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THE GEOMETRY OF SYMPLECTIC PAIRS

G. BANDE AND D. KOTSCHICK

ABSTRACT. We study the geometry of manifolds carrying symplectic pairs consisting of two closed
2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the
construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic
pairs.

1. INTRODUCTION

A symplectic pair on a smooth manifoldM is a pair of non-trivial closed two-formsω1, ω2

of constant and complementary ranks, for whichω1 restricts as a symplectic form to the leaves
of the kernel foliation ofω2, and vice versa. This definition is analogous to that of contact pairs
and of contact-symplectic pairs introduced by the first author [1, 2]. In this paper we exhibit
several constructions of symplectic pairs on closed manifolds, and use them to show that even
in dimension four there is a surprisingly rich supply of examples, with very different geometric
features. One reason why this is suprising is that it seems that not many explicit examples are
known of closed four-manifolds which admit pairs of complementary two-dimensional foliations.
It was only recently that Morita and the second author constructed certain interesting examples
within the class of foliated bundles, cf. [17]. Another reason why the plethora of symplectic
pairs (ω1, ω2) on closed four-manifolds is surprising is that they give rise to symplectic forms
ω± = ω1 ± ω2 compatible with different orientations ofM . It is known that manifolds which are
symplectic for both choices of orientation, or just have non-trivial Seiberg–Witten invariants for
both orientations, are rather special, see for example [15].

On a four-manifold a symplectic pair(ω1, ω2) can be equivalently defined by two symplectic
formsω± with the propertiesω+ ∧ ω− = 0 andω+ ∧ ω+ = −ω− ∧ ω−. If we were to change the
sign in the last condition toω+ ∧ ω+ = ω− ∧ ω−, we would obtain the definition of a conformal
symplectic couple in the sense of Geiges [9], who gave a complete classification of the diffeomor-
phism types of four-manifolds which admit such couples. We will see that symplectic pairs, whose
definition is very similar, are much more common than conformal symplectic couples.

While we believe that this paper shows symplectic pairs to beinteresting geometric objects in
their own right, the original motivation for this work came from two other sources. Firstly, sym-
plectic pairs appear naturally in the study of Riemannian metrics for which all products of harmonic
forms are harmonic, see [16], and in the investigation of thegroup cohomology of symplectomor-
phism groups, see [17]. Secondly, symplectic pairs can be used to construct new examples of
contact-symplectic and of contact pairs in the sense of [1, 2, 4]. In Section 2 we show how a vari-
ation of the classical Boothby–Wang construction [6] allows one to construct contact-symplectic
pairs from symplectic pairs for whichω1 represents an integral cohomology class inM , and contact
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pairs from contact-symplectic pairs in which the leafwise symplectic form represents an integral
cohomology class. In particular, if we have a symplectic pair for which bothωi represent integral
classes, then the fiber product of the corresponding Boothby–Wang fibrations yields a contact pair
on a principalT 2-bundle overM .

In Section 3 we give several constructions of symplectic pairs. Considering their Boothby–Wang
fibrations one obtains many new examples of contact-symplectic and of contact pairs which go
beyond the examples exhibited in [1, 2, 4]. In Section 4 we study Riemannian metrics compatible
with a symplectic pair, and in Section 5 we give some further applications of our constructions.

In a sequel to this paper written jointly with Ghiggini [3], we formulate and prove the appropriate
adaptation of Moser’s theorem [20] for symplectic pairs.

2. THE BOOTHBY–WANG CONSTRUCTION

Let (M,ω) be a closed symplectic manifold. After a small perturbationand multiplication by a
constant we may assume thatω represents an integral class inH2(M ;R). Let π : E → M be the
principalS1-bundle with Euler class[ω]. There is a connection1-formα on this circle bundle with
curvatureω, i. e. we havedα = π∗ω. Asω is assumed to be symplectic onM , it follows thatα is
a contact form on the total spaceE. This is the construction of Boothby and Wang [6] associating
so-called regular contact forms to integral symplectic forms.

