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Abstract

We develop a numerical model for a defect-containing 2D lattice of microporous lattice with embedded ultracold atomic 
clusters (quantum dots). It is assumed that certain fractions of quantum dots and micropores are absent, which leads to 
transformation of polariton spectrum of the structure. The dispersion relations for polaritonic modes are derived as functions 
of defect concentrations and on this basis the band gap as well as the effective masses of lower and upper dispersion branch 
polaritons.  
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Introduction

Fabrication and utilization of novel materials as 
sources of coherent irradiation constitute presently a 
vast interdisciplinary scientific area of experimental and 
theoretical research. It spans condensed matter physics, 
laser physics, nanotechnology, chemistry and information 
science. Particular actuality is gained by the investigations 
into possibilities of alteration of physical properties of 
the resulting composite structures by application of 
suitable external actions and perspectives of controlling of 
electromagnetic wave propagation therein. The existing 
optoelectronic devices can be roughly deviled into two 
types, namely those utilizing the disturbances of electronic 
subsystems of constituting materials, and those based on 
optical properties of the corresponding composite structures. 
However, lately the fabrication of optoelectronic devices gave 
rise to a new class of problems connected with formation 
of polaritonic structures [1,2] – a new type of photonic 
crystals [3] featured by a strong coupling between quantum 
disturbances of the medium (excitons) and electromagnetic 

field. The growing necessity for examination of polaritonic 
structures gave rise to polaritonics as an independent 
branch of photonics. The dissemination of optoelectronic 
devices creates an increasing interest for optical modes in 
microporous systems [4,5] comprised by arrays of tunnel-
coupled micropores (microresonators) and spatially periodic 
weakly interacting ensembles of two-level atoms. Such 
structures possess the property of polariton localization 
analogous to localization of light in photon crystals studied 
by non-linear optics (see Lee RK, Vučković J [6,7]) and 
exciton localization in quasi-periodic solid structures [8,9]. 
Lee RK [6] is devoted to defect-based resonators in photonic 
crystals; Amo A, et al. [10] contains demonstration of the 
attainment of strong binding between a quantum dot and 
such a resonator. In [3, 4] the formation of quantum solitons 
coupled to the lower-dispersion branch (LDB) polaritons 
was theoretically investigated for a chain of micropores. 
The authors Alodjants AP, Sedov ES, et al. [1,2] suggest that 
their result may prove useful for the purposes of quantum 
information processing. Microporous systems can also be 
employed for the construction of highly accurate optical 
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clockworks [11-13]. Nanostructures such as microporous 
silicon [14], expected to solve the tasks of improvement of 
the functional complexity of the semiconductor devices.

Basing on the concepts of ideal polaritonic structures 
[3] and on the previously developed theory of exciton-like 
electromagnetic excitations [15] in Rumyantsev VV [16] 
we consider a non-ideal polaritonic crystal as a system of 
coupled micropores (microresonators). It is of interest to 
consider an array of such resonators with embedded atomic 
clusters (quantum dots). In the present article we study the 
dispersion of electromagnetic excitations in a non-ideal two-
dimensional lattice of coupled micropores as affected by the 
variable composition of quantum dots as well as the variable 
composition of the micropores. It is worthwhile recalling 
that the polariton model [1,2,15,16] of the atomic-optical 
interaction utilized in this paper is valid only for the case of 
ultra-cold atoms with “frozen” (within the micropore) spatial 
degrees of freedom. This approximation holds for relatively 
small numbers of atoms embedded within each micropore 
( 410N ≤ ) [17]. Parameter g  of the strong atomic-optical 
interaction should obey the relation

2 cohg π τ , (1)

i.e. in each micropore g  should much exceed the inverse 
coherence time of the atomic-optical system [18]. Physically, 

cohτ  is the time of thermodynamic equilibration of the atomic 
system, which interacts with electromagnetic field within 
the structure of polariton crystal. Inequality (1) is attained 
at low temperatures of the order of several mK when it is 
possible to neglect the spectral line broadening.

