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We compare two different notions of dynamical
phase transitions in closed quantum systems. The
first is identified through the time-averaged value
of the equilibrium-order parameter, whereas the
second corresponds to non-analyticities in the time
behaviour of the Loschmidt echo. By exactly solving
the dynamics of the infinite-range XY model, we show
that in this model non-analyticities of the Loschmidt
echo are not connected to standard dynamical phase
transitions and are not robust against quantum
fluctuations. Furthermore, we show that the existence
of either of the two dynamical transitions is not
necessarily connected to the equilibrium quantum
phase transition.

1. Introduction
Recent experiments with cold atoms in optical lattices [1],
ion traps [2] and ultrafast pump-probe spectroscopy [3]
have triggered a lot of interest in the study of the
dynamics of thermally isolated many-body systems. In
both classical and quantum physics, isolated systems
have the peculiarity of displaying a dynamics that is very
sensitive to the type of interactions among their
constituents. In particular, a generic non-integrable
system is expected to behave ergodically (hence therm-
alize after being kicked out of equilibrium), whereas
an integrable system is not [4]. In addition, a quantum
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many-body system taken out of equilibrium by changing its parameters (i.e. by a quantum quench)
may relax towards a thermal state passing through an intermediate long-lived non-thermal quasi-
steady state.

This phenomenon, known as pre-thermalization [5,6], is expected in systems close to being
either integrable [7] or mean-field like, in particular in spin chains [8,9] or perturbed Luttinger
liquids [10,11].

Non-thermal states such as those associated with pre-thermalization may display as a function
of the parameters critical phenomena similar to those observed in equilibrium systems when
the temperature is varied. This type of dynamical criticality should be understood as a non-
analytic change of the dynamical order parameter, defined for example through the time average
of the equilibrium-order parameter characterizing the corresponding quantum phase transition.
Dynamical phase transitions were extensively studied in mean-field models [12–18], where, in
most cases, the critical line of the dynamical phase transition is shifted towards the ordered
phase w.r.t. the equilibrium quantum phase transition line. Although these transitions have a
purely dynamical origin, it has been argued that the existence of the quantum phase transition is
intertwined with the existence of a dynamical one [14].

In addition to this standard meaning of dynamical criticality, a second notion of criticality out-
of-equilibrium has been recently introduced in the work of Heyl et al. [19]. It is related to the
occurrence of non-analytic temporal behaviour of the dynamical free energy density, defined as
the logarithm of the Loschmidt amplitude [19–21]

f (t) = lim
N→∞

1
N

ln〈ψ |e−iHt|ψ〉, (1.1)

where N denotes the number of particles in the system and |ψ〉 is the initial state. This
interpretation follows from the observation that the Loschmidt amplitude G(t) = 〈ψ |e−iHt|ψ〉 (also
known as the return probability) can be regarded as a dynamical partition sum [22,23]. It has
been shown [19] that the effects of Fisher zeros in G(t) can be observed in the statistics of the
work done in a quantum quench protocol. Vajna & Dóra [21] showed that the existence of the
dynamical transition in G(t) is not related to the existence of the equilibrium phase transition in
the XY spin- 1

2 chain. In [24], a topological classification of the dynamical transition was suggested,
and in [25] a dynamical mean-field theory was developed to describe the non-analyticities
in G(t).

Despite having been studied extensively in a variety of systems, the connection between the
two notions of dynamical criticality has hardly been investigated. Non-analyticities in f (t) (i.e.
zeros in the return probability) are observed in one-dimensional systems that do not display
standard dynamical criticality. It is however unclear whether the two notions might be connected
in systems displaying standard dynamical critical phenomena. In order to address this question,
in this paper, we consider the dynamics of the infinite-range XY model, studying both the non-
equilibrium dynamics of the order parameter as well as that of the Loschmidt amplitude. We
show that for certain initial states the emergence of dynamical criticality in the time-averaged-
order parameter comes hand in hand with the appearance of zeros in the Loschmidt amplitude.
However, while standard criticality is robust against quantum fluctuations, the zeros of the
Loschmidt amplitude are not. In addition, a study of the dependence of this phenomenon on
initial conditions shows that even at the strict mean-field level the two notions appear not to
be related.

