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a b s t r a c t

We study the dynamic version of the distributed all-pairs shortest paths problem. Most of
the solutions given in the literature for this problem, either (i) work under the assumption
that before dealing with an edge operation, the algorithm for the previous operation
has to be terminated, that is, they are not able to update shortest paths concurrently, or
(ii) concurrently update shortest paths, but their convergence can be very slow (possibly
infinite) due to the looping and counting infinity phenomena. In this paper, we propose
partially dynamic algorithms that are able to concurrently update shortest paths. We
experimentally analyze the effectiveness and efficiency of our algorithms by comparing
them against several implementations of the well-known Bellman–Ford algorithm.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the distributed all-pairs shortest paths problem in a network whose topology dynamically changes over
the time, in the sense that communication links can change status during the lifetime of the network. This problem arises
naturally in practical applications. For instance, the OSPF protocol, widely used in the Internet (e.g., see [16]), basically
updates shortest paths after a network change by distributing the network topology to all processors and using centralized
Dijkstra’s algorithm for shortest paths on every node.
If the topology of a network is represented as a weighted graph, where nodes represent processors, edges represent

links between processors, and edge weights represent costs of communication among processors, then the typical update
operations on a dynamic network can be modelled as insertions and deletions of edges and edge weight changes.
When arbitrary sequences of the above operations are allowed, we refer to the fully dynamic problem; if only insert and
weight decrease (delete andweight increase) operations are allowed, then we refer to the incremental (decremental) problem.
Incremental and decremental problems are usually called partially dynamic.
Inmany crucial routing applications theworst case complexity of the adopted protocols is never better than recomputing

the shortest paths from scratch after each change to the network. Therefore, it is important to find efficient dynamic
distributed algorithms for shortest paths, since the recomputation from scratch could result very expensive in practice.
The efficiency of a distributed algorithm is evaluated in terms ofmessage and space complexity (e.g., see [2]). Themessage

complexity is the total number of messages sent over the edges. The space complexity is the space usage per node.
In this paper we consider a dynamic network in which a change can occur while another change is under processing. A

processor v could be affected by both these changes. As a consequence, v could be involved in the concurrent executions
related to both the changes.

I An extended abstract of this work appeared in the proceedings of the International Conference on Computing: Theory and Application (ICCTA’07),
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no. FP6-021235-2 (project ARRIVAL).
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Previous works. Given a weighted graph Gwith n nodes andm edges, many solutions have been proposed in the literature to
find andupdate shortest paths in the sequential case on graphswith non-negative real edgeweights. The state of the art is that
no efficient fully dynamic solution is known for general graphs that is faster than recomputing single-source shortest paths
from scratch after each update. Actually, only output bounded fully dynamic solutions are known on general graphs [10,18].
In the case of all-pairs shortest paths the best fully dynamic solution has been proposed in [9] and works in O(n2 log3 n)
amortized time per update.
A number of dynamic solutions for the shortest paths problem have been proposed in the literature also in the distributed

case (see [4,7,11,13,17,19]). Some of these solutions rely on the classical Bellman–Ford method, whose distributed version
has been originally introduced in the Arpanet [15]. This algorithm, and a number of its variations, has been shown to
converge to the correct distances if the edge weights stabilize and all cycles have positive lengths (e.g., see [5]). However,
the convergence can be very slow in the case ofweight increase operations (possibly infinite). This is due to the well-known
looping and counting infinity phenomena (see, e.g., [21]) and is a major drawback of the Bellman–Ford algorithm that is
avoided inmany protocols by broadcasting the whole topology of the network to all nodes [20]. Furthermore, if the network
is asynchronous and static, the message complexity of the Bellman–Ford method can be exponential in the size of the
network (see, [3]). In [11] Humblet proposes a variation of the Bellman–Ford algorithm, that has the same message and
space complexity, and, under certain conditions, avoids the looping phenomenon thus converging in a finite number of
steps.
In [13], an incremental solution has been proposed for the distributed all-pairs shortest paths problem, requiring

O(n log(nW )) amortized number of messages, and the difficulty of dealing with edge deletions has been addressed. Here,
W is the largest positive integer edge weight. In [4], a general technique is proposed that allows us to update the all-
pairs shortest paths in a distributed network in Θ(n) amortized number of messages, by using O(n2) space per node.
In [19], algorithms are given for both finding and updating shortest paths distributively. In particular, the authors propose a
distributed algorithm for finding single-source shortest paths (all-pairs shortest paths) of a network with positive real edge
weights requiring Θ(n2) (O(n3)) messages and O(n) space per node. Furthermore, they propose a distributed incremental
algorithm requiring O(n2) messages for updating all-pairs shortest paths. Finally, they give fully dynamic algorithms for
single-source (all-pairs) shortest paths that work in O(n2) (O(n3)) messages, and show that, in the worst case, updating
shortest paths is as difficult as computing shortest paths.
In [7] a solution for the fully dynamic distributed all-pairs shortest paths problem is presentedwhosemessage complexity

is evaluated in terms of output complexity (see [10,18]). Output complexity allows us to evaluate the cost of dynamic
algorithms in terms of the intrinsic cost of the problem on hand, i.e., in terms of the number of updates to the output
information of the problem that are needed after any input change. The algorithm in [7] is able to update only the distances
and the shortest paths that actually change after an edge modification σ . It requires in the worst case O(maxdeg · ∆σ )
messages per operation and O(n) space per node. Here, maxdeg is the maximum degree of the nodes in the network and
∆σ is the number of pairs of nodes affected by σ . On one hand, if ∆σ = o(n2), then these bounds compare favorably with
respect to those in [19]. On the other hand, the algorithm for weight increase operations is not robust because it works in
three phases and requires that a phase is terminated before the execution of the subsequent one.
Summarizing, we can conclude that most of the algorithms known in the literature falls in one of the following two

categories:

• algorithmswhich are not able to concurrently update shortest pathswhenmultiple edge changes occur in the network, as
those in [4,7,13,19]. In particular, algorithms that work under the assumption that before dealingwith an edge operation,
the algorithm for the previous operation has to be terminated. This is a limitation in real networks, where changes can
occur in an unpredictable way;
• algorithmswhich are able to concurrently update shortest paths as those in [11,15], but (i) either they suffer of the looping
and count to infinity phenomena, or (ii) their convergence can be very slow in the case of weight increase operations
(possibly infinite).

Results of the paper. In this paper we provide a decremental and an incremental solution that are able to concurrently update
shortest paths. The details of our contribution can be summarized as follows:

1. We propose a new decremental algorithm that is robust since it works in one phase (thus avoiding the main drawback
of [7]). Furthermore, it is able to concurrently update shortest paths in the case of multiple weight increase and delete
operations. The algorithm requires O(maxdeg · n) space per node and can suffer of the looping phenomenon. However,
our solution has been shown to be experimentally efficient when compared with two different implementations of the
classical Bellman–Ford method.

