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Summary

Mechanical ventilation is a supportive treatment commonly applied in critically ill patients.

Whenever the patient is spontaneously breathing, the pressure applied to the respiratory system

depends on the sum of the pressure generated by the respiratory muscles and the pressure gen-

erated by the ventilator. Patient-ventilator interaction is of utmost importance in spontaneously

breathing patients, and thus the ventilator should be able to adapt to patient’s changes in venti-

latory demand and respiratory mechanics. Nevertheless, a lack of coordination between patient

and ventilator due to a mismatch between neural and ventilator timing throughout the respira-

tory cycle may make weaning difficult and lead to prolonged mechanical ventilation. Therefore,

RESPIRATORY CARE � NOVEMBER 2020 VOL 65 NO 11 1751



appropriate monitoring of asynchronies is mandatory to improve the applied strategies and thus

improve patient-ventilator interaction. We conducted a literature review regarding patient-venti-

lator interaction with a focus on the different kinds of inspiratory and expiratory asynchronies,

their monitoring, clinical implications, possible prevention, and treatment. We believe that moni-

toring patient-ventilator interaction is mandatory in spontaneously breathing patients to under-

stand, by using the available technologies, the type of asynchrony and consequently improve the

adaptation of the ventilator to the patient’s needs. Asynchronies are relatively frequent during

mechanical ventilation in critically ill patients, and they are associated with poor outcomes. This

review summarizes the different types of asynchronies and their mechanisms, consequences, and

potential management. The development and understanding of monitoring tools are necessary to

allow a better appraisal of this area, which may lead to better outcomes for patients. Key words:
asynchrony; diaphragm; dyspnea; intensive care units; mechanical ventilation; work of breathing.
[Respir Care 2020;65(11):1751–1766. © 2020 Daedalus Enterprises]

Introduction

In critically ill patients, the ideal strategy throughout the

duration of mechanical ventilation would be to allow the

patient to generate spontaneous breaths as soon as possible

to avoid diaphragmatic dysfunction due to prolonged con-

trolled mechanical ventilation.1 However, during spontane-

ous breathing, the goal is to maintain synchronous in-

teraction between the patient and the ventilator to reduce

the patient’s inspiratory effort while adapting the ventilator

settings according to the changes in the patient’s ventilatory

demand and breathing mechanics.2-4 Nevertheless, patient-

ventilator interaction is seldom optimized, causing asyn-

chronies that can be defined as a lack of coordination

between patient and ventilator due to a mismatch between

neural and ventilator timing throughout the respiratory cycle

or the magnitude of support provided and demanded.1,3-6

Respiratory Physiology and Mechanical Ventilation

The effects of mechanical ventilation on gas exchange,

respiratory muscle load, and dyspnea depends on the match

between the ventilatory setting and patient’s respiratory

physiology. As described by Ranieri et al,1 the patient is

able to interact with the ventilator based on 3 physiologic

variables: ventilatory drive, ventilatory need, and neural

inspiratory time.7-11

At the same time, these physiologic variables should

match 3 phase variables that define the mechanical breath:

(1) the synchronization system (ie, inspiratory trigger) that

begins inspiration (ie, trigger variable); (2) the pressure or

volume variable that controls the mechanical breath gas

delivery (ie, control variable); (3) the cycling-off criteria

(ie, cycling variable). The synchronization system defines

when the ventilator detects any patient inspiratory effort

and activates a mechanical breath. The pressure or volume

variable defines the type of control, namely volume or pres-

sure, used by the ventilator to deliver the output. The cy-

cling-off criteria define when the ventilator ends its support

of the inspiratory effort, enabling the patient to exhale.1,12-20

Asynchronies

Patient-ventilator asynchrony, as mentioned above, is a

lack of coordination between the patient and the ventilator

due to a mismatch between neural and ventilator timing

throughout the respiratory cycle or the magnitude of sup-

port provided and the support demanded.3-6 Several factors

may cause asynchronies (Fig. 1). Asynchronies according

to the patient respiratory mechanics are shown in Figure 2.