Numerical Model of a Microporous Lattice

A frequently used method to fabricate a polaritonic 
crystal is the trapping of two-level atoms in an ideal coupled-
resonator optical waveguide (CROW) [1,2] or in a nonideal 
array of microcavities [15,16]. To keep our discussion 
sufficiently general let us first of all consider a two-
dimensional microporous lattice with an arbitrary number 
σ  of sublattices and then tackle the important particular 
case of 1σ = . Assume that the α -th sublattice is composed 
of ( )s α  types of randomly distributed resonators, each of 
whom contains a quantum dot (a one-level atomic cluster) 
pertaining to one of ( )r α  types. Quantum dots interact with 
resonator-localized quantized electromagnetic fields and 
each of tunnel-coupled resonators possesses a single optical 
mode. In the coordinate representation the Hamiltonian of 
the described superstructure writes:

ˆ ˆ ˆ ˆ
at ph intH H H H= + + .(2)

In (2) Hamiltonians of the atomic (quantum dot) 

subsystem ˆ
atH , photonic (micropores) subsystem ˆ

phH  and 

their interaction ˆ
intH  equal correspondingly to 

,
,

1ˆ ˆ ˆ
2at at n nm

n n m
H H V= +∑ ∑

, 

,
,

1 ˆˆ ˆ
2ph ph n nm

n n m
H H A= −∑ ∑

, 

ˆˆ
int n

n
H G=∑ , where ,

ˆ
at nH  is the Hamiltonian of a 

stationary (ultracold) quantum dot embedded at the n -th 
micropore, n̂mV  is the operator of Coulomb interaction 
between quantum dots in n -th and m -th micropores, 

,
ˆ

ph nH  defines the state of electromagnetic excitation 
localized at the n -th micropore, ˆ

nmA  describes an overlap of 
optical fields of the n -th and m -th micropores (and hence 
the transfer probability of the corresponding electromagnetic 
excitation). Writing interaction operator ˆ

intH  as a sum of 
unary operators ˆ

nG  is justified under the assumption that 
each of micropore-localized electromagnetic excitations 
interacts only with the quantum dot embedded at the same 
micropore. n  and m  are complex indices defined by the 
expressions ( , )nn α≡ , ( , )mm β≡ , where two-
dimensional vectors n  and m  define positions of elementary 
cells in the superlattice, whereas α  and β  numerate 
sublattices and assume values 1,2,3...σ .

Let us in accordance with [17,18] calculate the energy 
spectrum of the studied system by writing down its 
Hamiltonian Ĥ  as a sum of the following second quantization 

operators:

, , ,

, , ,

, , ,

1ˆ ˆ ˆ ˆ ˆ ˆˆ ,
2

1ˆ ˆ ˆ ˆ ˆ ˆˆ ,
2

ˆ ˆˆ

at at at at at
at nf nf nf nf mg nf mg nm mh nl mh nl

n f n m f g h l

ph ph ph ph ph
ph n n n n m n m nm m n m n

n n m

at ph
int ng n ng n n n

n f g

H b b b b V b b

H A

H b G

µ µ µ µ ν µ ν λ ρ λ ρ
µ µ ν λ ρ

µ µ
µ ν

ε ϕ ϕ ϕ ϕ

ε φ φ φ φ ϕ ϕ ϕ ϕ φ φ

φ ϕ ϕ ϕ

+ + +

≠

+ + +

≠

+ +

= +

= −

=

∑ ∑∑∑

∑ ∑∑∑

∑ ∑ ˆ ˆ .at ph
f n nf nbν νϕ φ

 	

 (3)

Here at
nfε , ph

nµε  are the eigenvalues of operators ˆ
atH  and 

ˆ
phH , correspondingly. Wave functions at

nfϕ , ph
nλϕ  characterize 

the states of quantum dot and electromagnetic field at the n

-th resonator (micropore), while the Hermitian conjugate 
(non-Hermitian) creation and annihilation operators 

n̂fb+ , 

n̂fb , n̂µφ + , n̂µφ  describe, correspondingly, the states f  of 
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quantum dot and the states µ  of electromagnetic field at the 

n -th micropore. n̂fb+ , n̂fb  and n̂µφ + , n̂µφ  are Pauli operators, 

which satisfy the following commutation relations 
ˆ ˆ ˆ ˆ 1nf mg mg nfb b b b+ ++ = , ˆ ˆ ˆ ˆ 0nf mg nf mgb b b b+ += =  for nf mg=  and 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0nf mg mg nf nf mg mg nfb b b b b b b b+ +− = − = for nf mg≠  

(analogous commutation relations hold for n̂µφ +  and n̂µφ ). 