2. We propose an extension of the incremental algorithm given in [7] for weight decrease and insert operations that works
also in the concurrent case, within the same bounds of [7], that is O(maxdeg ·∆)messages per operation and O(n) space
per node. Here,∆ is the number of nodes affected by a set ofweight decrease/insert operations. This is only a factormaxdeg
far from the optimal incremental solution. Besides being theoretically efficient, this algorithm has been shown to be also
experimentally fast.
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2. Preliminaries

We consider a network made of processors linked through communication channels. Each processor can send messages
only to its neighbors. We assume that messages are delivered to their destination within a finite delay but they might be
delivered out of order. We consider an asynchronous system, that is, a sender of a message does not wait for the receiver
to be ready to receive the message. There is no shared memory, that is, each processor has its own storage system and the
other processors cannot access it.
We represent the network by an undirected weighted graph G = (V , E, w), where V is a finite set of n nodes, one for

each processor; E is a finite set ofm edges, one for each communication channel; andw is a weight functionw : E → R+. If
v ∈ V , N(v) denotes the set of neighbors of v and deg(v) the degree of v. The maximum degree of G is denoted bymaxdeg.
An edge e ∈ E that links the pair of nodes u, v ∈ V is denoted as u→ v. A path in G between nodes u and v is denoted

as P = u  v. We define the length of P as the number of edges of P and denote it by `(P), and define the weight of P as
the sum of the weights of the edges in P and denote it by weight(P). A shortest path between nodes u and v is a path from u
to v with the minimumweight. The distance between u and v is the weight of a shortest path from u to v, and is denoted as
d(u, v).
Given a pair of nodes u, v ∈ V , the via from u to v is the set of neighbors of u that belong to a shortest path from u to v.

Formally:
via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z)+ d(z, v)}.

Given a graph G = (V , E, w), we suppose that k operations σ1, σ2, . . . , σk are performed on edges (xi, yi) ∈ E,
i ∈ {1, 2, . . . , k}, at times t1, t2, . . . , tk, respectively. The operation σi modifies the weight w(xi, yi) by a quantity εi > 0,
i ∈ {1, 2, . . . , k}. Without loss of generality, we assume that t1 < t2 < · · · < tk.
Assuming G ≡ G0, we denote as Gi the graph obtained at time ti by applying the edge modification σi. Notations di() and

viai() are used to denote the distance and the via over Gi, 0 ≤ i ≤ k, respectively.

Asynchronous model. Given an asynchronous system, the model summarized below is based on that proposed in [2]. The
state of a processor v is the content of the data structure at node v. The network state is the set of states of all the processors
in the network plus the network topology and the edge weights. An event is the reception of a message by a processor or a
change to the network state. When a processor p sends a message m to a processor q, m is stored in a buffer in q. When q
readsm from its buffer and processes it, the event ‘‘reception ofm’’ occurs.
An execution is an alternate sequence (possibly infinite) of network states and events. A non-negative real number is

associated to each event, the time at which that event occurs. The time is a global parameter and is not accessible to the
processors of the network. The times must be nondecreasing and must increase without bound if the execution is infinite.
Events are ordered according to the times at which they occur. Several events can happen at the same time as long as they
do not occur at the same processor. This implies that the times related to a single processor are strictly increasing.

Concurrent executions. In this paper we consider a dynamic network in which a change can occur while another change
is under processing. A processor v could be affected by both these changes. As a consequence, v could be involved in
the executions related to both the changes. Hence, according to the asynchronous model we need to define the notion
of concurrent executions as follows.
Let us consider an algorithm A that maintains shortest paths on G after a weight change operation. Given two operations

σi and σj we denote as:

• ti and tj the times at which σi and σj occur, respectively.
• Ai (Aj) the execution of A related to σi (σj).
• tAi the time whenAi terminates.

If ti < tj and tAi ≥ tj, thenAi andAj are concurrent, otherwise they are sequential.

3. The decremental algorithm

In this sectionwe describe our new decremental solution for the concurrent update of distributed all-pairs shortest paths
in the case of multiple operations. We consider the algorithm to handle k weight increase operations σ1, σ2, . . . , σk, since
the extension to delete operations is straightforward. In fact, deleting an edge (x, y) is equivalent to increasew(x, y) to+∞.

Data structures. A node knows the identity of each node of the graph, the identity of all its neighbors and the weight of the
edges incident to it.
The information on the shortest paths in G are stored in a data structure called routing table RT distributed over all nodes.

Each node v maintains its own routing table RTv[·]; this table has one entry RTv[s] for each s ∈ V . The entry RTv[s] consists
of two fields:

• RTv[s].d, that stores the estimated distance between nodes v and s in G.
• RTv[s].via ≡ {vi ∈ N(v) | RTv[s].d = w(v, vi)+ RTvi [s].d}, that stores the estimated via from v to s.

For the sake of simplicity, we write d[v, s] and via[v, s] instead of RTv[s].d and RTv[s].via, respectively.
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In what follows we denote as dt [v, s] and viat [v, s] the value of the data structures at time t; we simply write d[v, s]
and via[v, s]when time is clear by the context.

Algorithm. The subsequent Fact 3.1 shows that there exist topological properties that allow the algorithm to propagate
messages only among affected nodes. Such properties can be easily formulated on the basis of the following definitions.

• a node v is whitewith respect to s if v does not change both its distance and its via to s. Formally:
– d0(v, s) = dk(v, s) and
– via0(v, s) ≡ viak(v, s).

• a node v is graywith respect to s if v does not change its distance from s, but it changes its via to s. Formally:
– d0(v, s) = dk(v, s) and
– via0(v, s) 6≡ viak(v, s).
Notice that, in the case of weight increase operations, via0(v, s) ) viak(v, s).
• a node v is blackwith respect to s if v changes its distance from s. Formally:
– d0(v, s) 6= dk(v, s).
Notice that, in the case of weight increase operations, d0(v, s) < dk(v, s).

Fact 3.1. The following properties trivially hold:

1. If v is gray or black with respect to s, then there exists a node u ∈ via0(v, s) such that either u is black with respect to s or it
is an endpoint xi of a modified edge (xi, yi), v ≡ yi;

2. If v is blackwith respect to s, then each node in via0(v, s) is either a black node with respect to s or an endpoint xi of a modified
edge (xi, yi), v ≡ yi;

3. If v iswhite or gray with respect to s, then, each node z such that v ∈ via0(z, s) iswhite or gray with respect to s;
4. If v iswhite or gray with respect to s, then each node in viak(v, s) iswhite or gray with respect to s.

Before the decremental algorithm starts, we assume that dt [v, s] and viat [v, s] are correct, for each v, s ∈ V and for
each t < t1. The decremental algorithm starts at each ti, i ∈ {1, 2, . . . , k}. For instance, a weight increase operation on the
edge (xi, yi) represents an event that is detected only by nodes xi and yi; as a consequence:

1. xi sends the message increase(xi, s, dti [xi, s]) to yi, for each s ∈ V ;
2. yi sends the message increase(yi, s, dti [yi, s]) to xi, for each s ∈ V .

If the operation on edge (xi, yi) is a delete operation, then yi (xi, respectively) cannot receive anymessage by xi (yi). In this
case, yi simulates the reception of message increase(xi, s, dti [xi, s]), where dti [xi, s] = +∞, by xi. Analogously, xi simulates
the reception of message increase(yi, s, dti [yi, s]), where dti [yi, s] = +∞, by yi.
When xi receives increase(yi, s, dti [yi, s]) by yi, xi executes procedure Increase (see Fig. 1). This procedure is responsible

for checking if it is necessary to update RTxi [s] and, consequently, to propagate the decremental algorithm. The behavior of
yi (when yi receives the message increase(xi, s, dti [xi, s])) is symmetric. At most one between xi and yi will propagate the
decremental algorithm. In fact, at most one of the following conditions is true:

1. xi ∈ via[yi, s]
2. yi ∈ via[xi, s].

