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THE GEOMETRY OF SYMPLECTIC PAIRS
G. BANDE AND D. KOTSCHICK

ABSTRACT. We study the geometry of manifolds carrying symplecticpadnsisting of two closed
2-forms of constant ranks, whose kernel foliations are cemgintary. Using a variation of the
construction of Boothby and Wang we build contact-symjdeatd contact pairs from symplectic
pairs.

1. INTRODUCTION

A symplectic pair on a smooth manifolt! is a pair of non-trivial closed two-forms;, w-
of constant and complementary ranks, for whighrestricts as a symplectic form to the leaves
of the kernel foliation otu,, and vice versa. This definition is analogous to that of admpairs
and of contact-symplectic pairs introduced by the first aufi, [2]. In this paper we exhibit
several constructions of symplectic pairs on closed matsfaand use them to show that even
in dimension four there is a surprisingly rich supply of exdes, with very different geometric
features. One reason why this is suprising is that it seemtsnibt many explicit examples are
known of closed four-manifolds which admit pairs of comp&tary two-dimensional foliations.
It was only recently that Morita and the second author coegtid certain interesting examples
within the class of foliated bundles, ci._]17]. Another reasvhy the plethora of symplectic
pairs (w1, ws) on closed four-manifolds is surprising is that they giveerie symplectic forms
w1 = wy £ wy compatible with different orientations a@f/. It is known that manifolds which are
symplectic for both choices of orientation, or just have Htivial Seiberg—Witten invariants for
both orientations, are rather special, see for example [15]

On a four-manifold a symplectic paift;,ws) can be equivalently defined by two symplectic
formsw, with the propertiess, Aw_ = 0andw, Aw, = —w_ Aw_. If we were to change the
sign in the last condition ta, A w, = w_ A w_, we would obtain the definition of a conformal
symplectic couple in the sense of Geidges [9], who gave a ceteplassification of the diffeomor-
phism types of four-manifolds which admit such couples. Wesege that symplectic pairs, whose
definition is very similar, are much more common than confdreymplectic couples.

While we believe that this paper shows symplectic pairs tonberesting geometric objects in
their own right, the original motivation for this work cam®in two other sources. Firstly, sym-
plectic pairs appear naturally in the study of Riemanniatriggefor which all products of harmonic
forms are harmonic, see [16], and in the investigation oftfo&ip cohomology of symplectomor-
phism groups, seé [17]. Secondly, symplectic pairs can bd ts construct new examples of
contact-symplectic and of contact pairs in the sensgl 6f,|/4].2n Sectiof 2 we show how a vari-
ation of the classical Boothby—Wang construction [6] aBosne to construct contact-symplectic
pairs from symplectic pairs for which, represents an integral conomology clas&fnand contact
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pairs from contact-symplectic pairs in which the leafwigenplectic form represents an integral
cohomology class. In particular, if we have a symplectic fii which bothw; represent integral
classes, then the fiber product of the corresponding BoethMayg fibrations yields a contact pair
on a principall-bundle over\!.

In Sectior B we give several constructions of symplecticp&@onsidering their Boothby—Wang
fibrations one obtains many new examples of contact-syripland of contact pairs which go
beyond the examples exhibited I [1[2, 4]. In Seclibn 4 wdy®iemannian metrics compatible
with a symplectic pair, and in Secti@h 5 we give some furthpgligations of our constructions.

In a sequel to this paper written jointly with Ghiggihi [3]eviormulate and prove the appropriate
adaptation of Moser’s theorein J20] for symplectic pairs.