The rest of the paper is organized as follows. In §2, we set up the notation and review the
equilibrium phase diagram of the model. In §3, we focus instead on the standard notion of
dynamical criticality and derive the dynamical phase diagram. In §4, we discuss the physics of
the Loschmidt amplitude, studying the connection between the two types of criticalities as well
as the robustness of zeros of the Loschmidt amplitude towards quantum fluctuations. Finally, in
§5, we present our conclusions.
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2. Infinite range XY model—zero temperature phase diagram
In the following, we study the dynamics of the infinite range XY model,

H = − 2
N

N∑
i<j

(
1 + γ

2
σ x

i σ
x
j + 1 − γ

2
σ

y
i σ

y
j

)
− h

N∑
i=1

σ z
i , (2.1)

where σ a
j , with a ∈ {x, y, z}, denote the Pauli matrices at site j. By using the definition Sa =

1
2

∑N
j=1 σ

a
j , the Hamiltonian can be rewritten as a spin S = N/2 model,

H = − 4
N

(
1 + γ

2
(Sx)2 + 1 − γ

2
(Sy)2

)
− 2hSz

i . (2.2)

In the large spin limit, the model behaves classically and the mean-field description becomes
exact. Moreover, phase-space methods become particularly useful as they permit a systematic
expansion around the classical/thermodynamic limit. In the phase space, the von Neumann
equation for the density matrix attains the form of a partial differential equation for a quasi-
probability distribution, which may be obtained by using the formalism of Bopp operators (or
D-algebras) [26]

∂tW(s) = −∂m · (m × B)W(s) + O
(

1
S2

)

and B = (2(1 + γ )mx, 2(1 − γ )my, 2h),

⎫⎪⎬
⎪⎭ (2.3)

with m(θ ,ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ ). The Weyl symbol is defined through the quantization
kernel W(s)(θ ,φ, t) = trρ(t)K(s)(θ ,φ), where the parameter s denotes the ordering of the phase-space
distribution, i.e. distinguishes between the Husimi function (for s = −1), Wigner function (for
s = 0) and Glauber–Sudarshan function (for s = 1). We shall use the kernel for the Husimi function
K(θ ,ϕ) = |θ ,ϕ〉〈θ ,ϕ|, where |θ ,ϕ〉 denotes a SU(2) spin coherent state [27]. We remark that in the
mean-field the choice of the kernel is irrelevant, because all kernels lead to the same classical
evolution. Equation (2.3) for the Husimi function can be regarded as a classical Liouville equation
acting on a phase space, which is in this case a two-dimensional sphere. It can be rewritten in the
standard form ∂tW = {Hcl, W}P by defining the spin Poisson bracket

{ma, mb}P = εa,b,cmc (2.4)

and the classical Hamiltonian

Hcl = −((1 + γ )m2
x + (1 − γ )m2

y + 2hmz), (2.5)

where εa,b,c denotes the Levi–Civita tensor. The classical Hamiltonian can be further rewritten as

Hcl = −(1 + γ )(1 − p2) cos2 q − (1 − γ )(1 − p2) sin2 q − 2hp, (2.6)

with the canonical variables q ∈R and p ∈ [−1, 1] defined as

mx = cos q
√

1 − p2, my = sin q
√

1 − p2 and mz = p. (2.7)

The new variables, p, q, satisfy the commutation relation {q, p}P = 1. Each phase-space point of the
probability distribution evolves in time according to the classical equations of motion,

∂tp(t) = −∂qHcl and ∂tq(t) = ∂pHcl, (2.8)

and corresponds to a coherent state. The overlap between two coherent states can be obtained by
considering spin S as a compositum of spins 1

2 all pointing in the same direction. Hence, we have

|〈θ1,ϕ1|θ2,ϕ2〉|2 =
(

1 + m1 · m2

2

)N
. (2.9)

The classical equations are correct up to the order 1/S2. This enables a calculation of the
equilibrium phase diagram by finding the phase-space point that minimizes the classical
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Figure 1. Mean-field zero temperature phase diagram for the order parameter mx = limN→∞〈2Sx/N〉. (Online version in
colour.)