Now if ω is an arbitrary closed2-form representing an integral cohomology class, we can again
find a connection1-formα with curvatureω, because every closed2-form representing an integral
class is the curvature of some connection. Ifω has constant rank2k, then it follows thatα has
constant class2k + 1, meaningα ∧ (dα)k 6= 0, and (dα)k+1 ≡ 0. Recall the definition of a
contact-symplectic pair:

Definition 1 ([1, 2]). A contact-symplectic pair on a manifoldN consists of a1-formα of constant
class2k + 1 and a closed2-form β of constant rank2l such that the kernel foliations ofα ∧ (dα)k

and ofβ are complementary,α restricts as a contact form to the leaves of the kernel foliation of β,
andβ restricts as a symplectic form to the leaves of the kernel foliation ofα ∧ (dα)k.

Note that the kernel distributions are integrable because the formsβ andα ∧ (dα)k are closed.
The assumption that the kernel foliations are complementary implies that the dimension ofN must
be2k + 2l + 1.

Our discussion above immediately yields the following:

Theorem 2. LetM be a closed manifold with a symplectic pair(ω1, ω2). If [ω1] ∈ H2(M ;R) is an
integral cohomology class, then the total space of the circle bundleπ : E → M with Euler class
[ω1] carries a natural contact-symplectic pair.

Indeed, ifα is a connection form with curvatureω1 andβ = π∗ω2, then all the required properties
are satisfied.

Note that ifFi denotes the kernel foliation ofωi, then in the above construction the classical
Boothby–Wang construction is performed leafwise over the leaves ofF2, to whichω1 restricts as
an integral symplectic form. OnE the kernel foliation ofβ = π∗ω2 consists of the circle bundles
over the leaves ofF2, whereas the kernel foliation ofα∧ (dα)k is complementary and obtained by
lifting the leaves ofF1 to the horizontal subspaces for the connectionα.

Next recall the definition of a contact pair:
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Definition 3 ([1, 4]). A contact pair on a manifoldN consists of a pair of1-forms(α, γ) of constant
class2k + 1 and2l + 1 respectively, such that the kernel foliations ofα ∧ (dα)k and ofγ ∧ (dγ)l

are complementary,α restricts as a contact form to the leaves of the kernel foliation of γ ∧ (dγ)l,
andγ restricts as a contact form to the leaves of the kernel foliation of α ∧ (dα)k.

Again the kernel distributions are integrable because the defining forms are closed. The as-
sumption that the kernel foliations are complementary implies that the dimension ofN must be
2k + 2l + 2.

Our discussion above yields the following:

Theorem 4. LetM be a closed manifold with a contact-symplectic pair(α, β). If [β] ∈ H2(M ;R)
is an integral cohomology class, then the total space of the circle bundleπ : E → M with Euler
class[β] carries a natural contact pair.

Indeed, ifγ is a connection form with curvatureβ and we identifyα with its pullback underπ,
then all the required properties are satisfied.

Finally, combining Theorems 2 and 4, we obtain:

Corollary 5. If a closed manifoldM has a symplectic pair(ω1, ω2) such that both[ωi] ∈ H2(M ;R)
are integral, then the fiber product of the two circle bundleswith Euler classes equal to[ω1] and
[ω2] respectively carries a natural contact pair.

An important difference between this leafwise Boothby–Wang construction and the classical
one is that we cannot perturb the defining forms in a symplectic pair so as to make them rational1,
because one cannot control the rank under such perturbations. Therefore, we will check in each
example of a symplectic pair we construct in the next section, whether the defining forms represent
integral cohomology classes.

3. CONSTRUCTIONS OF SYMPLECTIC PAIRS

The most obvious examples of symplectic pairs are of course products of symplectic manifolds
with the induced split symplectic forms. In this case one canobviously choose the formsωi to
represent integral classes.

We now discuss non-trival sources of examples.

3.1. Flat bundles with symplectic total holonomy. Let (B, ωB) and(F, ωF ) be closed symplec-
tic manifolds, andρ : π1(B) → Symp(F, ωF ) a representation of the fundamental group ofB in
the group of symplectomorphisms of(F, ωF ). The suspension ofρ defines a horizontal foliation on
the fiber bundleπ : M → B with fiberF and total spaceM = (B̃ × F )/π1(B), whereπ1(B) acts
onB̃ by covering transformations and onF via ρ. As the image ofρ preserves the symplectic form
ωF , the pullback of this form to the product̃B × F descends toM as a closed form of constant
rank, whose kernel foliation is exactly the horizontal foliation complementary to the fibers. Pulling
backωB to the total spaceM we obtain another closed form of constant rank, which is a defining
form for the vertical foliation whose leaves are the fibers ofthe fibration. As the two foliations are
complementary by construction, the formsωF andπ∗ωB form a symplectic pair onM .