2. THE BOOTHBY—WANG CONSTRUCTION

Let (M, w) be a closed symplectic manifold. After a small perturbatiod multiplication by a
constant we may assume thatepresents an integral classhff(M;R). Letr: £ — M be the
principal S*-bundle with Euler clasgv]. There is a connectionform « on this circle bundle with
curvaturew, i. e. we havela = 7*w. Asw is assumed to be symplectic a#, it follows thata is
a contact form on the total spaée This is the construction of Boothby and Wah{ [6] assoctatin
so-called regular contact forms to integral symplectiofer

Now if w is an arbitrary closed-form representing an integral conomology class, we caimaga
find a connection-form « with curvaturev, because every clos@dform representing an integral
class is the curvature of some connectionw Ihas constant rankk, then it follows thate has
constant clasgk + 1, meaninga A (da)* # 0, and (da)**! = 0. Recall the definition of a
contact-symplectic pair:

Definition 1 ([1[2]). A contact-symplectic pair on a manifold consists of d-form « of constant
class2k + 1 and a close@-form 3 of constant rank/ such that the kernel foliations ef A (da)*
and of 3 are complementary restricts as a contact form to the leaves of the kernel fohatf 3,
andj3 restricts as a symplectic form to the leaves of the kernatioh of o A (da)*.

Note that the kernel distributions are integrable becausddrmsg anda A (da)* are closed.
The assumption that the kernel foliations are complemgirgslies that the dimension ¥ must
be2k + 20 + 1.

Our discussion above immediately yields the following:

Theorem 2. Let M be a closed manifold with a symplectic péir;, w»). If [wi] € H*(M;R) is an
integral cohomology class, then the total space of theeipeindler: £ — M with Euler class
[wy] carries a natural contact-symplectic pair.

Indeed, ifa is a connection form with curvatutg andg = 7*ws,, then all the required properties
are satisfied.

Note that if 7; denotes the kernel foliation af;, then in the above construction the classical
Boothby—Wang construction is performed leafwise over dawés ofF,, to whichw, restricts as
an integral symplectic form. OR the kernel foliation of3 = 7*w, consists of the circle bundles
over the leaves aF,, whereas the kernel foliation of A (da)* is complementary and obtained by
lifting the leaves ofF; to the horizontal subspaces for the connection

Next recall the definition of a contact pair:



THE GEOMETRY OF SYMPLECTIC PAIRS 3

Definition 3 ([1,4]). A contact pair on a manifold’ consists of a pair of-forms(«;, ) of constant
class2k + 1 and2l + 1 respectively, such that the kernel foliationscof\ (da)* and ofy A (dy)!
are complementaryy restricts as a contact form to the leaves of the kernel foliadf v A (dv)!,
and- restricts as a contact form to the leaves of the kernel fotiatf o A (do)*.

Again the kernel distributions are integrable because #fmidg forms are closed. The as-
sumption that the kernel foliations are complementary iegpthat the dimension oV must be
2k + 21 + 2.

Our discussion above yields the following:

Theorem 4. Let M be a closed manifold with a contact-symplectic gair3). If [3] € H*(M;R)
is an integral cohomology class, then the total space of ttodecbundler: £ — M with Euler
class[f] carries a natural contact pair.

Indeed, ify is a connection form with curvature and we identifya, with its pullback underr,
then all the required properties are satisfied.
Finally, combining Theorenid 2 afil 4, we obtain:

Corollary 5. If a closed manifold/ has a symplectic paifw; , w-) such that bothw;] € H?(M;R)
are integral, then the fiber product of the two circle bundiéth Euler classes equal tos;| and
[wo] respectively carries a natural contact pair.

An important difference between this leafwise Boothby—@/aonstruction and the classical
one is that we cannot perturb the defining forms in a sympuigetir so as to make them ratiohal
because one cannot control the rank under such perturbatidrerefore, we will check in each
example of a symplectic pair we construct in the next sectidrether the defining forms represent
integral cohnomology classes.

3. CONSTRUCTIONS OF SYMPLECTIC PAIRS

The most obvious examples of symplectic pairs are of coms@yats of symplectic manifolds
with the induced split symplectic forms. In this case one ghwiously choose the forms; to
represent integral classes.

We now discuss non-trival sources of examples.