Hamiltonian for a given set of parameters. Throughout the paper, we shall choose the order
parameter as the on-site magnetization in the x-direction. Therefore, the equilibrium phase
diagram, distinguishing the disordered phase (mx = 0) and the ordered one (mx �= 0), is easily
obtained by calculating mx at the minima of equation (2.5), thus obtaining figure 1.

3. Dynamical phase transition I: time-averaged order parameter
Let us now study the dynamics focusing on the long-time averages of the equilibrium-
order parameter after a quantum quench, i.e. m̄x = limt→∞(1/t)

∫t
0 ds mx(s). This is easily done

numerically by solving classical equations of motion. For the sake of simplicity, let us first consider
a sudden quench from (γi, hi) = (1, 0) to (γf , hf ); using m̄x as the order parameter, we obtain the
phase diagram shown in figure 2. In contrast to previously described dynamical transitions, we
observe that the dynamical phase transition can be absent even if we cross the critical line of an
equilibrium phase transition.

These results are obtained by using the energy conservation and expressing the Hamilton–
Jacobi equations (2.8) as

p =
hf −

√
h2

f − 2γf sin2(q)(γf cos(2q) + 1)

γf cos(2q) + 1

and ∂tq = −2
√

h2
f − 2γf sin2(2q)(γf cos(2q) + 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

In this section, we use p, q instead of p(t), q(t) in order to simplify the notation. The solution of
equations (3.1) with the initial conditions q(0) = p(0) = 0 (i.e. for a quench from (γi, hi) = (1, 0)) can
be written in the following compact form:

q = arctan

⎛
⎝−K−sn(2tK+|(K−/K+)2)√

2(γf − 1)γf + h2
f

⎞
⎠

and K± =
√

(−h2
f + γ 2

f + γf ±
√

(γf + 1)2 − 4h2
f |γf |).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2)

The dynamical phase diagram shown in figure 2 is determined by the properties of the coefficient
K+, namely m̄x = 0 ⇔ Im(K+) �= 0. If ImK+ = 0, then q oscillates in the interval [−qmax, qmax],

where qmax = arctan
∣∣∣K−

/ √
2(γf − 1)γf + h2

f

∣∣∣<π/4, hence m̄x > 0. In the regime where ImK+ �= 0,

the angle mod 2π (q(t)) covers the interval [0, 2π ] (owing to simple poles of the Jacobi elliptic
function). Because the equation of motion is invariant under the shift q → q + π , we see that q(t)
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Figure 2. Dynamical phase diagram for the time-averaged order parameter m̄x for a sudden quench from (γi , hi)= (1, 0) to
(γf , hf ). The averaged order parameter m̄y vanishes for any quench from (γi , hi)= (1, 0), i.e. from anmy-paramagnetic phase.
(Online version in colour.)

spends the same amount of time in the interval [π/2, 3π/2] as in the interval [−π/2,π/2], implying
a vanishing average m̄x = 0.

A general solution to the Hamilton–Jacobi, equations (2.8), can be obtained by expressing the
momentum p in terms of the coordinates q using the energy conservation 2ε = H(γf , hf , pi, qi) =
H(γf , hf , p(t), q(t)):

p =
hf ±

√
h2

f + (γf cos 2q + 1)(γf cos 2q + 2ε + 1)

γf cos 2q + 1
. (3.3)

The function under the square root is positive iff |hf |> |ε|. Next, we insert the above expression
into the equation of motion for q and obtain

∂tq = ±2
√

h2
f + (γf cos 2q + 1)(γf cos 2q + 2ε + 1), (3.4)

where the sign is determined by the initial condition. The solution of equation (3.4) is

q(t) = 2 arctan
(

i
sn(u|m)

n

)
,

u = s
2

√
(C2 + t)2(16γ 2

f − C1 + 2
√

256γ 2
f (ε + 1)2 − 16C1γ

2
f ),

m =
−16γ 2

f + C1 + 2
√

256γ 2
f (ε + 1)2 − 16C1γ

2
f

−16γ 2
f + C1 − 2

√
256γ 2

f (ε + 1)2 − 16C1γ
2
f

and n =

√√√√√ 16γ 2
f − 32γf (ε + 1) + C1

−16γ 2
f + 2

√
256γ 2

f (ε + 1)2 − 16γ 2
f C1 + C1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

where sn(u|m) denotes a Jacobi elliptic function and the constants C1, C2 are determined by the
initial conditions.

