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1. Introduction

Free-space optical (FSO) links are supposed to operate through
atmosphere which contains fog, smoke, dust, rain, smog and charged
particles. The terrestrial FSO link provide a viable last mile solu-
tion for high speed connectivity without the need of digging nec-
essary to lay the conventional fiber [1]. Atmospheric particles like
fog, snow, etc attenuate the transmitted signal propagating through
the line-of-sight FSO links. Among all the different attenuating
factors, fog is the most serious deterrent [2, 3]. Fog can be char-
acterized by liquid water content (LWC), optical visibility, drop
size distribution and temperature [4]. The scattering, absorption
and extinction of laser beam propagating through the atmosphere
are associated with fog droplets sizes, their effective radii [3] and the
microphysical properties of fog, specifically liquid water content
[3, 5].

The LWC is the measure of total mass of water per unit volume
of the droplets in air. The LWC is expressed in g/m3. LWC is used
to characterize the different types of fog/clouds. In the absence of
precipitation higher amount of liquid water content decreases vis-
ibility and indicates dense fog [5, 6]. 

Fog is an accumulation of water droplets or ice crystal fines
accompanied by hygroscopic, water-saturated fine particles that
reduce visibility. Under dense fog conditions the visibility decreases
below 100 m and cause sever signal attenuation for FSO links [2].
For light fog the visibility remains in the range of 500–1000 m rel-
atively less deterrent for FSO links.

For wide spread acceptability of FSO links there is need to
investigate thoroughly different weather impairment on FSO links
[7]. The prediction of optical attenuation in lower atmospheric vis-
ibility ranges due to water hazes, fogs, and clouds has been thor-
oughly investigated and researched [8].

To the best of the authors’ knowledge this is 1st attempt to
find a distribution model for LWC for terrestrial FSO links. Fog
drop size distribution is widely modelled as a modified gamma dis-
tribution [9, 10]. The current work found Gamma distribution as
a best fit model for visibility from 5 months measured data. Curve
fitting techniques have been used to find the best fit PDF for LWC
and visibility. All the continuous distributions have been compared
using the Quantile-Quantile Plot (Q-Q plot). Here we presented
the two best fit distributions for the analysis. The current work is
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of high importance for optical wireless communication and net-
works and will provide a thorough understanding of visibility and
LWC and their variations. 

2. Experimental Setup

The measurement campaign was carried out at the Depart-
ment of Frequency Engineering, Czech Metrology Institute (CMI)
Prague, Czech Republic from 08. 01. 2009 till 31.05.2009. Prague
is located at latitude 50° 05' 12" N longitude 14° 24' 59" E and at
altitude of 191 m. Prague has continental weather. Prague has the
air mean temperature 10.4° C from 1971–2000 [11]. The FSO
systems were installed 26 meters above the ground level. The link
margin of the two FSO systems allows the measurement of specific
attenuation up to 180 dB/km for 830 nm wavelength systems and
130 dB/km for 1550 nm system. Optical calibration was performed
before deploying the FSO devices. A received power is obtained
from the calibrated Received Signal Strength Indicator (RSSI)
signal of the FSO link. Meteorological conditions are identified by
means of a color video camera and an automatic weather obser-
vation system located near the FSO receivers. The system uses
Vaisala sensors for the measurement of temperature, humidity, air
pressure, velocity and direction of the wind. The VAISALA PWD
11 equipment measures the atmospheric visibility (5% definition)
values in the range from 50 m up to 2000 m using forward scat-
tered light in the angle of 45°. The PVM-100 device is used to
measure liquid water content LWC (g/m3) and integrated particle
surface area PSA (cm2/m3) of fog.

The meteorological data is synchronized in time with the hydro-
meter attenuation measurement. The received FSO signal levels and
the meteorological data are recorded synchronously on a PC’s hard
disk. In this article we analyzed 5 months real time measurement
data of reduced visibility and LWC due to fog for terrestrial FSO
links. In the measurement campaign, we sampled data at rate of
one sample per minute. The other instruments were calibrated in
a way to measure the specific quantity at the last second of the
every minute in parallel with the optical attenuations. We selected
data set for analysis where the visibility was less than 1 Km. Figs
1 and 5 shows the reduced data set of LWC and Visibility. It is
important to note that the time axis of Figs 1 and 5 is not con-
tinuous.