3.1. Flat bundles with symplectic total holonomy. Let (B, wg) and(F, wr) be closed symplec-
tic manifolds, anth: m;(B) — Symp(F,wr) a representation of the fundamental groupsoin
the group of symplectomorphisms(@f, wr). The suspension gfdefines a horizontal foliation on
the fiber bundler: M/ — B with fiber F' and total spac@/ = (B x F)/x,(B), wherer,(B) acts
on B by covering transformations and éhvia p. As the image op preserves the symplectic form
wr, the pullback of this form to the produét x F descends td/ as a closed form of constant
rank, whose kernel foliation is exactly the horizontal&ilon complementary to the fibers. Pulling
backwp to the total spac@/ we obtain another closed form of constant rank, which is anohefi
form for the vertical foliation whose leaves are the fibertheffibration. As the two foliations are
complementary by construction, the forms andr*wpz form a symplectic pair o/ .

Note that if we choose s to be integral, then so is its pullback. kor checking integrality is
more subtle. In particular, it turns out that starting withiategral form onF', though necessary,
is not usually sufficient.

land integral after multiplication with a constant
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A special case of the above construction is given by takinggles symplectic diffeomorphism
¢ € Symp(F, wr), and forming the product of its mapping torlis, with S*. If ¢ is isotopic to the
identity through symplectomorphismas, with ¢, = ¢ andy, = Idp, thenM,, is diffeomorphic to
F x S' by a diffeomorphism encoding the isotopy. It was proved imbea 8 of [17] that under this
diffeomorphism, the cohomology clagsy| € H?*(M,) corresponds tqur] + Fluz(p,) @ v €
H?*(F) & (H'(F) ® H'(S")), wherev is the fundamental cohomology class $f. Thus, the
cohomology class af» on such a symplectic mapping torus is integral if and only/lifix(p,) is
an integral class i/ (F).

While symplectic mapping tori have a rather simple topolagyermined completely by, there
are more complicated flat bundles with symplectic total holay which exhibit more complex
topology. For example, in the simplest possible case, witeend F' are both2-dimensional,
Kotschick and Morital[1l7] proved the following:

Theorem 6 ([17]). For everyg > 3 there exist foliated oriented surface bundtes’ — B over
closed oriented surfaceB with fibers F' of genusg, which have non-zero signature and whose
total holonomy group is contained in the symplectomorphyjsupSymp(F, wr) with respect to a
prescribed symplectic formy on F. In fact, one can restrict the holonomy to beSiyamp(F'; D?),

the group of compactly supported symplectomorphisnis\of)?.

The first part is Theorem 1 in[L7], whereas the addendumicésty to symplectomorphisms
relative to an embedded disk follows from the proof of Theor@ in [14]. This addendum is
useful for the construction of further symplectic pairse[8e2 below, because it implies that the
4-manifold M in the statement of the theorem contains a product neighlood)? x B to which
the symplectic pairs restrict in the obvious way, so thattihe foliations are given byD? x {x}
and by{x} x B. In particular, the horizontal foliation has an open setlo$ed leaves.

Remark?7. If the base manifoldB is not just symplectic, but has a symplectic pair, then any
flat bundle overB with symplectic total holonomy inherits something we mayunally call a
symplectic triple. From this one can combine several diffiéisymplectic pairs. The same remark
applies if the total holonomy preserves a symplectic paitherfiberF'.

Foliated bundles can also be used to construct contactiegtigpand contact pairs directly.
For example, ifB carries a contact or symplectic structure and the image afraomorphism
p: m(B) — Diff(F) preserves a contact form dn, thenM = (B x F)/m (B) obtained by
suspending inherits a contact or contact-symplectic pair.

3.2. The Gompf sum for symplectic pairs. Gompf [11] has shown that symplectic manifolds
with closed symplectic submanifolds of codimensbadmit certain cut-and-paste constructions
which build new symplectic manifolds out of old ones. Supptsat();,w;) and(M;, ws) are
closed symplectic manifolds of dimensi@n admitting symplectic submanifolds; C M; of
codimensior2 with trivial normal bundles, and such thef,, w;) and (3,,w,) are symplecto-
morphic. Then by the symplectic tubular neighbourhood rtaeothey have symplectomorphic
neighbourhoods. In this situatidd; \ >; andM; \ ¥, can be glued together symplectically along
punctured tubular neighbourhoods of tie The gluing map turns a punctured normal disk inside
out symplectically.