The determination of the wave functions of the quantum 
dots at

nfϕ  and the electromagnetic excitations localized in the 

micropores ph
nλϕ  (and also the corresponding energies at

nfε , 

ph
nµε ) is achieved by means of a self-consistent variational 

procedure, as described in Davydov S [18].

Let us make a reasonable assumption that the densities 
of excited states of elements in both constituent subsystems 
(atomic and resonator) is a small quantity. This allows to 
simplify the energy operator (2)-(3) by approximating Pauli 
operators with Bose operators 

0
ˆ ˆ ˆ
nf n nfb b B+ +≈ , 

0
ˆ ˆ ˆ
n nf nfb b B+ ≈ , 

0
ˆ ˆ ˆ
n n nnµ µφ φ+ +≈ Ψ , 0

ˆ ˆ ˆ
n n nnµ µµφ φ+ ≈ Ψ . Next, since we are 

constructing a one-level model, indices f , g , h , l  in (3) 
should assume the values 0  and a , while indices µ , ν , λ , 
ρ  assume values 0  and 1. Therefore within the Heitler-

London approximation the quadratic (in ˆ
nfB  and ˆ

nnµµΨ ) part 
of Hamiltonian (3) is given by the following expressions:

( )0 0 0 0 0 0

( )
0 0

, ,

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

H L at at at at at at at at
at na na m nm m na n m nm m n na na

n m

at at at at at a
n ma nm m na na ma na na na nm na ma

n m n n m

H V V B B

V B B B B V B B

ε ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ω

− +

+ + +

 = ∆ + − + 
 

+ ≡ +

∑ ∑

∑ ∑ ∑

 

(4)

( )
1 0 1 0 1 0 0 1

1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ .

H L at ph at ph at ph at ph
int n na n n n na n n na na n n n n

n

n n na n na
n

H B G B G

g B B

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− + +

+ +

= Ψ +Ψ ≡

≡ Ψ +Ψ

∑

∑

(5)

( )1 1 0 0 1 0 0 0 0 1 1

0 1 0 1 1 1 1 1 1 1 1
, ,

ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

H L ph ph ph ph ph ph ph ph
ph n n m nm m n n m nm m n n n

n m

ph ph ph ph ph
n m nm m n n m n n n nm n m

n m n n m

H E A A

A A

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ω

− +

+ + +

 = − − Ψ Ψ − 
 

− Ψ Ψ ≡ Ψ Ψ − Ψ Ψ

∑ ∑

∑ ∑ ∑

 (6)

In (4) and (5) appear the frequency characteristics 1
ph

nω
, at

nαω  of micropore (resonator) and atomic subsystems as 
well as the matrix of resonant coupling:

( )
0 0

ˆat at at at a
n ma nm m na nmV Vϕ ϕ ϕ ϕ ≡ , 

0 1 0 1
ˆph ph ph ph

n m nm m n nmA Aϕ ϕ ϕ ϕ ≡ . (7)

In (6) it is taken into account that the wave functions of 
quantum dots and electromagnetic fields are real-valued and 
hence 

0 1 0 0 0 1
ˆ ˆat ph at ph at ph at ph

n n n na n na n n n n nG G gϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= ≡ .

The deviation from ideality of the considered system 
consists in disordering of its resonant and atomic subsystems. 
Mathematically this is reflected in the fact that the quantities 

1
ph

nω
, at

naω  , ( )a
nmV , 

nmA  and 
ng  are configurationally 

dependent and therefore Hamiltonian (2) is not translation 
invariant. One of the methods of obtaining the spectra of 
quasiparticle excitations in disordered systems with 
randomly distributed elements consists in finding the poles 
of configurationally averaged resolvent of the appropriate 
Hamiltonian [19]. The said resolvent is translation invariant 
and so the corresponding elementary excitation spectrum 
can be described by a wave vector k . To carry out the 
necessary calculation one should inevitably adopt a certain 
approximation, whose choice is dictated by the specifics of 
the studied system. A widespread tool for evaluation of 
quasiparticle states in disordered media is the virtual crystal 
approximation (VCA) [19,20]. It is particularly suitable for 
tracing the effect of defect concentrations on the specifics of 
the spectrum and the related quantities. Within the VCA the 
averaged resolvent equals to the resolvent of the averaged 
Hamiltonian, and it is the latter, which needs to be 
diagonalized in order to calculate the spectrum. In what 
follows we use this approximation to analyze electromagnetic 
excitations and optical characteristics of the studied 
microporous superstructure.