Note that if we chooseωB to be integral, then so is its pullback. ForωF checking integrality is
more subtle. In particular, it turns out that starting with an integral form onF , though necessary,
is not usually sufficient.

1and integral after multiplication with a constant
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A special case of the above construction is given by taking a single symplectic diffeomorphism
ϕ ∈ Symp(F, ωF ), and forming the product of its mapping torusMϕ with S1. If ϕ is isotopic to the
identity through symplectomorphismsϕt, withϕ1 = ϕ andϕ0 = IdF , thenMϕ is diffeomorphic to
F×S1 by a diffeomorphism encoding the isotopy. It was proved in Lemma 8 of [17] that under this
diffeomorphism, the cohomology class[ωF ] ∈ H2(Mϕ) corresponds to[ωF ] + F lux(ϕt) ⊗ ν ∈
H2(F ) ⊕ (H1(F ) ⊗ H1(S1)), whereν is the fundamental cohomology class ofS1. Thus, the
cohomology class ofωF on such a symplectic mapping torus is integral if and only ifF lux(ϕt) is
an integral class inH1(F ).

While symplectic mapping tori have a rather simple topology, determined completely byϕ, there
are more complicated flat bundles with symplectic total holonomy which exhibit more complex
topology. For example, in the simplest possible case, whereB andF are both2-dimensional,
Kotschick and Morita [17] proved the following:

Theorem 6 ([17]). For everyg ≥ 3 there exist foliated oriented surface bundlesπ : M→B over
closed oriented surfacesB with fibersF of genusg, which have non-zero signature and whose
total holonomy group is contained in the symplectomorphismgroupSymp(F, ωF ) with respect to a
prescribed symplectic formωF onF . In fact, one can restrict the holonomy to be inSymp(F ;D2),
the group of compactly supported symplectomorphisms ofF \D2.

The first part is Theorem 1 in [17], whereas the addendum restricting to symplectomorphisms
relative to an embedded disk follows from the proof of Theorem 3 in [17]. This addendum is
useful for the construction of further symplectic pairs, see 3.2 below, because it implies that the
4-manifoldM in the statement of the theorem contains a product neighbourhoodD2×B to which
the symplectic pairs restrict in the obvious way, so that thetwo foliations are given byD2 × {⋆}
and by{⋆} ×B. In particular, the horizontal foliation has an open set of closed leaves.

Remark7. If the base manifoldB is not just symplectic, but has a symplectic pair, then any
flat bundle overB with symplectic total holonomy inherits something we may naturally call a
symplectic triple. From this one can combine several different symplectic pairs. The same remark
applies if the total holonomy preserves a symplectic pair onthe fiberF .

Foliated bundles can also be used to construct contact-symplectic and contact pairs directly.
For example, ifB carries a contact or symplectic structure and the image of a homomorphism
ρ : π1(B) → Diff(F ) preserves a contact form onF , thenM = (B̃ × F )/π1(B) obtained by
suspendingρ inherits a contact or contact-symplectic pair.

3.2. The Gompf sum for symplectic pairs. Gompf [11] has shown that symplectic manifolds
with closed symplectic submanifolds of codimension2 admit certain cut-and-paste constructions
which build new symplectic manifolds out of old ones. Suppose that(M1, ω1) and(M2, ω2) are
closed symplectic manifolds of dimension2n admitting symplectic submanifoldsΣi ⊂ Mi of
codimension2 with trivial normal bundles, and such that(Σ1, ω1) and (Σ2, ω2) are symplecto-
morphic. Then by the symplectic tubular neighbourhood theorem they have symplectomorphic
neighbourhoods. In this situationM1 \Σ1 andM2 \Σ2 can be glued together symplectically along
punctured tubular neighbourhoods of theΣi. The gluing map turns a punctured normal disk inside
out symplectically.