Asynchronies occur whenever there is a mismatch between

the physiologic variables and the technological variables

characterizing the ventilator functioning: respiratory drive

(ie, inspiratory trigger asynchrony), ventilatory need (ie, con-

trol variable gas delivery asynchrony), and neural inspiratory

time (ie, ventilator cycling variable asynchrony).1

Respiratory Drive

Inspiratory trigger asynchrony can be defined as a lack

of coordination between the ventilator inspiratory start crite-

ria and the patient’s respiratory centers output (eg, triggering

delay, ineffective trigger, auto-triggering). Asynchrony in
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the inspiratory phase may be caused by problems with the

inspiratory trigger occurring independent of its algorithm.21

Although modern ventilators integrate flow or pressure trig-

gers, the inspiratory effort required to trigger a breath may

be a significant part of the total inspiratory effort.12-20,22-24

Therefore, the “best” triggering setting should reduce dura-

tion and intensity of the respiratory muscles at its minimum

level, before the mechanical breath starts, while avoiding

auto-triggering. Although the definition of the “best” trigger

is still controversial, it is widely recognize that a good

response time should be< 100 ms.1

In a study in which flow and pressure trigger were com-

pared, Aslanian et al25 reported that during a flow trigger

the time and the effort for triggering were 43% shorter and

62% lower compared to their percentage during a pressure

trigger. However, the subjects’ effort during the post-trig-

gering phase were not significantly different during either

trigger. A neural trigger, as a result of the introduction of a

proper nasogastric tube, provided with an array of electro-

des in the distal esophageal portion, can significantly

improve patient-ventilator interaction.26-28

Ventilatory Need

Control variable gas delivery asynchrony can be defined

as the ventilator not being able to meet the patient’s ventila-

tory demand.1 Ward et al12 reported that increasing the flow

during assisted volume control ventilation mode would

result in a reduction of the patient’s respiratory drive and

work of breathing. Moreover, in volume control ventilation

mode, any leak would decrease the ventilatory output.1,29

Conversely, a breath in pressure control ventilation mode

better matches the patient’s ventilatory needs because the

flow is the dependent variable during the delivery of inspir-

atory pressure, which means it reproduces the physiologic

descendent flow profile better.30

Nevertheless, the setting of pressure-rise time (ie, the time

taken to reach the pressure set on the ventilator) may deter-

mine the flow output and consequently the asynchrony due to

gas delivery.31,32 Although leaks are better compensated for in

the pressure control ventilation mode than during the volume

control ventilation mode, a severe leak, such as occurs during

noninvasive ventilation (NIV), may decrease the ventilatory

output in assisted pressure control ventilation mode.1,29,33-35

Neural Inspiratory Time

Ventilator cycling variable asynchrony can be defined

as a mismatch between the patient’s respiratory center’s

Patient’s respiratory mechanics
(obstructive or restrictive)

Leaks and interface
characteristics
during NIVPatient effort

Ventilator setting

Level of assistance
Cycling criteria

(eg, time, volume, flow)

Ventilator characteristics
(eg, turbine, gas compressed
expiratory valve technology)

SedativesCycle asynchrony

Fig. 1. Several factors may cause asynchrony, some related to

patient characteristics (eg, respiratory mechanics, effort), others
related to the ventilator (eg, setting, level of assistance, cycling cri-

teria) and to the interface used (ie, invasive or noninvasive).
NIV¼ noninvasive ventilation.

Asynchrony according to patient
respiratory mechanics

Obstructive patient

Restrictive patients < Lung compliance > Elastic recoil < FRC

More common asynchronies: delayed cycling and ineffective efforts

More common asynchronies: premature cycling and double-triggering

Expiratory flow limitation Intrinsic PEEP> Te
Airway narrowing

Loss of elastic recoil

Fig. 2. Asynchronies are common in both obstructive and restrictive patients, although alterations of the underlying respiratory mechanics gen-
erate different types of asynchronies. FRC¼ functional residual capacity; Te¼ expiratory time constant.
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neurologic output and the ventilator’s inspiratory time.36

Ventilator cycling asynchrony occurs when, after setting

the cycling criteria (ie, pressure, time, volume, or flow),

the mechanical breath is longer (ie, delayed cycling) or

shorter (ie, premature cycling) than the patient’s neural

inspiration.1,25,32,37,38

Types of Asynchronies

Longhini et al39 classified asynchronies as major (ie,

ineffective triggering, auto-triggering, double-triggering) or

minor (ie, premature or short cycling, prolonged or delayed

cycling, triggering delay). Table 1 lists different types of

asynchronies and their definitions, causes, and strategies to

resolve each asynchrony.