This construction sometimes works for manifolds with syaapic pairs if one of the foliations
has codimensio2 and has an open set of compact leaves. (Mét, w;,ws) and (M, n;,72) be
closed manifolds of dimensio2w. with symplectic pairs for whichrk(w,) = rk(n) = 2n —
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2. Suppose that the kernel foliatiods of wy, and 5, of 1, each have closed leaveg and
Y, respectively, such that our symplectic pairs admit prodticictures in open neighbourhoods
of the 3J;. This means that we assume that has an open neighbourhodd C M; which is
diffeomorphic toX; x D? in such a way that, |y, = 7} (wi|x,) andws|y, = 35 (ws|p2), where
ther; are the projections to the factors; and similarly ¥or C M,. Then we may assume without
further loss of generality that,| 52 andn,|p2 coincide with the standard area foria A dy on the
disk. Suppose further that there is a symplectomorphism

fr(Zw) — (B2,m)

Then the Gompf sumi/, 4, M, of the M, along the submanifolds; carries a natural symplectic
pair.

As in Gompf’s original construction [11], the assumptions particularly easy to verify when
the M, are 4-dimensional. In this case; andn; are volume forms on th&; and, by Moser’s
theorem|[20], a symplectomorphisfras above exists as soon¥sandy, have the same genus

and
/ w1:/ m -
1 Yo

We can use the flat bundles in TheorEm 6 as building blockshinGompf sum, because, by
construction, their horizontal foliations have productstures on an open set. For the vertical
foliations we trivially have product structures around gvigber. Performing the Gompf sum of
symplectic pairs by matching fibers with fibers or sectfamish sections does not lead to any new
examples. However, taking a flat bundle over a surface of ggnand another one with fibers
of genusg, we can, after scaling one of tReforms involved by a constant, perform the sum of
symplectic pairs matching a fiber in one fibration with thetieecin the other fibration. This gives
new examples of manifolds admitting symplectic pairs whaichnot surface bundles over surfaces.

3.3. Four-dimensional Thurston geometries.A geometry in the sense of Thurston consists of
a model spaceX which is a simply connected complete Riemannian manifaldether with a
groupG of effective isometries acting transitively and admittagiscrete subgroup for which

the quotient spac&’/I" is a compact smooth manifold. Such compact quotients adeteadmit

a Thurston geometry of typeX, G).

The four-dimensional Thurston geometries have been @ed$ly Filipkiewicz (unpublished).
We refer the reader to Wall's papers[27] 28] for an accoumhigfclassification. We now want to
show that for some of these geometries there are natunaariant symplectic pairs on the model
spaces, which then descend to all compact quotients. Asstimeetries we consider preserve a
symplectic structure, they are orientation-preserving.

Example 8. Consider the model spacg$xR?, S% xH?, R? x H? with the product metrics obtained
from the standard constant curvature metrics on the fadiotkis case any isometry preserves the
local product structure, and its factors. In the maximablgrof orientation-preserving isometries
those which preserve a pair of given orientations on thefadbrm a subgrougr of index2. The
volume forms of the metrics on the factors then ford-&nvariant symplectic pair oiX.

Example 9. The discussion in the previous example applies to the maubdesS? x S? and
H? x H?, except that these also admit isometries interchangingtbéactors.

2_ closed leaves of the horizontal foliations
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Example 10. The model spacB* with its standard flat metric has as its compact quotientfiahe
Riemanniant-manifolds /. If such a manifold is orientable, thén(A/) > 0. It is known that
bi(M) < 4, with equality if and only ifM is diffeomorphic tol™, and thab, (M) # 3. Moreover,

if by(M) = 1, then the vanishing of the Euler characteristic shows k@t/) = 0, so that)M/
cannot be symplectic. Thus the only interesting case is whiell) = 2. The classification of flat
4-manifolds in [IB[25] shows that in the cag¢)/) = 2 they are all quotients dk* by isometry
groups preserving a product structiiex R?, and acting on each factor preserving its orientation.
In a different guise, this statement appears in the claasiic of compact complex surfaces, where
these particular flat Riemannian manifolds appear as seedayperelliptié sufaces, se€][5] p. 148.
They are in fact quotients of products of elliptic curves tBefdiagonal actions of finite groups of
holomorphic automorphisms. Thus they carry natural syoigairs.