Let us, by analogy with [15,16] express the 
configurationally dependent quantities 

n
at at
na αω ω≡ , 

1 n
ph ph

n αω ω≡ , ( )a
nmV , nmA  and ng  through the random 

quantities ( )
,at n

ν α
αη  ( ( )

,ph n
ν α

αη ):

( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( )
, , , ,

1 , ( ) 1

, , , ,
1 , ( ) 1

; ,

; .

n n n m n m

n n n m n m

n m

n m

r r r
at a

at at at at

s s s
ph

ph ph ph ph

V V

A A

α α β
ν α ν α ν α µ β ν α µ β

α α α α β αβ α β
ν α ν α µ β

α α β
ν α ν α ν α µ β ν α µ β

α α α α β αβ α β
ν α ν α µ β

ω ω η η η

ω ω η η η

= =

= =

= −

= −

=

=

∑ ∑

∑ ∑

 

(8)
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Configurational dependence of both constituent subsystems 
is reflected in the quantity ng

( ) ( )

( )

( )

( )

( )
( ) ( )
, ,

1 1

r s

n at phg g
α α

ν α µ α ν α µ α
α α α

ν α µ α

η η
= =

= ∑ ∑ n n ,    (9)

where ( )
, 1nat

ν α
αη =  ( ( )

, 1nph
ν α

αη = ) if the nα -th site is occupied 

by a quantum dot (resonator) of the ( )ν α -th type and 

( )
, 0nat

ν α
αη =  ( ( )

, 0nph
ν α

αη = ) in all other cases. On the assumption 

that the ordering states of the two subsystems are 
independent of each other we arrive at the following 
expressions for the configurationally averaged quantities

( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )
( ) ( )

( )
, , , ,

1 , ( ) 1

, , , ,
1 , ( ) 1

, ,
1 1

; ,

; ,

,

r r r
at a

at at at at

s s s
ph

ph ph ph ph

r s

n at ph

C V V C C

C A A C C

g g C C

α α β
ν α ν α ν α µ β ν α µ β

α α α α β αβ α β
ν α ν α µ β

α α β
ν α ν α ν α µ β ν α µ β

α α α α β αβ α β
ν α ν α µ β

α α
ν α µ α ν α µ α
α α α

ν α µ α

ω ω

ω ω

= =

= =

= =

= −

= −

=

=

=

∑ ∑

∑ ∑

∑ ∑

n n m

n n m

n m

n m

 

(10)
where angular brackets denote the averaging procedure. 

( )
,atCν α
α

 ( ( )
,phCν α
α

) and ( )
,atCµ β
β

 ( ( )
,phCµ β
β

) denote concentrations of 

the ( )ν α -th and ( )µ β -th type of elements of the atomic 

or resonator subsystems. There hold the obvious relations 

( )

( )

( )

, 1
r

atC
α

ν α
α

ν α

=∑
, 

( )

( )

( )

, 1
s

phC
α

ν α
α

ν α

=∑
.

Configurational averaging allows to “restore” the 
translation invariance of a nonideal superstructure (which is 
essentially the central idea of the VCA) and to characterize 
the eigenvalues and eigenfunctions of Hamiltonian H  of 

the resulting virtual crystal by a wave vector ( ), ,0k x yk k=

. In k -representation Hamiltonian H  writes as

ˆ ˆ ˆ ˆ ,
k k k kat ph intH H H H= + +  (11)

where 	

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

,

1 1
,

1 1

ˆ ˆ ˆ ,

ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ .

nk

nk

nk

k k k

k k k

k k k k

at a
at a a

ph
ph

int a a

H V B B

H A

H g B B

α αβ αβ α β
α β

α αβ αβ α β
α β

α α α α α
α

ω δ

ω δ

+

+

+ +

 = + 

 = − Ψ Ψ 

 = Ψ +Ψ 

∑

∑

∑





 

(12)

Here ( )( ) kaVαβ , ( )kAαβ , ( )ˆ kaBα , ( )1
ˆ kαΨ  are the Fourier 

components of ( )
n m

aV α β , n mA α β , ˆ
naB and 1

ˆ
nΨ , 

respectively ([15,16]).