This construction sometimes works for manifolds with symplectic pairs if one of the foliations
has codimension2 and has an open set of compact leaves. Let(M1, ω1, ω2) and(M2, η1, η2) be
closed manifolds of dimension2n with symplectic pairs for whichrk(ω1) = rk(η1) = 2n −
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2. Suppose that the kernel foliationsF1 of ω2 andF2 of η2 each have closed leavesΣ1 and
Σ2 respectively, such that our symplectic pairs admit productstructures in open neighbourhoods
of theΣi. This means that we assume thatΣ1 has an open neighbourhoodU1 ⊂ M1 which is
diffeomorphic toΣ1 × D2 in such a way thatω1|U1

= π∗

1(ω1|Σ1
) andω2|U1

= π∗

2(ω2|D2), where
theπi are the projections to the factors; and similarly forΣ2 ⊂ M2. Then we may assume without
further loss of generality thatω2|D2 andη2|D2 coincide with the standard area formdx ∧ dy on the
disk. Suppose further that there is a symplectomorphism

f : (Σ1, ω1) −→ (Σ2, η1) .

Then the Gompf sumM1♮fM2 of theMi along the submanifoldsΣi carries a natural symplectic
pair.

As in Gompf’s original construction [11], the assumptions are particularly easy to verify when
theMi are4-dimensional. In this caseω1 andη1 are volume forms on theΣi and, by Moser’s
theorem [20], a symplectomorphismf as above exists as soon asΣ1 andΣ2 have the same genus
and

∫

Σ1

ω1 =

∫

Σ2

η1 .

We can use the flat bundles in Theorem 6 as building blocks for the Gompf sum, because, by
construction, their horizontal foliations have product structures on an open set. For the vertical
foliations we trivially have product structures around every fiber. Performing the Gompf sum of
symplectic pairs by matching fibers with fibers or sections2 with sections does not lead to any new
examples. However, taking a flat bundle over a surface of genus g, and another one with fibers
of genusg, we can, after scaling one of the2-forms involved by a constant, perform the sum of
symplectic pairs matching a fiber in one fibration with the section in the other fibration. This gives
new examples of manifolds admitting symplectic pairs whichare not surface bundles over surfaces.

3.3. Four-dimensional Thurston geometries.A geometry in the sense of Thurston consists of
a model spaceX which is a simply connected complete Riemannian manifold, together with a
groupG of effective isometries acting transitively and admittinga discrete subgroupΓ for which
the quotient spaceX/Γ is a compact smooth manifold. Such compact quotients are said to admit
a Thurston geometry of type(X,G).

The four-dimensional Thurston geometries have been classified by Filipkiewicz (unpublished).
We refer the reader to Wall’s papers [27, 28] for an account ofthis classification. We now want to
show that for some of these geometries there are naturalG-invariant symplectic pairs on the model
spaces, which then descend to all compact quotients. As the isometries we consider preserve a
symplectic structure, they are orientation-preserving.

Example 8.Consider the model spacesS2×R2,S2×H2,R2×H2 with the product metrics obtained
from the standard constant curvature metrics on the factors. In this case any isometry preserves the
local product structure, and its factors. In the maximal group of orientation-preserving isometries
those which preserve a pair of given orientations on the factors form a subgroupG of index2. The
volume forms of the metrics on the factors then form aG-invariant symplectic pair onX.

Example 9. The discussion in the previous example applies to the model spacesS2 × S2 and
H2 ×H2, except that these also admit isometries interchanging thetwo factors.

2
= closed leaves of the horizontal foliations
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Example 10.The model spaceR4 with its standard flat metric has as its compact quotients theflat
Riemannian4-manifoldsM . If such a manifold is orientable, thenb1(M) > 0. It is known that
b1(M) ≤ 4, with equality if and only ifM is diffeomorphic toT 4, and thatb1(M) 6= 3. Moreover,
if b1(M) = 1, then the vanishing of the Euler characteristic shows thatb2(M) = 0, so thatM
cannot be symplectic. Thus the only interesting case is whenb1(M) = 2. The classification of flat
4-manifolds in [13, 26] shows that in the caseb1(M) = 2 they are all quotients ofR4 by isometry
groups preserving a product structureR2×R2, and acting on each factor preserving its orientation.
In a different guise, this statement appears in the classification of compact complex surfaces, where
these particular flat Riemannian manifolds appear as so-called hyperelliptic3 sufaces, see [5] p. 148.
They are in fact quotients of products of elliptic curves by free diagonal actions of finite groups of
holomorphic automorphisms. Thus they carry natural symplectic pairs.