Example 11. Consider the model spacé = Sol? x R with its maximally symmetric product
metric. Then the maximal connected isometry gr@tpis also Sol®> x R, acting on itself by
left multiplication, cf. [25] p. 518/19. This Lie group adtsia parallelization by left-invariant one-
formsay, ..., as With day = oy Aoy, das = g Aas, das = day = 0. It follows thatw; = a1 Aas
andw, = as A ay form a left-invariant symplectic pair.

Example 12. Consider the model spacé = Nil* with its maximally symmetric metric. Then
again the maximal connected isometry grdatpcoincides withX, acting on itself by left mul-
tiplication, cf. [25] p. 518. This Lie group admits a paréitation by left-invariant one-forms
o1,...,04 with doy = a1 A oy, dOég =y Aoy, do; = doy = 0. 1t follows thatwl = a1 N\ Qo and
we = ag A ay form a left-invariant symplectic pair.

Example 13. Consider the model spacé = Nil® x R with its maximally symmetric product
metric. This Lie group admits a parallelization by left@mant one-formsyy, . .., ay with dag =

a; A ag andday = day = day = 0. It follows thatw, = a1 A az andw, = ay A a4 form

a left-invariant symplectic pair. In this case the maximahiwected group of isometries is larger
than Nil® x R, because it contains the rotations in the plane spanned, landa,. But these
rotations do not preserve the symplectic pair.

It turns out that the remaining Thurston geometries do nppstt any symplectic pairs:

Theorem 14.The model space$', CP%, H*, CH?, PSLy(R) xR, H? xR, S xR, Solg, Sol} and
Sol,, With m # n with their standard metrics do not admit any transitive guswf isometries
containing cocompact lattices which also preserve a syatigleair.

We have formulated the theorem in such a way that it coversmmaximal geometries in the
sense ofl[27, 28], i. e. we rule out symplectic pairs invarnarder transitive subgroups which need
not be the maximal isometry groups.

Proof. We proceed case-by-case. The four-sphere admits no sytioeacture, and so is ruled
out. Any compact quotient &f® x R is finitely covered bys® x S*, and so admits no symplectic
structure.

The complex projective plane does admit a symplectic siractbut its tangent bundle has
no decomposition into a direct sum of two oriented plane besd (This is equivalent to the
well-known fact thatC P? endowed with the non-complex orientation admits no alntostplex
structure.) Thu€ P? is also ruled out. Concerning its non-compact dilal?, Wall [28] proved

3These surfaces are sometimes called bielliptic, becaegdhve two different elliptic fibrations.
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that the isotropy subgroup of any transitive isometry gradmitting a cocompact lattice contains
U(2). As this does not preserve any splitting®f into a direct sum of proper subspac€y/>
cannot carry any invariant symplectic pair.

This last argument also applies to the geometiiésandH? x R. In these cases the isotropy
subgroup of any transitive isometry group admitting a cogaat lattice contain§O(4) respec-
tively SO(3). These groups do not preserve any splittin@Réfinto a direct sum of-dimensional
subspaces.

Finally, for the Lie group geometrieBSLy(R) x R, Solj, Sol} and Sol,, , with m # n, any
transitive isometry group must contain the Lie group itsatting by left multiplication. However,
in these cases it is easy to check using the structure casgtgd@7] that there are no left-invariant
symplectic forms, cf[]12]. O

4. COMPATIBLE METRICS

In this section we clarify the metric properties of sympilegairs. As a first step, we have the
following:

Proposition 15. Let M be a manifold endowed with two smooth complementary fohatF and
G which admit closed defining forms. Then there are Riemammigtnicsg on M for which 7 and
G are orthogonal and have minimal leaves.