4. Dynamical phase transition II: zeros of the Loschmidt amplitude
The Loschmidt echo (|G|2) can be calculated from equation (2.9). For the particular quench starting
from (γi, hi) = (1, 0), we obtain |G(t)|2 = ((1 + mx(t))/2)N. In this case, the dynamical phase diagram
that is obtained by plotting the minimum of the Loschmidt echo with respect to time exactly
agrees with the phase diagram shown in figure 2. However, this is a rather exceptional case,
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Figure 3. Minimum of the Loschmidt echo (dashed lines) and time-averaged order parameter m̄x. We show quenches from
(γi , hi)= (1, 0) (black lines) and from (γi , hi)= (1, 1/2) (grey lines) to (γf , hf )= (1, x). For the quench from (γi , hi)= (1, 0),
the black lines are on top of each other.

as can be seen from figure 3, where we show the quench from (γi, hi) = (1, 0.5) in addition to the
quench from (γi, hi) = (1, 0). Most importantly, in the former case of a quench from (γi, hi) = (1, 0.5),
we find that the minimum of the Loschmidt echo is not zero in the dynamically disordered phase.
In general, for initial conditions (qi, pi), the Loschmidt echo (Loschmidt amplitude) vanishes at
time t iff (q(t), p(t)) = (qi + π , −pi). Because the classical motion is restricted to an isoenergetic
surface, only states with H(q(t)p(t)) = H(qi, pi) are accessible. Hence, in order to have a vanishing
Loschmidt echo the condition H(qi, pi) − H(qi + π , −pi) = −4hf pi = 0 has to be satisfied. Therefore,
whenever hf pi �= 0, the Loschmidt amplitude has an analytic temporal behaviour (figure 3),
even in the case of a quench that crosses a dynamical transition defined through the time-
averaged order parameter. This explicitly demonstrates that the two definitions of dynamical
phase transitions mentioned in the Introduction are in general unrelated, even in the mean-field
limit.

Let us now study the robustness of the zeros of the Loschmidt amplitude when the number
of spins N is kept finite, focusing on the short-time dynamics of the fully connected XY
model for large but finite N. This can be done either by studying the dynamics of a large
spin or by performing a systematic semiclassical expansion using, for example, the positive-P
representation [28,29]. This representation is preferred to other phase-space methods in order to
avoid the problem of the negative diffusion matrix [28]. We were able to numerically calculate the
exact (up to a small statistical error) short-time dynamics, which captures the first minimum of
the Loschmidt amplitude. The numerical results thus obtained are plotted in figure 4 and show
that the Loschmidt echo approaches the mean-field result as N−1.

Finally, we discuss the stability of the Loschmidt amplitude against quantum fluctuations.
The mean-field dynamics is exact in the thermodynamic limit only for long-range models. If
we consider the XY model on a cubic lattice with a coordination number Z instead of the
infinite-range model, the mean-field solution is only an approximation up to the order 1/Z. We
follow [30] and calculate the first-order quantum corrections to the mean-field. First, we rewrite
the Hamiltonian (2.1) using the Fourier transformation

H = −1 + γ

2N
σ x

0 σ
x
0 − 1 − γ

2N
σ

y
0 σ

y
0 − hσ z

0 − 1
N

∑
q �=0

Λq

(
1 + γ

2
σ x

q σ
x
−q + 1 − γ

2
σ

y
q σ

y
−q

)
(4.1)

with σ a
q = ∑

R eiq·Rσ a
R andΛq = (1/Z)