Diagonalization of Hamiltonian ˆ
k

H  by the use of 

Bogolyubov-Tyablikov transformation [17] yields the 
expressions for the energies of polariton excitations in the 
considered microporous crystal with embedded quantum 
dots.

Results and Discussion

To make our further discussion more specific let us 
concentrate on polariton excitations in a defect-containing 
one-sublattice square Bravais lattice with period d  (Figure 

1). The role of defects shall be played by vacancies contained 
in both atomic and micropore subsystems. In such a case 

(1)
,1 1

V
atC C≡  and (1)

,1 2
V

phC C≡ . Simplicity of the structure 

permits to reduce the somewhat cumbersome notations of 
the previous section to a more comprehensible form. Namely, 
we shall operate with the quantities 

11V V≡ , 
11A A≡ , 

11
1g g≡ , 1

,1ph phω ω≡ , 1
,1at atω ω≡ . The above mentioned 

diagonalization procedure of Hamiltonian k
H  leads to a 

system of linear homogeneous equations, whose solvability 
condition is formulated as the equality of the following 
determinant to zero:

( ) ( )
( ) ( )

0n

n

k k
k k

at

ph

g
g

ω
ω

− Ω
=

− Ω
 

 

 (13)
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Figure 1: Schematic of a modeling square one-sublattice 
array of micropores. Solid circles denote defect-free 
cavities with embedded quantum dots. atV -type of defect 
is a cavity with a missing quantum dot. phV -type of defect 

is an empty site with no micropore (and hence with no 
quantum dot, since atomic clusters can only reside at the 
existent micropores). Defect concentration in the atomic 
subsystem (i.e. concentration of sites with missing 
quantum dots) 1

VC  equals to the sum of concentrations of 

the atV - and phV -types of defects. Defect concentration in 

the photonic subsystem (concentration of sites with 
missing micropores) 2

VC  equals to the phV -type defect 

concentration. There holds an obvious inequality 1
VC 

2
VC .

Here the energies of exciton exitations of the 
atomic (quantum dot) subsystem and of exciton-like 
electromagnetic exitations [15] of the resonator (micropore) 
subsystem within the nearest-neighbor approximation equal 
correspondingly to:

( ) ( )( ) ( )
( ) ( )( ) ( )

2

1

2

2

2 1 cos cos ,

2 1 cos cos .

n

n

k

k

at at V
x y

ph ph V
x y

V d C k d k d

A d C k d k d

ω ω

ω ω

= + − +

= − − +

 

 

 

(14)

Equality (13) defines a quadratic equation for the unknown 
dispersion dependence ( )kΩ . According to (10) polariton 

frequencies ( )kΩ  along with parameters n
atω , n

phω , 

( )kV , ( )kA  and ng  are the functions of structural 

elements in the two subsystems (quantum dots and 
resonators). In the considered case in view of (9) we obtain 

( )11n
at V

atCω ω= − , ( )21n
ph V

phCω ω= − , 

( )( )1 21 1n
V Vg g C C= − − . 1

VC  and 2
VC denote 

concentrations of defects (vacancies) in the atomic and 
resonator subsystems respectively. The transfer probability 
of electromagnetic excitation between the nearest neighbor 
sites is defined by an overlap characteristic of optical fields 

( )A d . ( )V d  describes the Coulomb interaction between 

quantum dots in neighboring micropores.

Substitution of expressions (14) for ( )katω
 

and 

( )kphω  into (13) yields the dispersion law 

( )1 2, ,k V VC C±Ω  of electromagnetic excitations in the 

micropores array (where plus and minus signs stand for the 
upper and lower dispersion bands, respectively). We have 
performed the numerical evaluation of ( )1 2, ,k V VC C±Ω  for 

several permissible concentration values falling within the 
domain 

1
VC 

2
VC  (defined by inequality, which accounts for 

the fact that quantum dots can only reside in existent 
micropores). Parameters, which describe an interaction 
between the atomic and photonic subsystems as well as an 
overlap of optical fields and an interaction between quantum 
dots in neighboring micropores were set equal 
correspondingly to 137 10g Hz= ⋅ , 