Triggering Delay

Triggering delay is a time lag between the onset of the

patient’s effort and the onset of ventilator pressurization.40

This is a typical asynchrony between the respiratory drive

and the inspiratory trigger, where the phase lag quantifies

the delay between the onset of the inspiratory muscle activ-

ity and the beginning of the mechanical breath.1,5,10,41

Giuliani et al42 reported that the effort performed by the

patient during the triggering phase may interfere with the

patient’s effort during the remaining part of inspiratory

phase. Interestingly, at higher inspiratory demand (ie, high

respiratory drive), the trigger delay is shorter and the degree

of the negative deflection in airway pressure (Paw) is

greater.

Conversely, with a low inspiratory demand (ie, lower re-

spiratory drive), trigger delay is longer and the negative

deflection in Paw is smaller.7,40 Moreover, a threshold load,

such as dynamic intrinsic PEEP, may worsen the triggering

phase.18

Finally, ventilator characteristics such as the position of

the flow/pressure sensor (eg, inside the ventilator or proxi-

mally to the patient’s airway) or a problem related to the

valves, the interfaces chosen (endotracheal tube vs face

mask or helmet), or the high resistances generated by a

heat-and-moisture exchanger (HME) or by the endotracheal

tube are all factors that may influence the trigger

delay.17,20,22,43-47 To detect the triggering delay, the esopha-

geal pressure or electrical activity of the diaphragm (EAdi)

is necessary. Figure 3 depicts a trigger delay of> 100 ms.

Ineffective Effort

Ineffective effort is defined as a patient’s effort being

unable to trigger the ventilator breath. Ineffective effort is

an asynchrony between respiratory drive and inspiratory

trigger. From a clinical point of view, ineffective effort can

be detected by analyzing the breathing frequency shown on

the ventilator monitoring system that is lower than the

breathing frequency monitored by observing the patient’s

chest/abdomen movements.1 Ineffective effort can also be

identified by observing flow and Paw tracings on the venti-

lator monitor; a patient’s effort that is unable to trigger the

ventilator produces a Paw drop concomitant to a flow

increase (Fig. 4).48

There are different causes leading to ineffective effort. A

less sensitive inspiratory trigger in a patient with a low

drive threshold may contribute to ineffective triggering.25

In patients with obstructive lung disease, an inspiratory

threshold load, such as intrinsic PEEP as a consequence of

air trapping, may cause ineffective triggering.49 An external

PEEP in spontaneously breathing patients may counterbal-

ance intrinsic PEEP and hence decrease inspiratory muscle

effort.18,50

Younes et al51 reported that ineffective effort may also

exacerbate dynamic hyperinflation. Metabolic alkalosis

may cause ineffective effort in patients with chronic bicar-

bonate elevation and low carbon dioxide level due to

depression of the neural respiratory drive.52 Sedative drugs

may affect patients’ respiratory drive and may decrease the

ability of the respiratory muscles to trigger the ventilator;

consequently, deep sedation is likely to produce an in-

creased number of ineffective efforts.53 Several studies

reported that a no-sedation protocol in subjects in the ICU

was associated with a reduction of the asynchrony index, as

well as a reduced duration of mechanical ventilation, in

comparison to a daily interruption-of-sedation protocol.54,55

de Wit et al56 reported that the level of sedation relates to

ineffective effort, with a significant increase of ineffective

triggering index for every unit decrease on the Richmond

Agitation-Sedation Scale. Vaschetto et al53 noted that, com-

pared to light sedation, deep sedation with propofol reduces

the respiratory drive and breathing pattern, significantly

worsening patient-ventilator interaction.

Another cause of ineffective effort is asynchrony

between the neural inspiratory time and the ventilator cy-

cling variable. When the patient inspiratory time is shorter

than the mechanical inspiratory time set on ventilator, the

ventilator continues to insufflate the patient during neural

expiration, thus causing hyperinflation.3 Leung et al7

observed that ineffective efforts were common during man-

datory breaths in the intermittent mandatory ventilation

mode because of the large tidal volume and the prolonged

inspiratory time. For these reasons, the use of synchronized

intermittent mandatory ventilation, especially in patients

with COPD, is ineffective in unloading the respiratory

muscles.7 Conversely, in a flow-cycled breath (eg, pressure

support ventilation [PSV] mode), the duration of the me-

chanical inspiratory time is determined by the speediness of

the pressure rise time and by the set flow threshold value

(ie, the expiratory threshold, also called expiratory trigger).