∑
〈a〉 exp(iqa). Then, we assume the following non-vanishing

commutation relations up to the leading order in N:

[σ a
0 , σ b

0 ] = 2iεabcσ
c
0 , [σ a

q , σ b
−q] = 2iεabcσ

c
0 and [σ a

q , σ b
0 ] = 2iεabcσ

c
q . (4.2)

We evaluate the equations of motion ∂tσ
a
q = i[H, σ a

q ] assuming (in addition to (4.2)) classical values

for q = 0 (i.e. σ x
0 = (Nn/2) sin θ cosφ, σ y

0 = (Nn/2) sin θ sinφ, σ z
0 = (Nn/2) cos θ with n ∈ [0, 1], φ ∈
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Figure 5. Loschmidt echo around the first minimum. (a) Numerical integration including quantum fluctuations for a quench
from (γi , hi)= (1, 0) to (γf , hf )= (1, 2). The dashed line shows the result obtained by the first integrationmethodwithNdis =
40 which coincides with the full black line denoting the result obtained by the second integration method with kmax = 100.
The dashed line shows the mean-field result. (b) Dependence of the first minimum of the Loschmidt echo on the coordination
number/dimension (for cubic lattice D= Z/2). The solid line shows ∝ D−1 serves as a guide to the eye. (Online version in
colour.)

[0, 2π ] and θ ∈ [0,π ]) and defining Cab(q, t) = 1
2 〈σ a

q σ
b−q + σ b

q σ
a−q〉. This procedure results in a set

of coupled differential equations that describe the evolution of Cab(q, t) and of the classical
(mean-field) variables. These equations can be solved numerically either by using a uniform
discretization in momentum space or by using a new set of variables given by integrals c(k)

ab (t) =∫
dqΛk

q Cab(q, t). In the latter case, the time derivatives of the integrated variables of order k can

be expressed as a function of integrated variables of orders k and k + 1; ∂t c(k)
ab (t) = ∑

cd f (ck+1
cd , ck

cd).
In order to calculate the time evolution, we truncate this recursion at some finite k = kmax. We
are interested in the dynamics around the first zero of the Loschmidt echo in the thermodynamic
limit. Up to this time, the numerical solution converges quickly with the number of points used
in the discretization (first integration method) and agrees with the result obtained using the
integrated variables (second integration method, kmax ≈ 100). The time evolution around the first
minimum of the Loschmidt echo is shown in figure 5. We highlight that | G(t) |2 corrected by
quantum fluctuations in the harmonic approximation never vanishes, even when it does at the
mean-field level. If Z → ∞, the Loschmidt echo smoothly recovers its mean-field value, actually
linearly in 1/Z (figure 5). Note that, in contrast with the fate of the zeros in the Loschmidt echo,
the mean-field dynamical transition survives the quantum fluctuations (figure 6).
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5. Conclusion
This paper presents a comparison of two different notions of dynamical phase transitions with the
equilibrium phase diagram of the infinite-range XY model. We first of all studied the dynamical
phase transitions after a quench by computing the time average of the order parameter, showing
that the crossing of the equilibrium critical line in a sudden quantum quench starting in the
ordered phase does not necessary result in a dynamical phase transition corresponding to a
vanishing dynamical order parameter. The dynamical order parameter can be non-vanishing even
when the equilibrium-order parameter vanishes at final parameters of the Hamiltonian. Similar
behaviour is observed also in the case of the dynamical phase transition determined by the zeros
of the Loschmidt amplitude. However, we show that the zeros and non-analyticities in time of
the Loschmidt amplitude appear only for particular quenches with hf pi = 0 and can therefore
not be considered as an indicator of a dynamical phase transition in the time-averaged order
parameter m̄x. Furthermore, we show that, in contrast to the time-averaged order parameter, the
zeros of the Loschmidt amplitude do not survive first-order quantum corrections. In conclusion,
the results obtained show that there is no apparent connection between different notions of the
dynamical phase transitions encountered in the literature and the equilibrium phase transition in
the mean-field XY model.
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