Proof. This is a consequence of the minimality criterion of Rumnaled Sullivan, see [10], page
371/372. Given an arbitrary foliatiaA with leaves of dimensiod and a form of degreé which
is relatively closed fotF and restricts as a volume form to the leavesffone can construct
metricsg making the leaves of minimal, and such that the givehform is the volume form of
the restricted metric. These metriggan be chosen to make the kernel of thform orthogonal
to F, and the restriction to this orthogonal complement is eabjt

Suppose thafF = Ker(a) andGg = Ker(f), with « and S closed and of degrees equal to
the codimensions o and g respectively. AsF andg are assumed to be complementary,
is a leafwise volume form o and g is a leafwise volume form otF. Define a metrigy by
requiring 7’ F andT'G to be orthogonal, and choosingalong F so thatg is the Riemannian
volume form ofg|T'F, and choosing alongg so thatx is the Riemannian volume form gf7'G.
These requirements clearly underdetermine the metric,aagdsuch metric has all the desired
properties. U

Corollary 16. A manifold endowed with a symplectic, contact-symplectmoatact pair admits
metrics for which the characteristic foliations are ortlmwal with minimal leaves.

In many of the examples constructed above there are methahwvn addition to making the
foliations orthogonal with minimal leaves have further dqgaroperties. For example, the flat
bundles always have metrics for which the vertical foliatis Riemannian and the horizontal
foliation has totally geodesic leaves. The following tresarshows that a general symplectic pair
does not admit any metric with properties more restrictiantthe ones specified in Corolldry 16.

Theorem 17. There are symplectic pairs on closed four-manifolds foraktboth foliations are
not geodesible and not Riemannian.

Proof. Consider foliated surface bundldg over surfaces with symplectic total holonomy. The
normal bundle of the horizontal foliation is the tangent dienalong the fibers, and its first Pon-
tryagin number is three times the signatufé/), because the Pontryagin number of the tangent



8 G. BANDE AND D. KOTSCHICK

bundle of the horizontal foliation vanishes. If the sigmatis non-zero, then Pasternack’s re-
finement [21] of the Bott vanishing theorem for Riemanniaratmns implies that the horizontal
foliation is not Riemannian. To see this, recall that forRa&mnian foliations Pasternack shows
that the Pontryagin numbers of the normal bundle vanish gnesdss strictly larger than the codi-
mension of the foliation, which improves the range of vammgtin Bott's theorem by a factor of
two. In our situation this means that the first Pontryagin hanof the normal bundle, which is in
degreel, vanishes, as the codimension equals

Now take two such foliated bundles/; and M,. By Theorenfb we can choose both of them
with non-zero signature, such that the base genug,afquals the fiber genus 6f,, and such that
the horizontal foliation inV/; has an open set of compact leaves with trivial normal burigée )M/
be the Gompf sum/, s M,, where a section it/ is identified with a fiber inl/;, as discussed in
Subsectiofi 312 above. This suvh carries an induced symplectic pair, and it is clear thatbthe
first Pontryagin number of both 7 andT'G is non-zero, because we have chosen Bdtho have
non-zero signature. Note that each of these bundles is tlmeahdundle for the complementary
foliation. Thus neither of the two foliations can be Riemiamn by Pasternack’s theorem[21].

Suppose now that in/ one of the foliations, say, is geodesible. If a metric making totally
geodesic also makes it orthogonalGpthen the duality theorem for totally geodesic and bundle-
like foliations implies thatj is Riemannian, seé [10] p. 190. This is a contradiction.

Next assume that we can choose a megrior which F is totally geodesic, without assuming
that its orthogonal complementgs Cairns and Ghy$[7] have shown that for any two-dimensional
geodesible foliation on &manifold we may choosg¢to make the leaves both totally geodesic and
of constant Gaussian curvature. &shas closed leaves of genus2, the constant curvature is
negative. Another result of[7] then tells us that therthogonal complementF+ is integrable,
and defines a foliatiof{ (which may be different frong). By the duality theoremy is bundle-like
for H. ButH has normal bundl&' F, which has non-zero first Pontryagin number, and so we again
have a contradiction with Pasternack’s theorem. U

There are special cases of symplectic pairs for which it ssfide to find a metric which makes
the two foliations orthogonal and totally geodesic, forrapée the Thurston geometries which are
products of two-dimensional geometries. When performiBgathby—Wang construction on such
an example one can choose a submersion metric on the total sféch also has the property that
the foliations of the contact-symplectic pair are orthogjand totally geodesic. This will be used
in Subsectiof 512 below.

