
A software framework for the generation of
dynamic vulnerability maps for risk assessment

P. Arena1, L. Patanè1, S. Caruso1, M. Anastasi1 & A. Cannata2

1DIEES- University of Catania, Italy
2Euroconsult s.a.s., Italy

Abstract

In this paper a software framework that is able to generate dynamic vulnerability
maps for risk assessment is proposed. A series of models for different risk
scenarios have been considered and described together with their implementation
in the developed software framework. Finally the visualization of the acquired
data and simulation results can be used as a support for real-time emergency
planning.
Keywords: prediction models, disaster management.

1 Introduction

One of the main goals of environmental risk analysis consists of foreseeing and
estimating the environmental impact due to critical events happening within an
industrial plant. Often, static vulnerability maps are used for preventive impact
analysis; sometimes, even more sophisticated dynamic maps are used for
predicting the consequences of industrial accidents.
 Using an appropriate software tool enclosing both of these potentialities, and
having the capability to let the user choose and finely tune the prediction models
is a key element to insure a prompt response from authorities and to give rescue
teams the ability to react as quickly as possible.
 An ideal integrated framework for disaster management should include the
flexibility and expandability of accurate software for dynamic modelling, but
also the intuitiveness and simplicity of a business instrument based on a user-
friendly interactivity. Our risk prevention and analysis platform was developed
with this aim in mind from the outset. This instrument features a geographic
localisation platform based on photographic maps and offers a complete set of
tools for the analysis of static and dynamic data.

Disaster Management and Human Health Risk 369

doi:10.2495/DMAN090321

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

 Our platform, named Juan Chedan (Just Another Chemical Analyzer),
consists of a main framework that offers data gathering, synchronisation and
presentation facilities, and a set of plug-in offering multiple computational
algorithms based on several prevision models. The platform is expandable by the
addition of new plug-in that can be developed using a very streamlined SDK.
Thanks to the use of plug-in, the functionalities of the main framework are
factored and are available to be used transparently and independently from the
data semantics, for computations related to accident models as diversified as gas
dispersions, explosions and fire accidents.
 This structure may help to improve the productivity, and thus the response
speed, of emergency responders, by offering a single unique, easy to learn and
streamlined environment able to run multiple prevision models using a common
user interface.

Figure 1: Juan Chedan architecture and list of developed plugins.

2 Software architecture

The aim of our work was to simulate as closely as possible the consequences of
an industrial incident; with this aim, we have studied a number of mathematical
models existing in literature, and sometimes we have rearranged and fixed some
of the less detailed models in order to achieve more consistent results. Then we
tried to find a compromise between the reliability of a model and its user
friendliness, choosing in the end a set of optimal models and trying to find the
best way to implement them. Each model was implemented as a plugin for the

370 Disaster Management and Human Health Risk

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

Juan Chedan platform, following the Juan Chedan SDK guidelines. Thanks to
this choice, it is possible to leverage the Juan Chedan visualization engine and
data input framework. Fig. 1 shows the interactions between the Juan Chedan
modules and the different plugins implemented. Further information about the
integrated framework structure can be found in [1].

3 Risk scenarios and models

The considered risk scenarios are:
 Toxic clouds dispersion,
 Various kind of fires triggered by the burning of toxic clouds,
 Explosions

 These scenarios are frequently connected to one another (domino effect), but
in the context of this paper, they are studied like isolated events.
 Here we will discuss the most important models, their implementation details
and their integration with Juan Chedan.

(a) (b)

(c) (d)

Figure 2: Toxic cloud shifting: these results are obtained considering a
continue release of Chlopicrin (20Kg/s) for 20 minutes and a wind
speed of 2m/s. (a) Cloud shape after 5 minutes. (b) Cloud shape
after 15 minutes. (c) Cloud shape after 25 minutes. (d) Cloud
shape after 35 minutes.

Disaster Management and Human Health Risk 371

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

3.1 Neutral gas dispersion

We have taken into consideration the dispersion of neutral gases, implementing
the most popular mathematical model used for this kind of simulation: the
Gaussian model [2–4].
 The Gaussian model of Pasquill-Gifford considers a Gaussian dispersion
along the horizontal and vertical axis, in a system with x-axis oriented in
downwind direction, y-axis in crosswind direction and z-axis in vertical
direction.
 For a continuous release of material, if neglecting the absorption of the

ground, the dispersion from a hole at a known height is:

C ൌ
G

ଶ஠஢౯஢౰୳
exp ቈെ

ଵ

ଶ
൬
୷

஢౯
൰
ଶ

቉ · ൜exp ൤െ
ଵ

ଶ
ቀ
୸ିH

஢౰
ቁ
ଶ
൨ ൅ exp ൤െ

ଵ

ଶ
ቀ
୸ାH

஢౰
ቁ
ଶ
൨ൠ (1)

where:
C = concentration (kg/m3) in (x, y, z)
G = flow (kg/s)
H = height of emission from the ground (m)
u = wind speed (m/s)
x, y, z = distance from the source (m), downwind (x), crosswind (y) and

vertical (z)
σy, σz = dispersion coefficient in y and z

 The obtained values are compared with toxicity limits (e.g. IDLH) or with
inflammability limits if the cloud comes from inflammable gas dispersion. We
then convert the concentration values (C, kg/m3) to ppm or to volume percentage
using the perfect gas law:

C୮୮୫ ൌ Cሺkg mଷ⁄ ሻ
R·T

P·M
10଺ (2)

C%୴୭୪୳୫ୣ ൌ Cሺkg mଷ⁄ ሻ
R·T

P·M
10ଶ (3)

where
R = gas constant 0.0821 (lt atm /mol K);
T = temperature (K);
P = pressure (atm);
M = molecular weight (kg/kmol).

 Plugin implementation: This algorithm is implemented by the
GaussianDispersionPlugin.
 The levels of concern suggested from the plugin are specific for each
substance and are taken from a chemical database [5].
 The produced outputs are: time-independent isoconcentration curves, overlaid
on the map and representing suggested or custom LOCs, and a time-dependent
animation of the curve variations in the time.
 The plugin can also produce charts describing time-dependent information on
specific points chosen by the user by positioning an observer on the map. In
particular, the available charts are concentration and dose profiles in a specific
point.

372 Disaster Management and Human Health Risk

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

3.2 JetFire

In this work we are only going to describe one type of fire accident, although
more fire plugins were actually implemented. The scenario we are going to
consider is the JetFire, i.e. the release of an inflammable gas from a small break
that can originate a long upward flame.
 We suppose that no flame is originated where the combustible concentration
becomes less than the LFL (Lower Flammable Limit) value, and we also ignore
the effects of wind and gravity on the flame (so there are no differences between
horizontal, vertical or oblique jet): the danger zone stretches for about twice the
flame length [6, 7].

3.2.1 Punctiform AGA
The main model describing a JetFire accident, considers the source as a point
localized in the centre of the flame [3, 6]. The data required for computation are:

- Temperature
- Air humidity percentage

- Burning speed Mୠ in
K୥

୫మ·ୱ

- Combustion heat of the liquid combustible Hୡ in
KJ

K୥

- Part of heat irradiated F୰ୟୢ
 Algorithm: We compute the total heat of the flame, as Q୰ ൌ Mୠ · Hୡ (output
in kW). Then we extract the heat irradiated from the flame as Q ൌ F୰ୟୢ · Q୰
 Now we need to compute the partial pressure of the steam in the air in Pa. We
can simply obtain this information from the temperature and the relative
humidity, this one is in fact the ratio between partial pressure of steam, p୵, and
saturation pressure of the steam at a certain temperature, pୱ. The equation of the
steam pressure is:

ln pୱ ൌ 18.3036 െ
ଷ଼ଵ଺.ସସ

Tିସ଺.ଵଷ
 (4)

where
pୱ = steam pressure ሾmm Hgሿ
T = temperature in Kelvin

 In order to obtain the partial pressure steam, we convert pୱ toPa. Then:

p୵ ൌ
୰ୣ୪ୟ୲୧୴ୣ ୦୳୫୧ୢ୧୲୷

ଵ଴଴
· pୱ ሾPaሿ (5)

 We can now compute the transmissivity:
τ ൌ 2.02 · ሺp୵ · dሻି଴.଴ଽ (6)

where d is the distance from ground between flame and observer.
 We can then calculate the View factor in the point:

F୮ ൌ
ଵ

ସ·஠·୪మ
 (7)

where is the distance measured along the diagonal, between the flame centre
and the observer.
 Finally we extract the most important punctual value, which is the thermic
stream on the target:

 (8)

Disaster Management and Human Health Risk 373

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

Q୲ୟ୰୥ୣ୲ is the reference point for the iso-irradiation curves that we want to
overlay on the geographical map in Juan Chedan. In order to draw the curves, we
only need to know the distance d from the whole eqn. (8).
 Notes and assumptions: An important parameter needed for the model is the
flame height. This could be a problem as, in order to extract d from eqn. (8), we
need to know the relation between that and the diagonal distance l (in the view
factor formula in eqn. (7)). We can in fact assimilate the flame profile with a
rectangular triangle (we are not considering the wind, so we assume the flame is
not inclined), where we know the larger cathetus (distance from the ground d),
but we don’t know the hypotenuse (diagonal distance l between flame centre and
observer).
 In order to obtain this information and put l and d in relation, usually models
assume that the flame height H is known (and then the shorter cathetus H/2,
given that we need a point in the middle height of the flame). Now we can assert:

l ൌ ටdଶ ൅ ቀ
H

ଶ
ቁ
ଶ
 (9)

without any problem to extract d from eqn. (8). In this context the problem was
avoided by approximating the superficial distance with the diagonal one, then
equalizing l and d; this approximation is allowed because the view factor used in
this model, which is usually expressed like:

F୮ ൌ
ୡ୭ୱ஘

ସ·஠·୰మ
 (10)

sets as 1, supposing then a null angle, so that superficial and radial distance
are coincident in this formula (eqn. (7))
 Plug-in implementation: The component that implements this algorithm is
called JetFirePunctualIrradiationPlugin.
 The levels of concern suggested by the plug-in are fixed by the (Italian)
normative DM 15.05.96 and DM 20.20.98. [8–10]
 This plug-in produces only a time independent output, a set of concentric
circles overlaid on the map, with a variable radius based on the suggested or
manually inserted levels of cares (LOCs). An example of iso-level radiation plot
is shown in Fig. 3.

3.3 UVCE

One of the most dangerous explosion accidents is the UVCE (Unconfined
Vapour Cloud Explosion) [3, 6, 7]; it has its source in the combustion of
inflammable gases, so the simulation will only be allowed if the user sets up an
incident scenario involving an inflammable gas. A simple but reliable formula
for computing the amount of substance contained in the toxic cloud is:

Q ൌ F·I

୴
 (11)

where:
F = vapour flow,
I = distance (along the cloud centre line) where an LFL concentration is

found
 v = wind speed

374 Disaster Management and Human Health Risk

 © 2009 WIT Press

 www.witpress.com, ISSN 1743-3509 (on-line)
 WIT Transactions on The Built Environment, Vol 110,

Figure 3: Iso-radiation footprint from the time independent computation of
JetFirePunctualIrradiation. These results have been obtained
considering a 100 Kg/s release of Chloropropane.

3.3.1 TNT-equivalent model
This model is based on the transposition of the mass of a substance involved in
an explosion to an equivalent mass of TNT, whose effects are known.
 Algorithm: The size of the inflammable cloud must be evaluated (i.e. the
concentration has to be higher than LFL). The LFL levels are specified in a

chemical database, and are generally expressed in , so we need to convert

them to a concentration value expressed in
K୥

୫య, using eqns. (2) and (3).

 The plug-in evaluates the inflammable mass of the cloud. Then it computes
the equivalent TNT mass according to the formula:

M୲୬୲ ൌ η כ m כ
Hౙ౥ౣౘ

H౪౤౪
 (12)

where:
η = efficiency factor (default value 0.05)
m = mass of inflammable substance in Kg,

Hୡ୭୫ୠ = burning heat (default value 10 כ M୲୬୲ ቂ
J

K୥
ቃ)

H୲୬୲ = calorific power of the TNT (4106
J

K୥
).

 A UVCE in fact consumes only a minimal part of the whole energy involved
in the combustion, so the efficiency is a value between 1% and 10%.

Disaster Management and Human Health Risk 375

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

 At this point we can extract the scaled distance using:

z ൌ
R

ඥM౪౤౪
య (13)

where:
z = scaled distance
R = distance from the explosion [m]
M୲୬୲ = mass of equivalent TNT, obtained by the eqn. (12) [Kg]

 Once the scaled distance is known, it is possible to extract different kinds of
information from a diagram describing the well known effects of the TNT
obtained with experimental tests: the arrival time of the overpressure wave, the
overpressure value reached at a certain distance, and the duration of the wave
[12].
 The arrival time is one of the punctual values that the plugin returns, and it is
used to create stand-alone charts describing the advancement profile of an
overpressure wave in a point. Analogously we can compute the scaled duration,
and then the actual overpressure duration in seconds.
 In order to compute the overpressure at a specific distance we could have
used the same technique, but we adopted an approximation present in literature,
obtained from interpolation [11]:

Ps ൌ 67 ·
ଵ

୸
 ൅ 370 ·

ଵ

୸మ
 (14)

 This equation returns an overpressure value expressed in Kpa.
 This value is the last punctual output produced by the plug-in. It is shown as a
label for the observers and is also used to draw the stand-alone overpressure
trend chart. This is also the value used to create the map overlays. An example of
overpressure iso-level curves is shown in Fig. 4.
 Plugin implementation: The component that implements this algorithm is
called TntExplosionPlugin.
 The levels of concern suggested by the plug-in are fixed by the (Italian)
normative DM 15.05.96 e DM 20.10.98. [8–10]
 This plugin produces a time-independent output, in the shape of concentric
circles overlaid on the map, with a variable radius based on the suggested or
manually inserted LOCs. It also produces a time-dependent animation describing
the wave front progress.
 The plugin also generates some stand-alone charts, describing the profile of
the wave front when it meets an observer. In particular, the chart shows the time
of the arrival of the wave front, the maximum value of overpressure and the
overpressure duration (see Fig. 5).