3. Results and Analysis

The department of Frequency Engineering at Czech Metrology
Institute is conducting measurement campaign at path links of
100 m and 853 m using the wavelengths of 1550 nm, 830 nm and
850 nm along with visibility, LWC and integrated particle surface
area (PSA). A 5 months measured data of visibility and LWC were
collected for detailed analysis. In the measurement campaign we
sampled data at a rate of one sample per minute. The other instru-
ments were calibrated in a way to measure the specific quantity at
the last second of the every minute in parallel with the optical atten-
uation. In metrology theory, it is admitted that fog exists when vis-

ibility is decreased to less to less than 1 km. Therefore we selected
the data set for analysis where the visibility was less than 1 km.
Fig. 1 shows the reduced data set. It is also important to remark
that the time axis in the figure is not continuous. The detailed sta-
tistical analysis to find the best suited distribution model for visi-
bility and LWC data is provided in subsequent sections.

A. Visibility
Visibility is defined as the distance to an object at which the

image contrast drops to a certain percentage of the original con-
trast of the object, equivalent to a certain transmission threshold
tTH over the atmospheric path. Two different definitions for thresh-
old exist, 2% and 5%. The 5% transmission threshold is more com-
monly used at airports to denote the “runway visibility range” RVR
[12, 13]. Another meteorological definition of visibility is the actual
distance at which a person can discern an ideal dark object against
the horizon sky [14]. The visibility range is technically measured
at the center of sensitivity for the human eye (where the sensitivity
of the human eye is maximum), at 550 nm with a spectral band
width of typically 250 nm. Different visibility based empirical models
have been proposed to calculate optical attenuation from visibility,
Kim [15], Pierce [16], Kruse [17] and Al-Naboulsi [18]. Here we
presented the statistical characterization of 5 months measured
visibility data. The analysis of measured visibility is provided in
Fig. 1. 

The horizontal axis of Fig. 1 shows the minutes of the days
and the vertical axis shows the visibility measured in meters. It is
clear from Fig. 1 that there occurred certain dense fog events when
the visibility is less than 100 m. The descriptive statistics of the
visibility is provided in Table l. 

It is important to mention that the minimum value of mea-
sured visibility is 80 m (from Table 1) while the maximum value is
991 m. And also the skewness of the data is positive which shows
that the right tail of the distribution will be longer as compared to
the left tail.

Fig. 1 Analysis of measured visibility 
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After having explored the descriptive statistics we proceed
further to find the best fit distribution for visibility measured data.
We compared all the continuous distribution on the visibility data
by analysing the probability density function (PDF) and Cumula-
tive distribution function (CDF). We performed comparison among
all the distribution by comparing Quantile-Quantile-Plot (QQ plot).
QQ plot is used for comparing two probability distributions by
plotting their quantiles against each other. Here we show the results
of two best fitted distribution for visibility data. The PDF and CDF
of the measured visibility data is provided in Figs 2 and 3 respec-
tively.

Figs. 2 and 3 show that the selected distribution models can be
used for statistical characterization of the behavior of measured
visibility data. We performed the goodness of fit by observing their

QQ plot of measured visibility to find the best fit model between
the selected two models. The QQ plot of measured visibility is pro-
vided in Fig. 4. In Fig. 4 it is clear that Gamma distribution is per-
forming well as compared to Lognormal distribution for measured
visibility. The QQ plot for Gamma distribution is following the
normal line as compared to that of Lognormal distribution. 

The probability density function for Gamma distribution is
provided in equation (1).

(1)

Where κ is a continuous shape parameter (κ � 0), continuous
shape parameter (α � 0), β is scale parameter (β � 0) and γ is
location parameter. We computed the optimum parameters for
Gamma distribution for measured visibility which are provided in
Table 2.
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Fig. 2 PDF over the histogram of measured visibility data

Fig. 3 CDF of the measured visibility

Fig. 4 QQ Plot for Visibility data

Descriptive statistics of the measured visibility Tab. 1

Serial No Statistical Quantity Values

1 Sample Size 2073

2 Range 911

3 Mean 343.74

4 Variance 37688.0

5 Std. Deviation 194.13

6 Std. Error 4.2639

7 Skewness 1.1366

8 Min 80

9 25% (Q1) 197.5

10 50% (Median) 291

11 75% (Q3) 443

12 90% 637.2

13 95% 752.2

14 Max 991
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We concluded that Gamma distribution (4 parameters Gamma
Distribution model) is the best suited model for measured visibility
in the absence of precipitation. The proposed distribution model
can be used under fog conditions.  