If none of these conditions is true, then the tests performed by xi and yi at Lines 1, 15 and 23 are false and the algorithm
simply stops its execution. In this section, we assume that dti [s, xi] ≤ dti [s, yi]. Under this hypothesis, only Condition 2
above can be true. In the affirmative case yi, if it is necessary, updates RTyi [s] at a certain time t and, in order to propagate
the decremental algorithm, sends the message increase(yi, s, dt [yi, s]) to its neighbors.
Let us now analyze Procedure Increasewith respect to a generic node v that receives themessage increase(u, s, dt̃ [u, s]),

t̃ < t , by a neighbor u. In order to this update RTv[s], v may need to know the estimated distances of its neighbors from
s, that is, dt [vi, s] for each vi ∈ N(v). Hence, v sends messages get-dist(v, s); when vi receives such message, it performs
procedure Dist (see Fig. 2).
Notice that, in our model, multiple increase messages received by a node are stored and processed in a certain order,

while each message get-dist is processed immediately.
Now we provide an informal description of the algorithm. The purpose of this description is to give an intuition of the

behavior of the algorithm; the formal proof of correctness is given in the next section. The description is focused on the
execution of the algorithm by a generic node v with respect to a source s, and uses the scenario for node v depicted in Fig. 3
as a representative case.
Node v in Fig. 3 is blackwith respect to s since, according to Property 2 of Fact 3.1, each node in via0(v, s) ≡ {u1, u2, u3}

is black. As a consequence, v surely receives messages increase(ui, s, d[ui, s]), 1 ≤ i ≤ 3, in some order. This implies that
v performs three times procedure Increase. In this procedure, Line 1 and 4 tests if v satisfies Property 1 and 2 of Fact 3.1
respectively. Hence, the first two executions simply perform phase reduce-via, while the third one performs reduce-via
and build-table.
Let us suppose that the third execution is related to u3. During the execution of build-table, node v sends the message

get-dist(v, s) to each node vi ∈ N(v) \ {u3}. We assume that this message is received by vi at time t̃1,i. In this phase, let us
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Fig. 1. The Increase procedure.

Fig. 2. The Dist procedure.

Fig. 3. The scenario used to describe the decremental algorithm.



1018 S. Cicerone et al. / Theoretical Computer Science 411 (2010) 1013–1037

assume that the following conditions hold for nodes v1 and v3, respectively:

(a) viat̃1,1 [v1, s] ≡ {v}
(b) at time t̃1,3, node v3 is performing either build-table or improve-table phases of procedure Increase with respect to
source s.

According to these conditions and to test at line 1 of procedure Dist, nodes v3 and v1 send+∞ to v.
By using the collected information, v performs the instructions

d[v, s] := min
vi∈N(v)

{w(v, vi)+ d[vi, s]}

and

via[v, s] := {vi ∈ N(v) |w(v, vi)+ d[vi, s] = d[v, s]}.

Let us assume that now viat̃2 [v, s] = {v2}. Notice that, since v has received partial information, the content of RTv[s] at
time t̃2 could be not correct. Now, two relevant observations have to be remarked:

(i) since nodes v1 and v3 sent+∞ to v, then v does not consider such nodes as possible new elements of via.
(ii) in the subsequent Items 1 and 2 we show that nodes v1 and v3 will eventually send d[v1, s] and d[v3, s] to v.

The build-table phase of v is completed by the propagate_1 phase. In this phase v broadcast to N(v) the message
increase(v, s, dt̃2 [v, s]); it may seem useless to send the message to nodes ui, 1 ≤ i ≤ 3, (the old via of v) and to node
v2 (the new via of v). The former will be explained later (last paragraph of Item 1), while the latter is due to the fact that
v ∈ via0(v2, s), and hence v2 has to perform the reduce-via phase.
Let us now analyze what happens to the nodes v1, v3, v4 and v5.

1. node v1 receives message increase(v, s, dt̃2 [v, s]) at time t̃3 > t̃2, and it executes Increase. Since viat̃1,1 [v1, s] ≡
viat̃3 [v1, s] ≡ {v}, v1 performs the build-table phase. At the end of this phase, at time t̃4 > t̃3, v1 updates RTv1 [s].
Now, two major cases may occur:
• v is in viat̃4 [v1, s];
• v is not in viat̃4 [v1, s]. This means that v1 now uses a new via to s.
In both cases, at the end of the build-table phase, v1 broadcast themessage increase(v1, s, dt̃4 [v1, s]) toN(v1), and hence
to v also (see Item (ii) above).
In the first case, v performs tests at lines 1, 15 and 23 of Increase. All such tests return false, and hence, node v terminates
Increasewithout modifying its routing tables and without propagating the decremental algorithm.
In the second case, one of the tests performed by v at lines 15 and 23 may return true. If test at line 15 returns true,
then v has to perform the improve-table phase to rebuild RTv[s]. If test at line 23 returns true, then v has to perform the
extend-via phase to add v1 to via[v, s].
Notice that the behavior of v after receiving message increase(v1, s, dt̃4 [v1, s]) is essentially the same of nodes ui,
1 ≤ i ≤ 3, after receiving message increase(v, s, dt̃2 [v, s]).

2. node v3, once terminated the execution of phase build-table or phase improve-table of procedure Increasewith respect
to source s (see Item 3 above), executes phase propagate_1 or phase propagate_2. This implies that node v restarts
Increase now using the current estimated distance from v3 to s (see Item (ii) above).

3. since nodes v4 and v5 arewhite, once receivedmessage increase(v, s, dt̃2 [v, s]) they perform tests at lines 1, 15 and 23 of
procedure Increase. All such tests return false, and hence nodes v4 and v5 terminate Increase without modifying their
routing tables and without propagating the decremental algorithm.

Correctness analysis.
Before the algorithm starts, we assume that the routing tables are correct, that is for each node v, for each source s, and

for each time t ≤ t1 the information stored by v in its routing table are:

dt [v, s] = d0(v, s)
viat [v, s] = via0(v, s)

Lemma 3.2. For each node v, for each source s and for each time t the inequality dt [v, s] ≥ d0(v, s) holds.

Proof. By contradiction, let us suppose that v is the first node to fail to update its routing table, that is, there exists
a minimum time tv such that dtv [v, s] < d0(v, s). v updates its routing table as a consequence of the reception of a
message increase(z, s, dtz [z, s]), with tz < tv , from a node z ∈ N(v). The updating is performed either in build-table or
in improve-table phase. In any case, dtv [v, s] = w(v, z)+ dtz [z, s]. Since v is the first node to fail, then dtz [z, s] ≥ d

0(z, s).
Thus,

d0(v, s) > dtv [v, s] = w(v, z)+ dtz [z, s] ≥ w(v, z)+ d
0(z, s),

a contradiction. �
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Lemma 3.3. For each source s, a node v is blackwith respect to s if and only if it performs phase propagate_1. If v performs phase
propagate_2, then v is black with respect to s.

Proof. We can summarize the thesis as follows:
v is blackwith respect to s⇐ v performs phase propagate_1 or propagate_2
v is blackwith respect to s⇒ v performs phase propagate_1

‘‘⇐’’: by contradiction, we show that if v is nonblackwith respect to s, then it does not perform neither phase propagate_1
nor phase propagate_2.
The proof is by induction on the number:

Ls(v) = max{`(P) | P ≡ v  s is a shortest path in G0}.

Inductive basis (Ls(v) = 0): Ls(v) = 0 if and only if v ≡ s. For each time t ≤ t1, s iswhitewith respect to s and in the routing
table stored by swe have:

dt [s, s] = d0(s, s) = 0
viat [s, s] ≡ via0(s, s) ≡ ∅.