4 Integration with Juan Chedan

In order to be integrated with the Juan Chedan platform, a plugin must
implement the software interface IAccidentPlugin, which acts as a
communication protocol with the Juan Chedan core [1].

376 Disaster Management and Human Health Risk

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

Figure 4: Steady state representation (time independent) of the Overpressure
LOCs by the TntExplsionPlugin for a 100Kg/s release of
inflammable substance.

Figure 5: Wave front in an observer point located at 190m from the
source.

Disaster Management and Human Health Risk 377

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

 The methods that the public interface requires are:
GetCurve

GetCurve (LOC, source, computation instant).
The output is a “Curve” object, which is a list of coordinate pairs corresponding
to points of iso-level. This method is used to create the iso-level curves for the
specific accident on the map.

GetValuesInPoint
GetValuesInPoint(observer point, source)
The output is a set of one or more values related to an observer point. This
information is used in the Juan Chedan platform to show the maximum value of
risk in a certain point, for a certain scenario.

GetValuesTrendInPoint
GetValuesTrendInPoint(observer point, source)
The output is a list of “trend” objects, where each trend contains a curve with a
set of (x,y) couples, the axis labels and units.
 This output is used by the Juan Chedan Core to build stand-alone charts
describing time-dependent data about a geographic point.

GetValues
GetValues(instant)
The output returns a list of heterogeneous geographically unrelated values.

GetValuesTrend
GetValuesTrend(instant)
Analogously to the GetValues method, the output is a list of heterogeneous
geographically unrelated “trends”.

GetRequirements
This method is called by the Core before starting a computation, and returns an
object describing the minimum set of information that the plugin requires to
execute successfully.

GetCapabilities
This method allows the plugins, to describe their functionalities. E.g., if a plugin
is able to produce an animation or which optional interface methods are
implemented.

GetSuggestedLOCs
GetSuggestedLOCs(source, flag for time-dependent use of the LOCs)
 The output is a set of suggested levels of concern, with labels and units.
 This information is used to provide the user with a set of standard levels of
concern, specific to each different scenario.

5 Conclusions

After a short analysis of a few different incidental model plugins, we can assert
that the plugins developed and discussed in this work are not only a valid support
for risk analysis but are also a very simple tool for the end user. They enable
emergency responders to use complex mathematical models in a very quick and
easy way, with almost no need for specific skills or training. New plugins
implementing more models can be easily added to the suite to simulate new

378 Disaster Management and Human Health Risk

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

scenarios, and new functionalities can thus be added without introducing the
need for further operator training.

Acknowledgement

This work was partially supported by the Isemiha project, (1999.IT.16.1.PO.011/
3.14/5.2.13/0312).

References

[1] Arena, P., Patanè, L., Anastasi, M., Caruso, S. & Cannata, A., An
integrated system for disaster management, Int. Conf. On Disaster
Management 2009, UK.

[2] Hanna, S.R. & Drivas, P.J., Guidelines for use of vapour cloud dispersion
models, Centre for Chemical Process Safety, AIChE, New York, 1987

[3] Arena, P., Italia, F. & Patanè, L. Soft Computing per previsione e controllo
di Rischio d'Area. Catania: Edizioni Cavallotto, 2003.

[4] Handbook of chemical hazard analysis procedures, FEMA-EPA, 1989
[5] CAMEO Chemical. Available on line at: http://cameochemicals.noaa.gov/
[6] Mazzarotta, B...Fire and Emissions Risk Course, 2006-07 available on line

at: http://ingchim.ing.uniroma1.it/~mazzarot/pagina mia internet/corso
RIE.htm.

[7] Contini, S., Rassegna di modelli per la valutazione degli effetti di
esplosioni, ISEI/IE 2397/93, Commissione delle Comunità Europee, Ispra
(VA), 1993

[8] Quest Consultants Inc. The Quest Quarterly. Quest Consultants Inc. 1999.
Available on line at: www.questconsult.com.

[9] Centre for Chemical Process Safety. Guidelines for Chemical Process
Quantitative Risk Analysis, 2nd edition. New York: AIChE, 2000.

[10] Lees, F.P. Loss Prevention in the Process Industry, 2nd edition, Vol. 2.
London: Butterworths, 1996.

[11] Brasie, W.C. & Simpson, D.W. Guideline for Estimating Damage from
Chemical Explosion – St. Louis, MO: AIChE, 1968

[12] Caruso, S., Data Interpolation with SPLINE in C#. JuanDoNeblo, 2009.
Available on line at: http://geekswithblogs.net/JuanDoNeblo/archive/2007/
10/25/Data Interpolation-with-SPLINE-in-Csharp.aspx.

Disaster Management and Human Health Risk 379

 © 2009 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)

 WIT Transactions on The Built Environment, Vol 110,