B. Liquid water content
LWC is the measurement of mass of water in fog/cloud in

a specified amount of dry air. LWC can be expressed as g/m3.
LWC is different for different types of fog and clouds. The classi-
fication of clouds and fog is highly related to the amount of LWC
and its origin. The combination of LWC and its origin allows to
readily predict the types of conditions that will be, most likely, in
the vicinity of the FSO links [19]. Fog that has very low densities
contains very small amount of water and so eventually results in
lower values of LWC i.e., about 0.05 g/m3 for a moderate fog (vis-
ibility range around 300 m). Much higher values of LWC (around
0.5 g/m3) result in the formation of thick or dense fog (visibility
range of about 50 m) [10]. Fog characterized by several physical
parameters like particle size distribution, temperature, humidity
and LWC has been extensively modeled by drop size distribution
and visibility range.

The analysis of the measured LWC is provided in Fig. 5.

The horizontal axis of Fig. 5 shows the minutes of the days and
the vertical axis shows the LWC measured in g/m3. The descrip-
tive statistics of the measured LWC is provided in Table 3.

It is obvious from Table 3 that 95 % of the time the LWC
remains below 0.17 g/m3.

We applied curve fitting techniques to find the best fit distrib-
ution model for measured LWC. We compared all the continuous
distribution on the LWC data by analysing their PDF and CDF.
We performed comparison among all the distribution by comparing
the QQ plot. The PDF, CDF of the measured LWC data is pro-
vided in Figs. 6 and 7 respectively. Fig. 6 shows that both selected
distribution models can be used for statistical characterization of
LWC under fog conditions. But the results of QQ plot suggest that
Gamma distribution is a better suited model for LWC than com-
pared Beta distribution. 

Optimum parameters for best fitted distribution Tab. 2

Description Distribution Model Parameters

Visibility Gamma
κ � 0.79766, α � 2.8018, 
β � 69.203, γ �78.538

LWC Gen. Gamma
γ � 0.96962, α �1.4269, 
β � 0.0438

Fig. 5 Analysis of measured LWC

Fig. 6 PDF over the histogram of measured LWC

Descriptive statistics of the measured LWC Tab. 3

Serial No Statistical Quantity Values

1 Sample Size 2073

2 Range 0.399

3 Mean 0.06422

4 Variance 0.00281

5 Std. Deviation 0.05304

6 Std. Error 0.00116

7 Skewness 1.4467

8 Min 0.001

9 25% (Q1) 0.021

10 50% (Median) 0.053

11 75% (Q3) 0.093

12 90% 0.128

13 95% 0.17

14 Max 0.4
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We performed the goodness of it by observing the QQ plot of
the measured LWC. The QQ plot is provided in Fig. 8. It is obvious
from Fig. 8 that Gamma distribution model is performing well as
compared to Beta distribution. QQ plot for Gamma distribution is
converging but QQ plot for Beta distribution is deviating for higher
values of LWC. The distribution function for three parameters
Gamma distribution is provided in equation (2)

(2)

Where α is a shape parameter (α � 0), β is scale parameter
(β � 0) and γ is location parameter. We computed the optimum
parameters for Gamma distribution for measured visibility which
are provided in Table 2.

We concluded that Gamma distribution (3 parameters Gamma
Distribution) is the best suited model for measured LWC in the
absence of precipitation. The proposed distribution model can be
used under fog conditions in the absence of precipitation.
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4. Conclusions

A detailed statistical analysis of 5 months real time measured
data of visibility and LWC for terrestrial FSO links has been pre-
sented to find the best fit distribution model for visibility and LWC.
Our findings show that in reduced visibility, due to fog, 4 para-
meters Gamma distribution best fit the measured data of visibility
and 3 parameters Gamma distribution is the best fit distribution
model for LWC in the absence of precipitation. Both proposed
model can be used under fog conditions ranging from dense fog
to light fog and in the absence of precipitation.
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Fig. 7 CDF of the measured LWC Fig. 8 QQ Plot for measured data of LWC
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