Example 11. Consider the model spaceX = Sol3 × R with its maximally symmetric product
metric. Then the maximal connected isometry groupG0 is alsoSol3 × R, acting on itself by
left multiplication, cf. [25] p. 518/19. This Lie group admits a parallelization by left-invariant one-
formsα1, . . . , α4 with dα1 = α1∧α4, dα3 = α4∧α3, dα2 = dα4 = 0. It follows thatω1 = α1∧α3

andω2 = α2 ∧ α4 form a left-invariant symplectic pair.

Example 12. Consider the model spaceX = Nil4 with its maximally symmetric metric. Then
again the maximal connected isometry groupG0 coincides withX, acting on itself by left mul-
tiplication, cf. [25] p. 518. This Lie group admits a parallelization by left-invariant one-forms
α1, . . . , α4 with dα2 = α1 ∧ α4, dα3 = α2 ∧ α4, dα1 = dα4 = 0. It follows thatω1 = α1 ∧ α2 and
ω2 = α3 ∧ α4 form a left-invariant symplectic pair.

Example 13. Consider the model spaceX = Nil3 × R with its maximally symmetric product
metric. This Lie group admits a parallelization by left-invariant one-formsα1, . . . , α4 with dα3 =
α1 ∧ α2 anddα1 = dα2 = dα4 = 0. It follows thatω1 = α1 ∧ α3 andω2 = α2 ∧ α4 form
a left-invariant symplectic pair. In this case the maximal connected group of isometries is larger
thanNil3 × R, because it contains the rotations in the plane spanned byα1 andα2. But these
rotations do not preserve the symplectic pair.

It turns out that the remaining Thurston geometries do not support any symplectic pairs:

Theorem 14.The model spacesS4,CP 2,H4,CH2, ˜PSL2(R)×R,H3×R, S3×R, Sol40, Sol
4
1 and

Solm,n with m 6= n with their standard metrics do not admit any transitive groups of isometries
containing cocompact lattices which also preserve a symplectic pair.

We have formulated the theorem in such a way that it covers non-maximal geometries in the
sense of [27, 28], i. e. we rule out symplectic pairs invariant under transitive subgroups which need
not be the maximal isometry groups.

Proof. We proceed case-by-case. The four-sphere admits no symplectic structure, and so is ruled
out. Any compact quotient ofS3 × R is finitely covered byS3 × S1, and so admits no symplectic
structure.

The complex projective plane does admit a symplectic structure, but its tangent bundle has
no decomposition into a direct sum of two oriented plane bundles. (This is equivalent to the
well-known fact thatCP 2 endowed with the non-complex orientation admits no almost-complex
structure.) ThusCP 2 is also ruled out. Concerning its non-compact dualCH2, Wall [28] proved

3These surfaces are sometimes called bielliptic, because they have two different elliptic fibrations.
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that the isotropy subgroup of any transitive isometry groupadmitting a cocompact lattice contains
U(2). As this does not preserve any splitting ofR4 into a direct sum of proper subspaces,CH2

cannot carry any invariant symplectic pair.
This last argument also applies to the geometriesH4 andH3 × R. In these cases the isotropy

subgroup of any transitive isometry group admitting a cocompact lattice containsSO(4) respec-
tively SO(3). These groups do not preserve any splitting ofR4 into a direct sum of2-dimensional
subspaces.

Finally, for the Lie group geometries˜PSL2(R) × R, Sol40, Sol
4
1 andSolm,n with m 6= n, any

transitive isometry group must contain the Lie group itself, acting by left multiplication. However,
in these cases it is easy to check using the structure constants in [27] that there are no left-invariant
symplectic forms, cf. [12]. �

4. COMPATIBLE METRICS

In this section we clarify the metric properties of symplectic pairs. As a first step, we have the
following:

Proposition 15. LetM be a manifold endowed with two smooth complementary foliationsF and
G which admit closed defining forms. Then there are Riemannianmetricsg onM for whichF and
G are orthogonal and have minimal leaves.

