, y(s))ds

⎞

⎠

∥
∥
∥
∥
∥
∥

E

≤ 1

m2

+∞∫

t

‖ f (s, yn(s)) − f (s, y(s))‖E ds

+ 1

m2

+∞∫

0

‖ f (s, yn(s)) − f (s, y(s))‖E ds.

It turns out that

‖Fyn − Fy‖∞ ≤ 2

m2 ‖ f (·, yn(·)) − f (·, y(·))‖L1(0,+∞). (4.10)

Note that

lim
k→+∞ f (t, ynk (t)) = f (t, y(t))

and that, by Step 1 and by hypothesis (2)(a), f (·, yn(·)) is dominated by p(·) + r0q(·) ∈
L1(0,+∞). Hence, we can apply the Lebesgue dominated convergence Theorem and (4.10)
to deduce that there exists k2 ∈ N such that

‖Fynk − Fy‖∞ < ε/3, (4.11)

for any k ≥ k2.

To put an end to this step, we observe that if k̄ ≥ max{k0, k1, k2}, then for any k ≥ k̄ and
for any t ∈ [0,+∞[ fixed, we get, by (4.8), (4.9) and (4.11),

‖z(t) − z̃(t)‖E ≤ ‖znk − z‖∞ + ‖znk (t) − z̃(t)‖
≤ ε/3 + sup

t∈[0,+∞[
‖lnk + (ξ − lnk )e

−m2t

+(Fy)(t) − (l + (ξ − l)e−m2t + (Fy)(t))‖E + ‖Fynk − Fy‖∞
< ε.

Since ε > 0 is arbitrary, we get then z = z̃ ∈ T y. ��
To bring us to a conclusion, we observe that Theorem 4.3 ensures the existence of a fixed

point y0 of the multivalued mapping T , and y0 is a solution to the boundary value problem
(P). ��
Remark 4.6 Note that the hypothesis that f (t, Br ) be compact for any choice of t ∈ [0,+∞[
and r > 0 can be weakened by assuming only that f (t, Br0) is compact for any t ∈ [0,+∞[,
where r0 is given in the proof of Theorem 4.5.
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