Node s can perform phases propagate_1 or propagate_2 only after receiving an increasemessage. Let tm be the timewhen
s receives the first increasemessagem = increase(z, s, dtz [z, s])where z is a node in N(s) and tz is a time such that tz < tm.
Since viatm [s, s] ≡ ∅, the condition in Line 1 of Procedure Increase is false and hence s does not perform phase

propagate_1.
By Lemma 3.2, dtz [z, s] ≥ d

0(z, s), hence

w(s, z)+ dtz [z, s] ≥ w(s, z)+ d
0(z, s) > dtm [s, s] = 0.

Thus the conditions in lines 15 and 23 of Procedure Increase are false and s does not perform phase propagate_2.
In any case, s does not change RTs[s] thus, if s receives further increase messages, the same arguments can be used to

prove the statement.
Inductive step: by inductive hypothesis each nonblack nodes v with respect to s such that Ls(v) ≤ l − 1 does not perform
neither phase propagate_1 nor phase propagate_2; this implies that such nonblack nodes do not send increasemessages.
Let v be a nonblack node such that Ls(v) = l. Node v can perform phases propagate_1 or propagate_2 only after receiving

an increasemessage. Let tm be the time when v receives the first increasemessagem = increase(u, s, dtu [u, s]), tu < tm. For
each time t ≤ tm we have dt [v, s] = d0(v, s) and viat [v, s] = via0(v, s).
If u /∈ viatm [v, s], then the condition in line 1 of Procedure Increase is false and v does not perform phase propagate_1.

By Lemma 3.2, dtu [u, s] ≥ d
0(u, s), and hence

w(v, u)+ dtu [u, s] ≥ w(v, u)+ d
0(u, s) ≥ d0(v, s) = dtm [v, s].

Thus the condition in Line 15 of Procedure Increase is false and v does not perform phase propagate_2.
If u ∈ viatm [v, s], then the condition in Line 1 of procedure Increase is true and v does not perform phase propagate_2.

By inductive hypothesis, nonblack nodes z such that Ls(z) ≤ l − 1 do not send increasemessages; since u ∈ viatm [v, s] ≡
via0(v, s), then Ls(u) ≤ l−1, and hence u is blackwith respect to s. u black and Property 1 of Fact 3.1 imply that v is graywith
respect to s. By definition of gray nodes, it follows that there exists a nonblack node z ∈ via0(v, s) such that Ls(z) ≤ l − 1.
By inductive hypothesis, z did not send any increasemessage, then z ∈ viatm [v, s]. Hence, viatm [v, s] is not empty and the
condition in Line 4 of Procedure Increase is false. Thus, v does not perform phase propagate_1.
In any case, v does not change the value of d[v, s], thus, if v receives further increasemessages, the same arguments can

be used to prove the statement.
‘‘⇒’’: We first recall that yi, i ∈ {1, 2, . . . , k}, is used to denote a black node that is an endpoint of the modified edge (xi, yi)
and d0(xi, s) ≤ d0(yi, s). Then, we introduce the following definitions with respect to G0:

v
y
 s : shortest path from v to s containing y

Ps(v, y) = {P = v  y | ∃P ′ = v
y
 s : P ⊆ P ′ and ∀vi ∈ P vi is blackwrt s}

Ls(v, y) = max
P∈Ps(v,y)

`(P)

Ls(v) = max
yi,i∈{1,2,...,k}

Ls(v, yi).

The proof is by induction on Ls(v).

Inductive basis (Ls(v) = 0): Let v be a black node such that Ls(v) = 0. This implies that v ≡ yi, for some i ∈ {1, 2, . . . , k}.
Moreover, Ls(yi) = 0 if and only if via0(yi, s) ≡ {xi1 , xi2 , . . . , xih}, where {i1, i2, . . . , ih} ⊆ {1, 2, . . . , k}, i1 ≤ i2 ≤ · · · ≤ ih.
Let yi be a node satisfying such condition.
yi is involved in theweight increase operations σi1 , σi2 , . . . , σih , thus it performs Procedure Increase h times, one for each

operation σij , 1 ≤ j ≤ h. Each operation σij starts a local execution of Procedure Increase that removes the node xij from
via[yi, s] (see phase reduce-via).
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Let t be a time such that t1 ≤ t ≤ tih , no nodes are added to viat [yi, s]. In fact, each node z ∈ N(yi) that does not belong
to via0(yi, s) satisfies d0(yi, s) < w(yi, z)+ d0(z, s). Let t̃ be a time such that t1 ≤ t̃ ≤ tih , by Lemma 3.2, dt̃ [z, s] ≥ d

0(z, s),
then d0(yi, s) < w(yi, z)+dt̃ [z, s]. At time t , v has not yet performed phase propagate_1, then dt [yi, s] = d0(yi, s). It follows
that dt [yi, s] < w(yi, z)+ dt̃ [z, s], hence conditions at Lines 15 and 23 of Procedure Increase are false.
Thus, viatih [yi, s] is empty. Then, at time tih , the condition at Line 4 is true and yi performs phase propagate_1.

Inductive step: the inductive hypothesis is: each black node u, such that Ls(u) ≤ l− 1 performs propagate_1.
Let v be a black node with respect to s such that Ls(v) = l. By Property 2 of Fact 3.1, since v is black, each node u in

via0(v, s) is either (i) a black node with respect to s or (ii) an endpoint of a modified edge (u, v). In case (i), black nodes
satisfy Ls(u) ≤ l − 1, then, by inductive hypothesis, they send increase messages to v. In case (ii), u sends an increase
message to v as a consequence of the operation occurred on (u, v).
As a consequence of these messages, v performs

∣∣via0(v, s)∣∣ times the Procedure Increase and removes all the elements
of via0(v, s). By the same arguments used in the inductive basis, v does not add elements in via[v, s].
Thus, at the end of the

∣∣via0(v, s)∣∣ local executions of Procedure Increase, the set via[v, s] is empty. Then the condition
in line 4 is true and v performs phase propagate_1. �
Corollary 3.4. For each node s, for each nonblack node v with respect to s and for each time t, the following equality holds:
dt [v, s] = d0(v, s) = dk(v, s).
Proof. For each time t ≤ t1 the thesis is true. Furthermore, by Lemma 3.3, if v is a nonblack nodes with respect to s, it does
not perform neither phase propagate_1 nor phase propagate_2. Hence v does not perform the instructions that change the
value of dt1 [v, s]. �
Lemma 3.5. For each node s, if a node v iswhite with respect to s, then v does not perform neither phase reduce-via nor phase
build-table.
Proof. By contradiction, let us suppose that a node v white with respect to s performs phase reduce-via or phase
build-table. Let t be the minimum time such that v performs phase reduce-via or phase build-table after receiving the
message increase(u, s, d[u, s]) sent by a node u. This implies u ∈ viat [v, s]. Since u delivers this message, then it performed
phase propagate_1 or phase propagate_2; hence, by Lemma 3.3, u is a black node with respect to s.
In the remainder, we show that viat [v, s] ≡ via0(v, s); this is a contradiction with respect to Property 4 of Fact 3.1

because u is a black node with respect to s.
Recall that viat1 [v, s] ≡ via

0(v, s). By contradiction hypothesis, v did not perform phase reduce-via before time t .
Moreover, by Lemma 3.3, v never performs neither phase propagate_1 nor phase propagate_2. Hence, at time t̃ , t1 ≤ t̃ ≤ t ,
viat̃ [v, s] can be modified only by performing phase extend-via. Hence, to get the above contradiction, it is sufficient to
show that v does not perform phase extend-via at time t̃ as a consequence of increasemessages from nodes in via0(v, s).
Let z ∈ N(v) be a node such that z 6∈ via0(v, s), and let t̄ be a time such that t1 ≤ t̄ ≤ t̃ .We get the following relationships:

dt̃ [v, s] = d0(v, s) (by Corollary 3.4)
< w(v, z)+ d0(z, s) (since z 6∈ via0(v, s))
≤ w(v, z)+ dt̄ [z, s] (by Lemma 3.2) .