5. SOME APPLICATIONS

5.1. Torus-bundles over the torus. We now want to prove the following:

Theorem 18. Every orientedl™>-bundle overl™” admits a symplectic paifw, , w,) for which the
cohomology classes of the are integral.

This can be seen as generalizing a result of Geldes [8], winefdrthat these manifolds admit
symplectic structures. His proof, like ours, depends ircthssification off2-bundles oveil™ due
to Sakamoto and Fukuhafa[22], and on the fact that all thesgfolds carry compatible Thurston
geometries, cf[[25].

Proof. The classification of orientabl&?-bundles ovefl? is summarized in the table in the ap-
pendix. We will proceed case-by-case and use the informafiicen in the table. In case (a), for
the four-torus, the claim is trivial.
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Case (b) consists of manifolds with Thurston geomeétiy® x R. As the first Betti number
equals3, these manifolds are nilmanifolds (rather than infranihifi@ds), i. e. they are quotients
of our Lie group by lattices in the group itself acting by letinslations, cf.[[14] p. 170. We saw
in ExampleIB that there is a left-invariant symplectic mairthe group. Thus this descends to all
manifolds under discussion here.

In case (c) we have the flat orientable four-manifolds with= 2. These have symplectic pairs
by ExampleéID.

Case (d) consists of manifolds with Thurston geomeéfiy’. As their first Betti number equals
2, these manifolds are nilmanifolds (rather than infranilnifads), cf. [14] p. 170. We saw in
Example[IP that there is a left-invariant symplectic pairtioe group. Thus this descends to all
manifolds under discussion in this case.

Cases (e) and (f) consist of infranil manifolds for the grovi® x R. As we do not have a
symplectic pair on the model space invariant under the follig of orientation-preserving isome-
tries, we argue instead as [ [8]. Geig€s [8] showed thatifyéry the model space witlR* with
coordinatesz, y, z, t), the two-formsiy A dt anddx A dz — zdz A dy are invariant under the lattices
arising as fundamental groups in this case. Clearly theglased of constant rank equal2pand
their wedge product is a volume form. Thus they give rise tpraggectic pair.

Cases (g) and (h) consist of manifolds with Thurston geomgti® x R. It was shown in[[B]
that identifying the model space witk! with coordinategz, y, z, ), the two-formsdz A dy and
dz A dt are invariant under the lattices arising as fundamentalggoThey are closed of constant
rank equal t@, and their wedge product is a volume form. Thus they givetdsesymplectic pair.

It remains to address the integrality of the cohomologysdasof the forms involved. This
can trivially be arranged in the case’Bf. For the nilmanifolds ofVil® x R the integrality of the
cohomology classes for the symplectic pair we have extuliée be checked by direct calculation,
or using [8]. For the remaining cases, (c) — (h), we give aarmfargument as follows. All
T2-bundles ovefl™ have vanishing Euler characteristic and signature. Thezeff b, = 2, we
conclude thab, = 2, and the intersection form is indefinite. Thug?(M;R) equipped with
the cup product form is hyperbolic, and the classes of squianake up the light cone. For a
symplectic pair the classés;| have square zero and, | - [ws] # 0, thus they span the light cone.
It follows that after constant rescaling these classesraiegiial. O

5.2. Irreducible quotients of the polydisk. For our final application we return to the Thurston
geometry with model spadé? x H?, which we discussed briefly in Examfle 9. The connected
component of the identity in the isometry groupii$ L,(R) x PSL,(R), acting on the model
space preserving the symplectic pair formed by the volumeso,;, andw, of the hyperbolic
metrics on the factors. Note that the product metridinx H? is Kahler for both choices of
orientation, with Kahler forms); & ws.