Proof. This is a consequence of the minimality criterion of Rummlerand Sullivan, see [10], page
371/372. Given an arbitrary foliationF with leaves of dimensiond and a form of degreed which
is relatively closed forF and restricts as a volume form to the leaves ofF , one can construct
metricsg making the leaves ofF minimal, and such that the givend-form is the volume form of
the restricted metric. These metricsg can be chosen to make the kernel of thed-form orthogonal
toF , and the restriction to this orthogonal complement is arbitrary.

Suppose thatF = Ker(α) andG = Ker(β), with α andβ closed and of degrees equal to
the codimensions ofF andG respectively. AsF andG are assumed to be complementary,α
is a leafwise volume form onG andβ is a leafwise volume form onF . Define a metricg by
requiringTF andTG to be orthogonal, and choosingg alongF so thatβ is the Riemannian
volume form ofg|TF , and choosingg alongG so thatα is the Riemannian volume form ofg|TG.
These requirements clearly underdetermine the metric, andany such metric has all the desired
properties. �

Corollary 16. A manifold endowed with a symplectic, contact-symplectic or contact pair admits
metrics for which the characteristic foliations are orthogonal with minimal leaves.

In many of the examples constructed above there are metrics which in addition to making the
foliations orthogonal with minimal leaves have further good properties. For example, the flat
bundles always have metrics for which the vertical foliation is Riemannian and the horizontal
foliation has totally geodesic leaves. The following theorem shows that a general symplectic pair
does not admit any metric with properties more restrictive than the ones specified in Corollary 16.

Theorem 17. There are symplectic pairs on closed four-manifolds for which both foliations are
not geodesible and not Riemannian.

Proof. Consider foliated surface bundlesM over surfaces with symplectic total holonomy. The
normal bundle of the horizontal foliation is the tangent bundle along the fibers, and its first Pon-
tryagin number is three times the signatureσ(M), because the Pontryagin number of the tangent
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bundle of the horizontal foliation vanishes. If the signature is non-zero, then Pasternack’s re-
finement [21] of the Bott vanishing theorem for Riemannian foliations implies that the horizontal
foliation is not Riemannian. To see this, recall that for Riemannian foliations Pasternack shows
that the Pontryagin numbers of the normal bundle vanish in degrees strictly larger than the codi-
mension of the foliation, which improves the range of vanishing in Bott’s theorem by a factor of
two. In our situation this means that the first Pontryagin number of the normal bundle, which is in
degree4, vanishes, as the codimension equals2.

Now take two such foliated bundles,M1 andM2. By Theorem 6 we can choose both of them
with non-zero signature, such that the base genus ofM2 equals the fiber genus ofM1, and such that
the horizontal foliation inM2 has an open set of compact leaves with trivial normal bundle.LetM
be the Gompf sumM1♮fM2, where a section inM2 is identified with a fiber inM1, as discussed in
Subsection 3.2 above. This sumM carries an induced symplectic pair, and it is clear that onM the
first Pontryagin number of bothTF andTG is non-zero, because we have chosen bothMi to have
non-zero signature. Note that each of these bundles is the normal bundle for the complementary
foliation. Thus neither of the two foliations can be Riemannian, by Pasternack’s theorem [21].

Suppose now that inM one of the foliations, sayF , is geodesible. If a metric makingF totally
geodesic also makes it orthogonal toG, then the duality theorem for totally geodesic and bundle-
like foliations implies thatG is Riemannian, see [10] p. 190. This is a contradiction.

Next assume that we can choose a metricg for whichF is totally geodesic, without assuming
that its orthogonal complement isG. Cairns and Ghys [7] have shown that for any two-dimensional
geodesible foliation on a4-manifold we may chooseg to make the leaves both totally geodesic and
of constant Gaussian curvature. AsF has closed leaves of genus≥ 2, the constant curvature is
negative. Another result of [7] then tells us that theg-orthogonal complementTF⊥ is integrable,
and defines a foliationH (which may be different fromG). By the duality theorem,g is bundle-like
for H. ButH has normal bundleTF , which has non-zero first Pontryagin number, and so we again
have a contradiction with Pasternack’s theorem. �

There are special cases of symplectic pairs for which it is possible to find a metric which makes
the two foliations orthogonal and totally geodesic, for example the Thurston geometries which are
products of two-dimensional geometries. When performing aBoothby–Wang construction on such
an example one can choose a submersion metric on the total space which also has the property that
the foliations of the contact-symplectic pair are orthogonal and totally geodesic. This will be used
in Subsection 5.2 below.