It follows that dt̃ [v, s] < w(v, z)+ dt̄ [z, s]. Hence, at time t̃ , condition at Line 23 of Procedure Increase is false and then v
does not performs phase extend-via as a consequence of increasemessages from z. Thus, viat [v, s] ≡ via0(v, s). �
In the remainder we will use the further following notations for each pair of nodes v and s:

• Exef (v, s) the first local execution by v of phase build-tablewith respect to s;
• tf (v, s) denotes the time when Exef (v, s) updates RTv[s].
• Exel(v, s) denotes the last local execution by v of phases build-table or improve-tablewith respect to s;
• tl(v, s) denotes the time when Exel(v, s) updates RTv[s];

Lemma 3.6. For each source s, for each black node v with respect to s, tf (v, s) and tl(v, s) are defined.
Proof. Let v be a black node v with respect to s. To prove that tf (v, s) is defined it is sufficient to observe that, by Lemma 3.3,
v performs phase propagate_1. To prove that tf (v, s) is defined we show that v performs finitely many executions of
build-table and improve-table phases with respect to source s. To this aim, we introduce the following notations:

• P (v, s) is a set of walks (i.e. paths which can contain nondistinct nodes) P from v to swith the following property:
– if P contains a cycle C and u is a node in C such that the subwalk Pu from u to s of P has minimum weight, then C is
contained ` times in P , where ` is a finite number such that ` · w(C) < w(Pu).

• Let P1 ≡ v1 → v2 → · · · → vl1 and P2 ≡ u1 → u2 → · · · → vl2 be two walks in P (v, s). P1 ≡ P2 if and only if:
– l1 = l2 and
– vi ≡ ui, 1 ≤ i ≤ l1, and
– w(vi, vi+1) = w(ui, ui+1), 1 ≤ i ≤ l1 − 1.

• If P1 6≡ P2 we say that P1 and P2 are different.

Note that, the sets P (v, s) have finite sizes (see subsequent Example 3.11 for a visualization).
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We associate each local execution of build-table or improve-table phases to a walk in P (v, s). In particular, if a node v
performs a local execution Exe(v, s) of build-table or improve-table phase as a consequence of an increase message m,
then the walk associated to Exe(v, s) is xi → yi ≡ u1 → u2  uj ≡ v, j ≥ 1. Informally, m is due to the weight increase
operation σi on the edge (xi, yi), and to the propagation of the decremental algorithm through nodes u1, u2, . . . , uj. In what
follows, we show that two different local executions Exe′(v, s) and Exe′′(v, s) of build-table or improve-table phases are
associated to two differentwalks inP (v, s). Since the number of suchwalks is bounded, then the number of local executions
is bounded.
Let us now denote as Exet(v, s, u) a local execution of build-table or improve-table phases performed by v with respect

to s at time t as a consequence of a increasemessage sent by u ∈ N(v).
By contradiction, let v be the first node such that two local executions Exet1(v, s, u1) and Exet2(v, s, u2), t1 6= t2, of

build-table or improve-table phases are associated to Pt1(v, s), Pt2(v, s) ∈ P (v, s) such that Pt1(v, s) ≡ Pt2(v, s).
If u1 6= u2, then it is straightforward to see that Pt1(v, s) and Pt2(v, s) are different. Hence, let us now consider local

executions of build-table or improve-table phases performed by v as a consequence of messages sent by the same node
u ∈ N(v).
Let us suppose that v performs Exet1(v, s, u) and Exet2(v, s, u) as a consequence of two different increase messages, m1

andm2, sent by u. Node u sendsm1 andm2 as a consequence of one of the following:

1. a weight increase operation on edge u→ v;
2. a local execution performed by u of build-table or improve-table phases with respect to source s.

If m1 or m2 is related to a weight increase operation on edge u → v, then Pt1(v, s) and Pt2(v, s) are different since the
weight of the edge u → v in Pt1(v, s) and Pt2(v, s) is different. Hence, let us suppose that both m1 and m2 are sent
during the local executions of build-table or improve-table phases Exet ′1(u, s, w1) and Exet ′2(u, s, w2) performed by u as
a consequence of two messages sent by nodes w1 ∈ N(u) and w2 ∈ N(u), respectively. According to the contradiction
hypothesis, thewalks Pt ′1(u, s) and Pt ′2(u, s) associated to Exet ′1(u, s, w1) and Exet ′2(u, s, w2), respectively, are different. Hence,
Pt1(v, s) ≡ Pt ′1(u, s)→ v and Pt2(v, s) ≡ Pt ′2(u, s)→ v are different.
Hence, each local execution of phases build-table and improve-table is associated to a different walk in P (v, s). �

Lemma 3.7. For each source s, for each black node v with respect to s and for each time t ≥ tf (v, s), dt [v, s] > d0(v, s).

Proof. By contradiction let us suppose that v is the first black node with respect to s failing to update its routing table.
Let tv ≥ tf (v, s) be the smallest time such that dtv [v, s] ≤ d

0(v, s). Such hypothesis along with Lemma 3.2 imply that
dtv [v, s] = d

0(v, s).
Let z be a node in N(v) that belongs to viatv [v, s]. In this case, dtv [v, s] = w(v, z)+ dtz [z, s] = d

0(v, s), where tz < tv .
Now we analyze different cases according to via0(v, s). For each of such cases we obtain a contradiction.

• if z /∈ via0(v, s) then w(v, z) + d0(z, s) > d0(v, s). Furthermore, by Lemma 3.2, dtz [z, s] ≥ d
0(z, s). Thus, we have

dtv [v, s] = w(v, z)+ dtz [z, s] > d
0(v, s);

• if z ∈ via0(v, s), by Property 2 of Fact 3.1 z is either a black nodewith respect to s or an endpoint of amodified edge (v, z).
In the first case, since v is the first node to fail and tz ≥ tf (z, s), dtz [z, s] > d

0(z, s). Thus, dtv [v, s] = w(v, z)+dtz [z, s] >
w(v, z) + d0(z, s) ≥ d0(v, s). In the second case, by Lemma 3.2, we have dtv [v, s] ≥ w(v, z) + d0(z, s) and as a
consequence of the increment ofw(z, v),w(v, z)+ d0(z, s) > d0(v, s).

In both cases we obtained a contradiction to the hypothesis dtv [v, s] = d
0(v, s). �

Corollary 3.8. If a node v performs phase extend-via with respect to source s, then v is black with respect to s.

Proof. We prove that if v is a nonblack node with respect to s, then it does not perform phase extend-via with respect to
source s.
Let v be a nonblack node with respect to s that receives the message m = increase(u, s, dtu [u, s]) at time tm, where

tf (u, s) ≤ tu < tm. By Lemma 3.3, u is black with respect to s. Let us consider the local execution at node v related to
messagem. Since u is black, by Lemma 3.7, dtu [u, s] > d

0(u, s). Hence

w(v, u)+ d[u, s] > w(v, u)+ d0(u, s) ≥ d0(v, s).