Ideally, the ventilator sensor should always track the end of
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the patient’s flow to assure synchrony.57,58 However, sev-

eral factors may influence this relationship, such as patient

respiratory mechanics, ventilator cycling algorithms, and

ventilator settings. In patients with COPD, the increased

resistance and compliance produce a slower time-expira-

tory constant of the respiratory system. The longer time

needed for the flow to fall to a low threshold value to trig-

ger the expiration can lead to prolonged mechanical inspi-

ration that persists during neural expiration. An appropriate

cycling-off setting may reduce the incidence of ineffective

effort.5,59,60 In addition, the presence of air leaks may

impede a correct cycling in PSV, thus generating prolonged

inspiratory time, especially when a dedicated NIV software

is not used.61-63

Leung et al7 reported that a higher level of assistance

might deeply decrease the patient’s respiratory drive, pro-

longing the triggering time as defined by the onset of

patient effort and the onset of flow delivery by the ventila-

tor. This causes a prolongation of the ventilator breath into

the patient’s expiratory phase, thus decreasing the time

available for the exhalation.44 In patients with COPD, this

behavior will produce a larger tidal volume that is associ-

ated with a shorter expiratory time, which may determine

dynamic hyperinflation and increase intrinsic PEEP.7,48,64

Auto-Triggering

Auto-triggering is a mechanical breath that is not trig-

gered by the patient’s inspiratory effort beyond the manda-

tory breaths (ie, in volume control or pressure control

ventilation mode).1 It is an asynchrony between the respira-

tory drive and the inspiratory trigger. Auto-triggering can

be caused by an extremely sensitive inspiratory trigger

threshold or by changes in pressure and flow that may be

related to random noise in the ventilator circuit (eg, conden-

sate in the respiratory circuit, leaks, or cardiogenic
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Fig. 3. Representative waveforms of flow (red track), Paw (yellow track), and Pes (blue track) in a patient receiving ventilatory support. The blue
arrow shows a delay of > 100 ms between the beginning of inspiratory muscle activity and the beginning of mechanical inflation (ie, trigger
delay). Paw¼ airway pressure; Pes ¼ esophageal pressure.
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Fig. 4. Representative waveforms of flow (red track), Paw (yellow
track), and Pes (blue track) in a patient receiving ventilatory support.
Arrows indicate ineffective effort. The ventilator is enable to detect

the patient’s effort as a deflection on Pes generating only a bump in
Flow and Paw tracings. Paw ¼ airway pressure; Pes ¼ esophageal

pressure.
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oscillations).46 In particular, a large stroke volume is able to

trigger the breath by cardiac oscillation, especially when

the sensitivity of the triggering is too high and the patient’s

drive is low (eg, a sedated patient).53,65 Potential conse-

quences of auto-triggering are respiratory alkalosis, wor-

sening intrinsic PEEP, and cardiac embarrassment.66

(Fig. 5).

Double-Triggering

Double-triggering, also called double-cycling or breath-

stacking, consists of 2 breaths that may or may not be sepa-

rated by a very short expiratory time. Double-triggering is

caused by high patient ventilatory demand coupled with a

too-short ventilator inspiratory time compared to the

patient’s neural time; this causes 2 inspiratory cycles with a

limited expiratory phase (Fig. 6).21,66,67

Double-triggering can be related to an asynchrony

between neural inspiratory time and ventilator cycling vari-

able or an asynchrony between ventilatory need and control

variable gas delivery when the ventilator fails to meet the

patient’s flow demand. This results in the patient’s neural

effort continuing beyond the ventilator’s inspiratory time.

If the patient has a high respiratory drive, an additional

breath can be generated with or without a very short expira-

tory time.68,69 Double-triggering develops mainly when the

ventilator delivers a fixed flow or when lower tidal volumes

are set in the presence of high patient inspiratory flow

demand. Double-triggering can also occur in the event of

poor matching between neural and mechanical inspiratory

times (ie, asynchrony between neural inspiratory time and

ventilator cycling variable), especially when a high-flow

termination criterion is applied to a restrictive lung condi-

tion in PSV mode.66

In the volume control ventilation mode, double-trigger-

ing may be particularly dangerous, especially in patients

with ARDS under protective lung ventilation.70 Double-

triggering can generate high volumes and cause overinfla-

tion, thus inducing ventilator lung injury and a possible

increase in right-ventricular afterload.66,69 Double-
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Fig. 5. Representative waveforms of flow (red track), Paw (yellow track), and Pes (blue track) in a patient receiving ventilatory support showing 2
samples of auto-triggering (blue arrows). A: 3 mandatory breaths are delivered in the absence of the patient’s inspiratory effort, separated by a
very short expiratory time. B: A single mandatory breath is delivered in the absence of the patient’s inspiratory effort. Paw ¼ airway pressure;

Pes¼ esophageal pressure.
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triggering in the pressure control ventilation mode seems to

be less dangerous because alveolar pressure increases dur-

ing inspiration with a concomitant decrease in the driving

pressure of the next breath.71

Reverse-Triggering

Reverse-triggering is a type of asynchrony that happens

when a patient’s effort occurs after the initiation of a venti-

lator breath (ie, a breath not triggered by the patient).