5. SOME APPLICATIONS

5.1. Torus-bundles over the torus. We now want to prove the following:

Theorem 18. Every orientedT 2-bundle overT 2 admits a symplectic pair(ω1, ω2) for which the
cohomology classes of theωi are integral.

This can be seen as generalizing a result of Geiges [8], who proved that these manifolds admit
symplectic structures. His proof, like ours, depends in theclassification ofT 2-bundles overT 2 due
to Sakamoto and Fukuhara [22], and on the fact that all these manifolds carry compatible Thurston
geometries, cf. [25].

Proof. The classification of orientableT 2-bundles overT 2 is summarized in the table in the ap-
pendix. We will proceed case-by-case and use the information given in the table. In case (a), for
the four-torus, the claim is trivial.
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Case (b) consists of manifolds with Thurston geometryNil3 × R. As the first Betti number
equals3, these manifolds are nilmanifolds (rather than infranil manifolds), i. e. they are quotients
of our Lie group by lattices in the group itself acting by lefttranslations, cf. [14] p. 170. We saw
in Example 13 that there is a left-invariant symplectic pairon the group. Thus this descends to all
manifolds under discussion here.

In case (c) we have the flat orientable four-manifolds withb1 = 2. These have symplectic pairs
by Example 10.

Case (d) consists of manifolds with Thurston geometryNil4. As their first Betti number equals
2, these manifolds are nilmanifolds (rather than infranil manifolds), cf. [14] p. 170. We saw in
Example 12 that there is a left-invariant symplectic pair onthe group. Thus this descends to all
manifolds under discussion in this case.

Cases (e) and (f) consist of infranil manifolds for the groupNil3 × R. As we do not have a
symplectic pair on the model space invariant under the full group of orientation-preserving isome-
tries, we argue instead as in [8]. Geiges [8] showed that identifying the model space withR4 with
coordinates(x, y, z, t), the two-formsdy∧dt anddx∧dz−xdx∧dy are invariant under the lattices
arising as fundamental groups in this case. Clearly they areclosed of constant rank equal to2, and
their wedge product is a volume form. Thus they give rise to a symplectic pair.

Cases (g) and (h) consist of manifolds with Thurston geometry Sol3 × R. It was shown in [8]
that identifying the model space withR4 with coordinates(x, y, z, t), the two-formsdx ∧ dy and
dz ∧ dt are invariant under the lattices arising as fundamental groups. They are closed of constant
rank equal to2, and their wedge product is a volume form. Thus they give riseto a symplectic pair.

It remains to address the integrality of the cohomology classes of the forms involved. This
can trivially be arranged in the case ofT 4. For the nilmanifolds ofNil3 × R the integrality of the
cohomology classes for the symplectic pair we have exhibited can be checked by direct calculation,
or using [8]. For the remaining cases, (c) – (h), we give a uniform argument as follows. All
T 2-bundles overT 2 have vanishing Euler characteristic and signature. Therefore, if b1 = 2, we
conclude thatb2 = 2, and the intersection form is indefinite. Thus,H2(M ;R) equipped with
the cup product form is hyperbolic, and the classes of square0 make up the light cone. For a
symplectic pair the classes[ωi] have square zero and[ω1] · [ω2] 6= 0, thus they span the light cone.
It follows that after constant rescaling these classes are integral. �

5.2. Irreducible quotients of the polydisk. For our final application we return to the Thurston
geometry with model spaceH2 × H2, which we discussed briefly in Example 9. The connected
component of the identity in the isometry group isPSL2(R) × PSL2(R), acting on the model
space preserving the symplectic pair formed by the volume forms ω1 andω2 of the hyperbolic
metrics on the factors. Note that the product metric onH2 × H2 is Kähler for both choices of
orientation, with Kähler formsω1 ± ω2.