By Corollary 3.4, d0(v, s) = dtm [v, s]. Thus, w(v, u) + dtu [u, s] > dtm [v, s] and then the condition in Line 23 of Procedure
Increase is false. �

Lemma 3.9. For each pair of nodes v and s and for each time t ≥ tl(v, s), dt [v, s] ≥ dk(v, s).

Proof. By contradiction, let us suppose that v is the first node failing to update its routing table, and let tv ≥ tl(v, s) be the
smallest time such that

dtv [v, s] < d
k(v, s). (1)
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For each z ∈ viatv [v, s]:

dtv [v, s] = w(v, z)+ dtz [z, s] < d
k(v, s), tz < tv.

If there exists a node z ∈ viatv [v, s] which is nonblack with respect to s, then, by Corollary 3.4, dtz [z, s] = d
k(z, s). Hence,

dtv [v, s] = w(v, z)+ d
k(z, s) ≥ dk(v, s), a contradiction with respect to Eq. (1).

In what follows, we suppose that each node z ∈ viatv [v, s] is blackwith respect to s. By Lemma 3.6, tl(z, s) is defined. If
there exists a node z ∈ viatv [v, s] such that tz ≥ tl(z, s), since v is the first node to fail, then dtz [z, s] ≥ d

k(z, s). Thus,

dtv [v, s] = w(v, z)+ dtz [z, s] ≥ w(v, z)+ d
k(z, s) ≥ dk(v, s),

and, again, we obtain a contradiction with respect to Eq. (1). Hence, let us suppose that tz < tl(z, s), for each node
z ∈ viatv [v, s].
Let m′z and m

′′
z be the messages sent to v by z at times tz and tl(z, s) respectively and let tm′′z and tm′′z be the times when

they are received by v. Since two events cannot occur on one processor at the same time, then tm′z 6= tm′′z .
If there exists a node z ∈ viatv [v, s] such that tm′z > tm′′z , since v is the first node to fail, we have dtl(z,s)[z, s] ≥ d

k(z, s).
Thus,

dt̃ [v, s] = w(v, z)+ dtl(z,s)[z, s] ≥ w(v, z)+ d
k(z, s) ≥ dk(v, s)

where t̃ is the time when v updates d[v, s] as a consequence ofm′′z . Note that tm′′z < t̃ < tm′z < tv . After tl(z, s), d[z, s] is no
longer updated. This implies that dt [v, s] ≥ dk(v, s), for each t ≥ t̃ . Hence

dtv [v, s] ≥ d
k(v, s),

and, again, we obtain a contradiction with respect to Eq. (1). Hence, let us suppose that tm′z < tm′′z , for each node z ∈
viatv [v, s]. It follows that tm′z < tv < tm′′z .
Since tv ≥ tl(v, s), after tv , v can only perform phases reduce-via and extend-via. Let Ext(v, s) be the set of nodes added

to via[v, s] after tv as a consequence of an extend-via phase performed by v. We can assume that each node z in Ext(v, s)
fulfills the same properties of nodes in viatv [v, s], that is:
1. z is blackwith respect to s,
2. tz < tl(z, s),
3. tm′z < tm′′z .

Let tmax = max{tm′′z | z ∈ viatv [v, s] ∪ Ext(v, s)}. Informally, tmax is the time when v receives the last increase message
from nodes in viatv [v, s] ∪ Ext(v, s). It follows that, at time tmax, v performs Procedure Increase and tests at Lines 1 and 4
return true. Then, v performs phase build-table at time tmax > tv ≥ tl(v, s), a contradiction with respect to the definition
of tl(v, s). �
The following theorem shows the correctness of the decremental algorithm.
Theorem 3.10. There exists tF such that, for each pair of nodes v, s ∈ V and for each time t ≥ tF :

dt [v, s] = dk(v, s)
viat [v, s] ≡ viak(v, s).

Proof. The correctness of the algorithm is shown with respect to a fixed source s. The correctness for all pairs of nodes is
a straightforward consequence. In fact, since procedures Increase and Dist always refer to the record of the routing table
related to a single source, then the two executions of the decremental algorithm related to two different sources cannot
access the same record of the routing table.
Let us denote as tF (v, s) the time when the statement is true for v and s. If there exists tF (v, s) for each v, s ∈ V , then

tF = maxv∈V (tF (v, s)). Now we show that tF (v, s) exists for a generic pair (v, s). We consider white, gray and black nodes
with respect to s separately.
Let v be a white node with respect to s. By Lemmas 3.3 and 3.5 and Corollary 3.8, v does not perform none of the

following phases: improve-table, reduce-via, build-table and extend-via. Thus v never changes the values of RTv[s].
Hence, tF (v, s) = t1.
Let v be a gray node with respect to s. We have to show that there exists a time tF (v, s) such that, for each t ≥ tF (v, s):

dt [v, s] = dk(v, s) = d0(v, s)
viat [v, s] ≡ viak(v, s) ( via0(v, s).

Concerning the distances, Corollary 3.4 directly implies dt(v, s) = d0(v, s), for each t . To prove that the via information are
correctly updated, we first observe that viak(v, s) can be alternatively defined as follows:

viak(v, s) ≡ {u ∈ N(v) | d0(v, s) = w(v, u)+ d0(u, s) and dk(u, s) = d0(u, s)}.
Moreover, at time t1:

viat1 [v, s] ≡ via
0(v, s) ≡ {u ∈ N(v) | d0(v, s) = w(v, u)+ d0(u, s)}.

Hence, it remains to be shown that v removes from viat1 [v, s] each node u such that d
0(u, s) 6= dk(u, s) (that is, each black

node with respect to s) and does not add further nodes to viat1 [v, s].
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By Lemma3.3 and Corollary 3.8, v does not performany of the following phases: build-table, improve-table, extend-via.
Hence v does not add nodes to via[v, s].
By Lemma 3.3, each black node u in viat1 [v, s] performs phase propagate_1, then it sends an increasemessage to v. Since

each u belongs to viat1 [v, s], the local executions related to these messages perform phase reduce-via at time tu. Hence, at
a time t̃ = max{tu}, all black nodes with respect to s in viat1 [v, s] are removed from via[v, s]. Thus, tF (v, s) = t̃ .
Let v be a black node with respect to s. We have to show that there exists a time tF (v, s) such that, for each t ≥ tF (v, s):

dt [v, s] = dk(v, s) > d0(v, s)
viat [v, s] ≡ viak(v, s) 6≡ via0(v, s).

Putting together the definition of node colors and the definition of via, it is easy to see that the set viak(v, s) can be
alternatively defined the union of two disjoint sets:

• viak(v, s) ≡ Bs(v) ∪ NBs(v);
• Bs(v) ≡ {u ∈ N(v) blackwith respect to s | dk(v, s) = w(v, u)+ dk(u, s)};
• NBs(v) ≡ {u ∈ N(v) nonblackwith respect to s | dk(v, s) = w(v, u)+ d0(u, s)}.

Now we show that each shortest path P in Gk from v to s has the following structure:
P = v ≡ v1  vj−1 → vj  vh ≡ s where:

v1, v2, . . . , vj−1 : are black nodes with respect to s
vj, vj+1, . . . , vh : are nonblack nodes with respect to s.

In fact, v is black, and, since s iswhite, then there exists a nonblack node vj, 2 ≤ j ≤ h. By Property 4 of Fact 3.1, the existence
of vj nonblack implies that nodes vj+1, . . . , vh are all nonblack.
Let us define the set of subpaths v  vj as follows:

Ps(v) = {P ′ ≡ v  vj| P ′ ⊆ P, P = v  s is a shortest path in Gk, and
∀vi 6≡ vj in P ′, vi is blackwrt s and vj is nonblackwrt s}.