Usually, reverse-triggering represents an underrecognized

asynchrony in which the ventilator triggers diaphragmatic

muscle contractions through activation of the patient’s re-

spiratory center in response to passive insufflation of the

lungs.72 With reverse-triggering, the effort frequently starts

during the insufflation and continues during the expiration.

The detection of patient effort that is triggered by a ventila-

tor breath is easier to detect during pressure control ventila-

tion because the flow changes when the effort occurs early

enough in the inspiratory phase. Kallet et al73 reported this

kind of asynchrony as a common observation during lung-

protective ventilation. Because the patient’s inspiratory

muscles are still active at the beginning of expiration, pre-

venting the elastic recoil of the respiratory system, the peak

expiratory flow is markedly reduced.74 Reverse-triggering

appears in deeply sedated patients, with or without lung

injury, and it seems particularly common in those transi-

tioning from sedated to awakened states.75 Interestingly, de

Haro et al68 reported that one third of double-cycling

breaths were reverse-triggered, primarily in association

with deeply sedated subjects not triggering the ventilator.

Flow Asynchrony

Flow asynchrony is an asynchrony between ventilatory

need and control variable gas delivery. Flow asynchrony

occurs when the ventilator flow output does not coincide

with the patient’s demand.73,76 Inadequate gas delivery is

common when ventilator flow is set inappropriately low,

when the combination between tidal volume and inspira-

tory time does not result in adequate flow to the injured

lung, or when inspiratory flow demands are high and vary

from breath to breath.77 Flow asynchronies appear to be

more common with ventilatory settings that deliver a fixed

flow (ie, flow-targeted breaths) rather than with a flow that

can vary with effort (ie, pressure-targeted breaths).78

Cycling Asynchronies

A cycling asynchrony can be defined as a mismatch

between the patient’s neurologic respiratory center and ven-

tilator’s inspiratory time.1,25,32,36-38 If the ventilator’s set

inspiratory time exceeds the patient’s neurological inspira-

tory time, delayed cycling occurs. On monitor graphics, a

pressure spike in PSV mode is detectable, originated by the

recruitment of the expiratory muscles as a response to ex-

cessive muscle loading.72 Delayed cycling may occur

because of nonintentional leaks that may prevent the venti-

lator from cycling from the inspiratory to the expiratory

phase (ie, so-called inspiratory hang-up). This is more

likely to be seen during NIV when the ventilators do not

have software to compensate for air leaks or do not include

a time criteria for cycling-off.61 Delayed cycling, especially

in obstructive conditions (Fig. 2), may cause ineffective

triggering. If the ventilator’s set inspiratory time is less than

the patient’s neurological inspiratory time, short-cycling

(ie, premature cycling) may occur. A high expiratory

threshold time in PSV mode may also cause a short inspira-

tion and lead to premature cycling, especially in patients

with low compliance, such as in ARDS.72,79 If the patient’s

effort exceeds the time of mechanical support, another

breath may also be generated (ie, double-triggering).

Clinical Implications

Asynchronies are often unrecognized, underestimated,

and inappropriately treated.5,24,27,80,81 The asynchrony rate

during invasive ventilation varies, widely ranging from

10% to 50%, with a prevalence of ineffective efforts, espe-

cially in patients with COPD.48,80,82,83
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Fig. 6. Representative waveforms of flow (red track), Paw (yellow
track), and Pes (blue track) in a patient receiving ventilatory support.
The figure shows a double-triggering in the pressure support venti-

lation mode depicted by the presence of 2 inspiratory cycles sepa-
rated by a very short expiratory time. Paw ¼ airway pressure; Pes ¼
esophageal pressure.
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The incidence of asynchronies has been defined as the

asynchrony index, which is a percentage value of the total

number of asynchronous events divided by the sum of the

total ventilator cycles plus the ineffective efforts.56,84 A high

incidence of asynchrony is commonly defined as an asyn-

chrony index> 10%, and it may be related to a patient’s dis-

comfort, increased work of breathing, or prolonged weaning

due mainly to wasted diaphragmatic energy.8,48,64 Several

studies have reported that an asynchrony index > 10% may

significantly increase the duration of mechanical ventilation

and the risk of tracheostomy, and it may be associated with a

higher mortality rate.3,56,85 Further studies are needed to

define its role in predicting patient prognosis. A schematic

representation of the clinical implications of poor patient-

ventilator interactions is shown in Figure 7.