It is well known that there are irreducible cocompact latticesΓ ⊂ PSL2(R)×PSL2(R), where
by irreducibility we mean thatΓ is not commensurate to a product of lattices inPSL2(R). While
the existence of irreducible lattices can be deduced from a general theorem due to Borel, there are
actually explicit constructions in this case due to Kuga (cf. [5]) and Shavel [23] using the theory of
quadratic forms. The quotients(H2 × H2)/Γ are compact complex-algebraic surfaces of general
type with Kähler classω1 ± ω2 (up to scale, the sign depending on the choice of orientations). It
follows that theωi represent integral classes in cohomology.
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These irreducible quotients of the polydisk have already been used to exhibit various interesting
phenomena in both differential and algebraic geometry, cf.[7, 24]. Here we shall add one more, in
the form of the following result:

Proposition 19. There exist closed5-manifoldsM with two complementary foliations and a Rie-
mannian metric for which the foliations are orthogonal and totally geodesic, and such thatM does
not admit any finite cover by a product of manifolds of strictly smaller dimension.

Proof. LetX be the quotient of the polydisk by a torsion-free irreducible cocompact latticeΓ. This
carries two complementary foliations which are orthogonaland totally geodesic with respect to the
metric induced from the product metric on the universal covering.

As the cohomology class of the formω1 is integral, we can perform the leafwise Boothby–
Wang construction of Section 2 to obtain a closed manifoldM , which is the total space of the
corresponding circle bundle overX. OnM we obtain a contact-symplectic pair, and a metric for
which the two foliations are orthogonal and totally geodesic. In fact, the Riemannian universal

covering ofM is isometric to the direct productH2 × ˜PSL2(R), where we think of ˜PSL2(R) as
the universal covering of the unit tangent bundle ofH2.

It remains to prove thatM does not have any finite covering which splits as a direct product of
two manifolds of positive dimension. Now it is known thatX has vanishing first Betti number,
see [23], and thereforeM also has vanishing first Betti number by the Gysin sequence ofthe circle
fibration. It is easy to see that the same conclusion must holdfor any finite covering ofM . Thus, no
such covering can split off a circle, and if it is homotopy equivalent to a product of a2-manifold and
a 3-manifold, then these factors must be real homology spheres. By the classification of surfaces
the 2-dimensional factor is thenS2, contradicting the fact thatM and all its finite coverings are
aspherical. �

Remark20. Note that we have excluded all splittings of finite coveringsof M , without assuming
that they are induced by the foliations.

Remark21. Proposition 19 answers a question of Matveev [19], related to his work in [18]. He
noted that in dimensions2 and3 every closed Riemannian manifold with a local product structure
given by a pair of orthogonal totally geodesic foliations admits a finite covering which is a genuine
product (not necessarily induced by the foliations). In dimension4 this result is false because of the
existence of irreducible quotients of the polydisk, and similar examples exist also in dimensions
≥ 6.

Acknowledgement: We are grateful to N. A’Campo for having pointed out the overlap in our
interests, which led to the present collaboration.
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APPENDIX: ORIENTABLE T 2-BUNDLES OVERT 2

The following table summarizes the classification of orientable T 2-bundles overT 2 due to
Sakamoto and Fukuhara [22], and the information about theirThurston geometries due to Ue [25],
compare also [8].

b1 Monodromy& Euler class Geometry

(a) 4 {I, I, (0, 0)} = T 4 R4

(b) 3 {I, I, (m,n)}, (m,n) 6= (0, 0) Nil3 × R

(c) 2

{(

0 −1
1 −1

)

, I, (0, 0)

}

R4

{(

0 −1
1 −1

)

, I, (−1, 0)

}

{(

0 −1
1 0

)

, I, (0, 0)

}

{(

0 −1
1 0

)

, I, (−1, 0)

}

{(

1 −1
1 0

)

, I, (0, 0)

}

{−I, I, (0, 0)}

{−I, I, (−1, 0)}

(d) 2

{(

1 λ
0 1

)

, I, (m,n)

}

, λ 6= 0, n 6= 0 Nil4

(e) 2

{(

−1 λ
0 −1

)

, I, (m,n)

}

, λ 6= 0 Nil3 × R

(f) 2

{(

1 λ
0 1

)

,−I, (m,n)

}

, λ 6= 0 Nil3 × R

(g) 2 {C, I, (m,n)}, |trC| ≥ 3, C ∈ SL2(Z) Sol3 × R

(h) 2 {C,−I, (m,n)}, trC ≥ 3, C ∈ SL2(Z) Sol3 × R

The given matrices describe the monodromy corresponding tothe two generators ofπ1(T
2) = Z2,

and the pairs of integers(m,n) represent the Euler class.
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