We define Ls(v) as the maximum length among all paths in Ps(v)

Ls(v) = max
P ′∈Ps(v)

{`(P ′)},

and give the proof by induction on Ls(v).

Inductive basis (Ls(v) = 1): let v be a node such that Ls(v) = 1 that is, for each shortest path P = v ≡ v1 → v2  vh ≡ s
in Gk, nodes v2, . . . , vh are all white or graywith respect to s. Notice that, in this case, Bs(v) ≡ ∅; this means that each node
in viatopk(v, s) is nonblack.
First of all, we show the correctness of d[v, s].
Fromone side, by Lemma3.3, v performs phase build-table. Let z be a node such that z ∈ NBs(v). The first local execution

of these instructions assigns a value of dtf (v,s)[v, s] such that:

dtf (v,s)[v, s] = min
vi∈N(v)

{w(v, vi)+ d[vi, s]}

≤ w(v, z)+ dt1 [z, s]

= w(v, z)+ d0(z, s)
= dk(v, s).

Hence,
dtf (v,s)[v, s] ≤ d

k(v, s). (2)
On the other hand, by Lemma 3.9,

dt̃ [v, s] ≥ d
k(v, s), for each t̃ ≥ tl(v, s). (3)

Now, let us consider a local execution by v of Procedure Increase at time t ′ such that tf (v, s) ≤ t ′ ≤ tl(v, s). Trivially, if v
performsphase improve-tableor phase extend-via, then the value ofd[v, s] canonly decrease. Now, assume thatv performs
phase build-table. In this case, v recomputes d[v, s] by using values obtained from its neighbors (see Line 8). Among these
neighbors there are nonblack nodes z such that dt [z, s] = dk(z, s) for each t . Hence, also in the case of build-table execution,
the value of d[v, s] can only decrease. This observation, along with Eq. (2), implies that at time t ′,

dt ′ [v, s] ≤ dtf (v,s)(v, s) ≤ d
k(v, s). (4)

In conclusion, by using Eqs. (3) and (4), we get
dt [v, s] = dk(v, s), for each t ≥ tl(v, s).

In order to show the correctness ofvia[v, s], we show that, if Ls(v) = 1, Exel(v, s) performs phase build-table. If we assume,
by contradiction, that Exel(v, s) performs phase improve-table, then, the following facts hold:
1. phase improve-table is performed by v as a consequence of the messagem = Increase(u, s, dtu [u, s]), where u ∈ N(v)
and tu < tl(v, s);

2. m is received by v at time t ′ such that tu < t ′ < tl(v, s);



1024 S. Cicerone et al. / Theoretical Computer Science 411 (2010) 1013–1037

3. since v executes phase improve-table, the condition at Line 15 is true. Hence,

w(v, u)+ dtu [u, s] < dt ′ [v, s];

4. by Eq. (4), dt ′ [v, s] ≤ dtf (v,s)(v, s) ≤ d
k(v, s). Hence,w(v, u)+ dtu [u, s] < d

k(v, s);
5. v performs the instruction at Line 17, then

dtl(v,s)[v, s] = w(v, u)+ dtu [u, s] < d
k(v, s). (5)

Eq. (5) represents a contradiction for Lemma 3.9. This prove that Exel(v, s) performs phase build-table.
During Exel(v, s), each node in NBs(v), is added to viatl(v,s)[v, s] at Line 9 of Procedure Increase. Furthermore, there can

exist a black node u′ in viatl(v,s)[v, s]. But u
′, at time tl(u′, s), will send an increasemessage to v. The local execution related

tom performs phase reduce-via at time tu′ . Hence, tF (v, s) = max{tu′ , tl(v, s)}.

Inductive step: the inductive hypothesis is: each node v such that Ls(v) ≤ l − 1 correctly assigns dtF (v,s)[v, s] and
viatF (v,s)[v, s].
Let v be a node such that Ls(v) = l. Each node z ∈ viak(v, s) satisfies Ls(z) ≤ l − 1. Then, by inductive hypothesis, z

correctly updates d[z, s] and via[z, s] at time tl(z, s) and, consequently, it sends the message increase(z, s, dk(z, s)) to v.
Notice that, this message is due to the propagation of the algorithm after a weight increase operation occurred ‘‘far from’’ v.
Furthermore, z could send another increasemessage as a consequence of a weight increase operation that occurs ‘‘locally"
to v, that is on the edge (z, v) at time ti, 1 ≤ i ≤ k. Let tz = max{tl(z, s), ti}, and let t ′z be the time when the increase
message sent by z at time tz is received by v. Now, let m = increase(z̄, s, dk(z̄, s)) be the message received by v at time
tz̄ = min{t ′u | u ∈ via

k(v, s)} sent by z̄ ∈ viak(v, s).
When v receivesm, it performs the Procedure Increase. Let t̄ be the time when this execution terminates. Then,

dt̄ [v, s] ≤ w(v, z̄)+ dtz̄ [z̄, s]

= w(v, z̄)+ dk(z̄, s)
= dk(v, s).

Hence,

dt̄ [v, s] ≤ dk(v, s). (6)

Furthermore, by Lemma 3.9,

dt̃ [v, s] ≥ d
k(v, s), for each t̃ ≥ tl(v, s). (7)

Moreover, if t ′ is a time such that t̄ ≤ t ′ ≤ tl(v, s), then we get the following relationship:

dt ′ [v, s] ≥ dt̄ [v, s] ≤ dk(v, s). (8)

To show that Eq. (8) holds, we can use the same arguments used to show Eq. (4) in the inductive basis. In particular,

• Eqs. (6) and (7) play the same role of Eqs. (2) and (3);
• node z̄ plays the same role of nodes in NBs(v). In fact, dt [z̄, s] = dk(z̄, s), for each t ≥ tz̄ .

In conclusion, by using Eqs. (7) and (8), we get

dt [v, s] = dk(v, s), for each t ≥ tl(v, s).

Regarding the values stored in via[v, s], note that z̄ ∈ viat [v, s] for each t ≥ tl(v, s). Node v receives messages
increase(z, s, dk(z, s)), z 6= z̄, at times tz > tz̄ . As a consequence of these messages, v performs phase improve-table
or extend-via, and then all nodes z are added to via[v, s]. As in the inductive basis, there can exist nodes u′ such that
u′ /∈ viak(v, s) but u′ ∈ viat [v, s] for a time t ≥ tl(v, s). For the same arguments used in the inductive basis, these nodes
will be removed from via[v, s] at time tu′ . Hence tF (v, s) = max{tu′ , tl(v, s), tz}. �

Complexity issues.
In the remainder of the section, we show by an example that the message complexity of the decremental algorithm

cannot be bounded by a worst case analysis. In fact, the number of messages in the example can be arbitrarily large and
does not depend by any topological parameter of the graph.
However, we show by another example that in practical cases, the number of messages sent by concurrent executions of

the Increase algorithm can be smaller than in the sequential cases. The practical efficiency of the algorithm is analyzed in
Section 5.

Example 3.11. Let us consider a graph G = (V , E, w)with the following properties:

• a subset of nodes VR ( V is a cycle, VR = {v ≡ v0, v1, v2, . . . , v`−1, v`} with w(vi, vi+1) = ε for i = 0, 1, 2, . . . , ` − 1
andw(v, v`) = ` · ε;
• the only connection between nodes in VR and V \ VR is (u, v).
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Fig. 4. A scenario which shows that the number of messages sent by the decremental algorithm cannot be bounded by worst case analysis.