Ventilator-Induced Diaphragmatic Dysfunction

Ventilator-induced diaphragmatic dysfunction it is an

important risk factor for poor patient-ventilator interaction,

contributing to prolonged ventilator dependence and poorer

outcome.86-91 During partial ventilator support, asynchro-

nies can have an especially important impact on respiratory

muscle function, in particular during ineffective efforts

occurring in the exhalation phase of the previous mechani-

cal breath, because the inspiratory muscles contract when

they should relax as lung volume decreases to functional re-

sidual capacity.92 The result is a so-called eccentric or plyo-

metric contraction, which leads to ultrastructural muscle

damage, cytokine release, and muscle strength reduction

with consequent deficit of force and weaning failure.93-96

Difficult Weaning

Difficult weaning is closely related to asynchronies.

Chao et al84 reported that the wasted diaphragmatic energy

due to ineffective efforts had negative effects on the wean-

ing process, significantly prolonging mechanical ventila-

tion in subjects with an asynchrony index> 10% compared

to those with an asynchrony index < 10%. More recently,

de Wit et al56 demonstrated that asynchrony index > 10%

was related to longer duration of mechanical ventilation

and shorter ventilator-free survival, along with lower likeli-

hood of home discharge. A similar trend toward longer me-

chanical ventilation was confirmed by other studies that

also noted an association between an asynchrony index >
10% and a higher mortality rate.48,85

Patient Discomfort and Cognitive Dysfunction

Sleep quality may be deeply influenced by patient-venti-

lator interaction, and a high percentage of asynchronies

appear to be responsible for sleep disruption.97 An improve-

ment of sleep quality may be obtained with the reduction of

the ventilatory support, which leads to a more stable breath-

ing pattern, fewer missed efforts, and periodic breath-

ing.92,98 Furthermore, the type of ventilatory support may

play a role in sleep quality by reducing the number of asyn-

chronies.66,97,98 However, the relationship between the

patient-ventilator interaction and quality of sleep is still con-

troversial. Alexopoulou et al99 did not observe improvements

in sleep quality during proportional assist ventilation+ com-

pared to PSV, despite the former being able to improve

patient-ventilator interaction, whereas neurally adjusted ven-

tilatory assist was found able to improve sleep quality com-

pared to PSV.100

Dyspnea

Dyspnea, defined as breath discomfort, is a common

consequence of poor interaction between the patient and

the ventilator and is strongly associated with anxiety in

mechanically ventilated patients.101 In up to one third of

patients, changes in ventilatory settings are able to reduce

dyspnea and the associated anxiety, whereas the inability to

reduce dyspnea by modifying ventilator settings seems to

be associated with delayed extubation.66 The relationship

between dyspnea and asynchronies still needs to be thor-

oughly investigated.81 Finally, asynchronies are associated

with persistent neuropsychological alterations in critically

ill patients.102 A profound sleep disruption with a high fre-

quency of arousals and awakenings is related with acute

onset of impaired cognitive function, visual hallucinations,

delusions, and illusions.103,104

How to Monitor Asynchronies

The importance of an accurate analysis and quantifica-

tion of asynchronies is mandatory.3,66 However, precise

analysis is still challenging in everyday clinical practice.105

Diaphragmatic
dysfunction (VIDD) Difficult and prolonged

weaning

Temporary and/or persistent
neuropsychological alterations

Sleep disruption

Dyspnea

ASYNCHRONY

Fig. 7. Clinical implication of poor patient-ventilator interactions.
VIDD¼ ventilator-induced diaphragmatic dysfunction.
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Visual Analysis