It is well known that there are irreducible cocompact la$ic C PSLs(R) x PSLs(R), where
by irreducibility we mean thal' is not commensurate to a product of latticedif L, (R). While
the existence of irreducible lattices can be deduced froenaigl theorem due to Borel, there are
actually explicit constructions in this case due to Kuga[s}) and Shavel[23] using the theory of
quadratic forms. The quotientdl*> x H?)/T" are compact complex-algebraic surfaces of general
type with Kahler class); + w, (up to scale, the sign depending on the choice of orientstidh
follows that thew; represent integral classes in cohomology.
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These irreducible quotients of the polydisk have alreaddnhesed to exhibit various interesting
phenomena in both differential and algebraic geometrji/cP4]. Here we shall add one more, in
the form of the following result:

Proposition 19. There exist closed-manifolds)M with two complementary foliations and a Rie-
mannian metric for which the foliations are orthogonal anthlly geodesic, and such thaf does
not admit any finite cover by a product of manifolds of styistinaller dimension.

Proof. Let X be the quotient of the polydisk by a torsion-free irredueittbcompact latticg. This
carries two complementary foliations which are orthog@mal totally geodesic with respect to the
metric induced from the product metric on the universal cioxg

As the cohomology class of the foray is integral, we can perform the leafwise Boothby—
Wang construction of Sectidd 2 to obtain a closed manifdidwhich is the total space of the
corresponding circle bundle ov&r. On M we obtain a contact-symplectic pair, and a metric for
which the two foliations are orthogonal and totally geodesh fact, the Riemannian universal

covering of M is isometric to the direct produgf® x PSL,(R), where we think ofPSL,(R) as
the universal covering of the unit tangent bundIéiBf

It remains to prove that/ does not have any finite covering which splits as a directycbdf
two manifolds of positive dimension. Now it is known thdt has vanishing first Betti number,
seel[23], and therefor&/ also has vanishing first Betti number by the Gysin sequentteedfircle
fibration. Itis easy to see that the same conclusion mustfbolhy finite covering of\/. Thus, no
such covering can split off a circle, and if itis homotopy eqient to a product of a-manifold and
a 3-manifold, then these factors must be real homology sph@&ygshe classification of surfaces
the 2-dimensional factor is thef?, contradicting the fact that/ and all its finite coverings are
aspherical. O

Remark20. Note that we have excluded all splittings of finite coveringg/, without assuming
that they are induced by the foliations.

Remark21. Propositior[_IP answers a question of Matveev [19], relabeloig work in [18]. He
noted that in dimensiorisand3 every closed Riemannian manifold with a local product strec
given by a pair of orthogonal totally geodesic foliationsrais a finite covering which is a genuine
product (not necessarily induced by the foliations). Inelirsiond this result is false because of the
existence of irreducible quotients of the polydisk, andilsimexamples exist also in dimensions
> 6.

Acknowledgement: We are grateful to N. ACampo for having pointed out the oaprin our
interests, which led to the present collaboration.
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APPENDIX. ORIENTABLE T?-BUNDLES OVERT?

The following table summarizes the classification of oridahe 72-bundles overl™ due to
Sakamoto and Fukuhaia]22], and the information about fHairston geometries due to Ue [25],
compare alsa8].

b, | Monodromyé& Euler class Geometry|
@1 4{,1,(00)}=1" R?
(b) | 3| {Z.1. (m,n)}, (m,n) # (0,0) Nil® x R
©24(" ,I,<0,0>} RS

0 —1
1 —1 7[7(_170)}
0 —1
!0 ) o)
0 —1
1 O 7[7(_170)}
1 -1
L) oo}
{-1,1,(0,0)}
{_]717(_17())}
@2|1(, i\),],(m,n)},A#O,n#O Nilt
©] 2 {(51 _i ,1,(m,n)},A7éo Nil® x R
M| 2 {(é i‘),—[,(m,n)},)\#o Nil® x R
@ | 2|{C,I,(m,n)},|trC| > 3,C € SLy(Z) | Sol®> x R
(h)| 2 | {C,—1I,(m,n)},trC > 3,C € SLy(Z) | Sol®> x R

The given matrices describe the monodromy correspondititettwo generators of, (7?) = 72,
and the pairs of integefsn, n) represent the Euler class.
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