( ) 142 3.5 10A d Hz= ⋅ , ( ) 132 9 10V d Hz= ⋅ ; the 

lattice period was taken to be 73 10d m−= ⋅ . In Figure 2a 

the dispersion bands ( )1 2, , ,V V
x yk k C C±Ω  are plotted for an 

ideal structure ( 1 2 0V VC C= = ), Figure 2b illustrates their 

transformation under the decrease of parameter g  
(responsible for interaction between the atomic and photonic 
subsystems) by a factor of 10 . Figure 2c gives an example of 
dispersion bands of a nonideal structure ( 1 0.43VC = ,

2 0.2VC = ).It should be noted that the shape of the dispersion 

curve in Fig. 2a,b indicates the existence of Bose-Einstein 
exciton condensate, where the energy minima occur for a 
number of states with non-zero k ’s (in addition to those 
with 0k = ). In Figure 3 is shown the concentration 

dependence of the band gap width

( ) ( ) ( )1 2 1 2 1 2, min , , max , ,
k k

k kV V V V V VC C C C C C+ −∆Ω ≡ Ω − Ω . (15)
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Figure 2: Polariton energy bands of an ideal (a, b) micropores array ( 1 2 0V VC C= = ) and a defect-containing (c) array (
1 0.43VC = , 2 0.2VC = ). (b) illustrates the narrowed “bottle neck” resulting from the decrease of parameter g  (responsible 

for interaction between the atomic and photonic subsystems) by a factor of 10.

Figure 3: Band gap width plotted as a function of defect 
concentrations in the domain of definition 1

VC  2
VC .

An important property of band gap photonic materials is 
their ability to produce the so-called “slow” light, which appears 
to be highly promising for the purposes of construction and 
utilization of quantum information processing devices [21]. 
An efficient reduction of quasiparticle group velocity was 
demonstrated e.g. in coupled-resonator optical waveguides 
[22,23] as well as in solid-state multilayer semiconductor 
structures [24]. The theoretical study [25] of the photonic 
band structure of binary one-dimensional arrays of tunnel-
coupled microcavities shows that subjecting the system to 
the controllable elastic strain is an effective tool for altering 
its eigen mode structure and optical properties.

The key role in the reduction of the said group velocity 
is played by the character of the effective masses ( )

effm ±  of the 
so-called “dark” and “bright” polaritons, which arise in the 

specified materials as linear superpositions of the photonic 
states of resonator subsystems and the coherent excitations 
of one-level atomic subsystems. Concentration dependencies 
of the effective masses of upper and lower dispersion branch 
polaritons are given by the formula:

 			 
( ) ( )

1

2
1 2( )

1 2 2
0
0

, ,
,

k

x
y

V V
V V

eff
x k

k

C C
m C C

k

−

±±

=
=

 
∂ Ω 

≡  ∂ 
 

 .  (16)

We have performed their numerical calculation; the 
results are shown in Figures 4a & 4b. Examination of Figures 
4a,b permits to conclude that an appropriate choice of defect 
concentrations 1 2,V VC C may yield in principle the desirable 

characteristics of the “slow” light.

Figure 4: Concentration dependencies of the effective masses 
of lower (a) and upper (b) dispersion branch polaritons. The 
effective mass of the upper dispersion branch polaritons is 
negative throughout its domain of definition 1

VC  2
VC ; in (b) 

it is plotted with the opposite sign.
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Conclusion

The paper is devoted to elucidation of the effect of point-
like defects on polariton dispersion in a two-dimensional 
microporous lattice with embedded one-level quantum dots. 
It is shown that the presence of vacancies in the resonator and 
atomic subsystems results in a substantial renormalization 
of polariton spectrum and thus in a considerable alteration 
of optical properties of the structure. Introduction of defects 
leads to an increase in the effective masses of polaritons 
and hence to a decrease of their group velocity. Our model 
is primarily based on the virtual crystal approximation, 
which is often employed to examine quasiparticle excitations 
in sufficiently simple disordered superstructures. 
More complex systems usually require the use of more 
sophisticated methods such as the (one- or multinode) 
coherent potential approximation [20], the averaged 
T-matrix method and their various modifications. The 
obtained numerical results contribute to our understanding 
of composite polaritonic structures and the prospects of 
their utilization for construction of solid-state devices with 
controllable propagation of electromagnetic waves.
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