Different patterns of asynchrony can be detected by vis-

ual inspection of flow/time and pressure/time waveforms in

ventilated patients. Ineffective effort and double-triggering

are the most common and easily detected asynchronies.92

Although a bedside evaluation of respiratory waveforms is

a traditionally accepted and reliable method to identify

asynchronies,106-108 this technique requires specific skills

and expertise.109-111 It has also been suggested that an incor-

rect estimation of the patient’s breathing frequency is one

of the consequences of the difficulties in appreciating

patient-ventilator asynchronies.56,81 Furthermore, while the

identification of asynchronies appears easy in extreme sit-

uations in which the patient “fights the ventilator,” in other

circumstances it is more difficult to detect asynchronies

because most of them occur without any clinical signs.48,56

Therefore, specific training appears to be crucial for cor-

rect asynchrony detection. Colombo et al110 studied the ac-

curacy of experienced ICU physicians in detecting

asynchronies in comparison with less experienced physi-

cians (ie, first-year residents); both groups had poor per-

formance because of the absence of specific training. These

results are in line with the data reported by Chacòn et al.111

In addition, the use of additional signals that reflect the

patient’s respiratory efforts is often required to increase the

ability to recognize the asynchronies.112

Esophageal Pressure

The use of esophageal pressure allows the clinician to

detect every inspiratory effort, thus providing accurate in-

formation regarding the patient-ventilator interaction.113

The simultaneous observation of Paw, inspiratory flow, ex-

piratory flow, and esophageal pressure waveforms allows

the clinician to correctly match the patient’s inspiratory

effort with each mechanical breath. This may enable the

identification of ineffective effort as an esophageal pressure

deflection that is not followed by a ventilator cycle.105

However, even if this is the standard technique for asyn-

chrony detection, this measurement is still not available yet

for routine use in daily practice due to its invasiveness.114,115

EAdi

A specific nasogastric tube provided with a multiple

array of electrodes allows the continuous recording of the

EAdi.
27,37,116 Only one ventilator uses this signal for trigger-

ing. EAdi enables the detection of the onset and duration of

the neural breath.105 However, like the esophageal pressure

measurement, EAdi does not represent a routine measure-

ment in clinical practice.66

Diaphragmatic Ultrasound

Another method to detect asynchronies is the diaphrag-

matic ultrasound. The direct observation of the diaphragm

thickening can allow the detection of the patient’s inspira-

tory effort.117 This simple and noninvasive approach is still

not standardized, and it requires the synchronization of ven-

tilator waveforms with the diaphragmatic ultrasound signal,

so its use still requires investigation.118

Automatic Methods

The real-time automatic detection of asynchronies, based

on a machine learning approach, is a promising method

aimed at identifying and quantifying asynchronies breath

by breath without being affected by any kind of noise, such

as secretions and body movements.105,115 Most systems

today are intended to identify the most common asynchro-

nies, such as ineffective efforts. Chen et al119 evaluated

software dedicated to the detection of ineffective efforts,

using a computerized algorithm based on the characteristic

features of flow and Paw deflections. The investigators

applied their software to 14 mechanically ventilated adult

subjects demonstrating a sensitivity and specificity > 90%

in detecting ineffective triggering.119 Mulqueeny et al120

studied an algorithm embedded in a ventilator system that

was able to automatically detect the occurrence of ineffec-

tive effort and double-triggering in real time. The software

was applied during both invasive and noninvasive ventila-

tion, and it showed an overall accuracy of > 95%.120

Younes et al121 developed a new approach for monitoring

and improving patient-ventilator interaction that uses a sig-

nal generated by the equation of motion. More recently,

Blanch et al122 validated a software that is able to detect

ineffective effort during invasive ventilation, as well as

other kinds of asynchronies such as double-triggering,

aborted inspiration, and short and prolonged cycling. Other

systems aimed at automatically and noninvasively detect-

ing asynchronies have been developed, such as spectral

analysis of airway flow, the comparison between Paw and

EAdi waveforms, and specific algorithms.83,123

Strategies to Improve Patient-Ventilator Interaction

Conventional Ventilator Support

Patient-ventilator interaction is strongly influenced by

the ventilatory mode and settings used, as well as by the

type and level of sedation. In conventional ventilation, trig-

ger settings may affect patient-ventilator interaction. In

fact, a low sensitivity setting for the inspiratory trigger may

increase triggering effort, while an oversensitive trigger

may cause auto-triggering, especially in cases of decreased
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neuromuscular drive like polyneuromyoathy.65,89,106 During

invasive ventilation, auto-triggering may be caused by

noise in the ventilator circuit (eg, condensate in the respira-

tory circuit), whereas during NIV auto-triggering is caused

mainly by nonintentional leak.46,63 It is worth noting that,

among the new algorithms recently developed to improve

patient-ventilator interaction, the neural trigger seems to be

able to improve all of the drawbacks of triggering asynchro-

nies, including those due to the presence of inspiratory

PEEP and leaks.26-28

High levels of support have several detrimental effects

on the ventilated patient, most notably hyperventilation,

which may cause ineffective efforts, sleep fragmentation,

and eventually apnea.98 High levels of support should be

avoided in patients affected by chronic heart failure, who

are particularly exposed to central apnea and abnormal

breathing pattern, due to increased chemoreceptor sensitiv-

ity. In patients with COPD, a high level of support, espe-

cially when associated with a low expiratory threshold,

prolongs the mechanical insufflations after the end of the

neural inspiratory time, causing dynamic hyperinflation and

consequent ineffective efforts.48,124 Chao et al84 reported that

reducing the level of pressure support in subjects with

COPD was the most effective strategy to decrease the num-

ber of ineffective efforts.

As previously explained, the patient–ventilation interac-

tions worsen because of inappropriate inspiratory flow in

continuous mandatory ventilation or an inadequate pressure

rise time influencing the duration of a PSV breath.12,31

Finally, air leaks may affect both pressure control and vol-

ume control ventilatory support, but to a greater extent for

the latter.1

Properly setting the inspiratory time is another important

aspect of conventional ventilation. Mechanical breaths that

are too long or too short may cause asynchronies due to poor

matching between the neural and mechanical inspiratory

times.3,21,67,92 This could happen during time-cycled modes

(eg, volume control or pressure control ventilation) or during

a flow-cycled breath (ie, PSV mode) when the expiratory

flow threshold is improperly set.58,66 Nonintentional leaks

during NIV with ventilators that do not have leak-compensa-

tion software may increase the time of mechanical breaths,

thus worsening patient-ventilator interaction.61,63,125 The

application of appropriate external PEEP in patients with

COPDmay help reduce ineffective efforts.126,127

Sedation has as an important effect on patient-ventilator

interaction. It is well known that deep sedation may

increase the number of missed efforts.128 Nonsedated

patients often show higher breathing frequency, with a rele-

vant frequency of double-triggering.54 Vaschetto et al53

reported that deep sedation with propofol significantly

reduce the respiratory drive as assessed with EAdi, whereas

lower doses of propofol had fewer or no effects on patient-

ventilator interaction.7 Interestingly, dexmedetomidine

compared with propofol resulted in fewer asynchronies

without influencing respiratory timing or drive.129 Costa et

al130 reported no effect of incremental doses of remifenta-

nil, a potent short-acting opioid drug, on respiratory drive,

although there was an increase in the neural expiratory

time, which resulted in a parallel reduction of breathing

frequency.

Nonconventional Ventilator Support

Proportional assist ventilation and neurally-adjusted ven-

tilatory assist are new modes of ventilation that provide as-

sistance that is proportional to the patient’s inspiratory

effort; these modes can reduce asynchronies, as demon-

strated by an increasing amount of data.4,131-134 In compari-

son with PSV, both proportional assist ventilation and

neurally-adjusted ventilatory assist are able to prevent

hyperinflation, improve neuro-mechanical coupling, restore

the variability of the patient’s respiratory pattern, and

improve patient-ventilator interaction.135,136 It has been sug-

gested that these innovative modes of ventilation should be

considered when asynchronies persist after conventional

ventilation adjustments.81

Noisy ventilation, a variable mechanical ventilation

mode that is introduced by a variability in the respiratory

pattern, is supposed to be beneficial to the respiratory func-

tion and to be less harmful to the sick lung than traditional

PSV.137 Noisy or variable PSV applies a random variation

in support levels, thus improving lung function and reduc-

ing pulmonary inflammatory response.138 Spieth et al139

reported that during noisy PSV, with randomly generated

pressure support values according to a Gaussian distribu-

tion, the number of asynchronies was lower in comparison

with conventional PSV. Furthermore, noisy PSV does not

require closed-loop mechanisms or the insertion of an

esophageal catheter, which make it technically easier to

implement.

Summary

The monitoring of patient-ventilator interaction is a cru-

cial aspect in treating spontaneously breathing patients and

should be mandatory. Understanding the correct genesis of

the various types of asynchronies, independent of available

technologies, would improve patient–ventilation interaction

and could eventually improve patient outcomes.
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