For a visualization of graph G, see Fig. 4. For a given source s, we have:

• via0[v, s] = {u};
• via0[vi, s] = {vi−1}, d0[vi, s] = d0[v, s] + iε, for i = 1, 2, . . . , `− 1;
• via0[v`, s] = {v, v`−1}, d0[v`, s] = d0[v, s] + `ε.

Let us suppose that, as a consequence of weight increase operation, node v receives a message increase(u, v, d[u, s]) form u,
and d[u, s] + w(u, v) > d0[v, s] + 2`ε. In the build-table phase, v chooses v` as new via and sets via[v, s] = {v`} and
d1[v, s] = d0[v, s] + 2`ε. Then v sends increase messages to its neighbors in phase propagate_1. When node v` receives
the increase message form v , it removes v from via[v`, s]. When node v1 receives the increase message form v, it sets
d1[v1, s] = d0[v1, s] + 2`ε. Then, in turn, each node vi, i = 2, 3, . . . , ` sets d1[vi, s] = d0[vi, s] + 2`ε.
Therefore, node v` sends message increase(v`, s, d1[v`, s]) to node v which updates its distance to s and sets d2[v, s] =

d1[v, s] + 2`ε = d0[v, s] + 4`ε, and a new round is started along nodes in VR. After T rounds of updates along the cycle VR,
where T is theminimal number such thatd[u, s]+w(u, v) > d0[v, s]+T`ε, node v sets the correct values ofviaT [v, s] = {u}
and dT [v, s] = d[u, s] + w(u, v) and the last round of updates along nodes in VR takes place. Note that the value T can be
made arbitrarily large by choosing an appropriate value of ε. Hence the number of messages sent does not depend by any
topology parameter of G.

In the next example, we show that in some cases the concurrent executions of the algorithms for two weight increase
operations allows us to deliver a number ofmessages that is smaller than the number ofmessages delivered in the sequential
case.

Example 3.12. The scenario for the following example is depicted in Fig. 5. Let G = (V , E, w) be a weighted undirected
graph on which the following two weight increase operations are performed:
1. σ1 that involves edge x1 → y1 whose weight is increased by a quantity ε1 = 1
2. σ2 that involves edge x2 → y2 whose weight is increased by a quantity ε2 = 100.

Let s ∈ V be a source node such that δσ1,s ∩ δσ2,s 6= ∅. This means that there exists at least one node v such that each
shortest paths from v to s contains the edges (x1, y1) and (x2, y2). The propagation of messages related to source s can
change depending on the order in which the increasemessages are delivered to the nodes in δσ1,s ∩ δσ2,s. In other words, the
messages exchange depends on the two executions of the algorithm. Let us consider the node v in Fig. 5 and letm1 andm2
be the two messages received by v related to the operations σ1 and σ2, respectively:

m1 = increase(u, s, dt̃1 [u, s])
m2 = increase(u, s, dt̃2 [u, s]).

We suppose that:

• tm1 and tm2 , tm2 < tm1 , are the times when v receivesm1 andm2, respectively;
• dt [u, s] = 10 for any time t ≤ t1;
• dt [z, s] = 30 for any time t .
• viatm1 [v, s] ≡ {u} and dtm1 [v, s] = w(v, u)+ dt [u, s] = 11 for a certain t ≤ t1;

In other words, before any weight increase operation u is the only via from v to s and both u and v are black nodes while
z is white.
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Fig. 5. A scenario where the concurrent executions of the algorithm allow us to deliver a number of message that is smaller than the sequential case.

Since tm2 < tm1 , v performs the following operations in the order in which they are written:

1. Event: v receives messagem2.
line 1 : since u ∈ viatm1 [v, s], the condition is true.
reduce-via : via[v, s] := {u} \ {u} = ∅.
line 4 : since via[v, s] = ∅, the condition is true.
build-table : Sincem2 is related to σ2, then dt̃2 [u, s] ≥ dt̃1 [u, s] + ε2, and hence v performs the following operations:
• d[v, s] := w(v, z)+ d[z, s] = 31
• via[v, s] := {z}.

propagate_1 : v sends deg(v) times the message increase(v, s, d[v, s]).
2. Event: v receives messagem1.
line 1 : since u /∈ viatm1 (v, s), the condition is false.
reduce-via : not performed.
line 4 : not performed.
build-table : not performed.
propagate_1 : not performed, then v does not send the increasemessage.

Let us now analyze the sequential case. Notice that the node z is such that for any time t the following inequalities hold:

w(v, u)+ dt1 [u, s] + ε2 > w(v, z)+ dt [z, s] > w(v, u)+ dt1 [u, s] + ε1.

Hence, v performs two times the build-table phase:

1. as a consequence of σ1, v performs:
• d[v, s] := w(v, u)+ dt1 [u, s] + ε1 = 11
• via[v, ] := {u}

2. as a consequence of σ2, v performs:
• d[v, s] := w(v, z)+ d[z, s] = 31
• via[v, s] := {z}.

Then v sends 2 deg(v)messages as a consequence of eachweight increase operation (deg(v) increasemessages and deg(v)
get-distmessages). Thus, in the concurrent framework, we have saved at least 2 deg(v)messages.

4. The incremental algorithm

In this sectionwe describe our new incremental solution for the concurrent update of distributed all-pairs shortest paths
in the case of multiple operations. The algorithm proposed in this section is an extension of the incremental algorithm
proposed in [7]. The incremental algorithm of [7] has been shown to work only in the sequential case. We will show that
our extension works correctly also in the concurrent case. Our solution differs from that in [7] in how the algorithm starts
and in the message delivering policy between neighbors. In particular, we force the messages between two neighbors to be
delivered in a FIFO order. Furthermore, we will show that the incremental algorithm in [7] is not able to work in the case of
multiple concurrent weight decrease operations if the channels are not FIFO.
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Fig. 6. The Init procedure.

Fig. 7. The Decrease procedure.

We consider the algorithm to handle k weight decrease operations σ1, σ2, . . . , σk, since the extension to insert operations
is straightforward. In fact, inserting a new edge x→ ywith weightw is equivalent to decreasew(x, y) from+∞ tow.

Data structures. The data structures used in the incremental case are almost identical to those of the decremental case. The
only difference stays in the field RTv[s].via in the routing table of v which is defined as follows:

RTv[s].via ∈ {vi ∈ N(v) | RTv[s].d = w(v, vi)+ RTvi [s].d}.

This implies that this field stores only the neighbor of v used to determine the estimated distance. This means that in the
incremental case, for each node v we store only one shortest path to each source s.

Algorithm.
Before the incremental algorithm starts, we assume that dt [v, s] and viat [v, s] are correct, for each v, s ∈ V and for each

t < t1. The algorithm starts at each ti, i ∈ {1, 2, . . . , k}. For instance, the weight decrease operation σi represents an event
that is detected, at time ti, only by nodes xi and yi; as a consequence:

• yi sends the message init(yi, s, dti [yi, s]) to xi, for each s ∈ V ;
• xi sends the message init(xi, s, dti [xi, s]) to yi, for each s ∈ V .

When xi receives init(yi, s, dti [yi, s])by yi, xi executes procedure Init (see Fig. 6). This procedure is responsible for checking
if it is necessary to start the incremental algorithm. In the affirmative case (see line 1), xi updates RTxi [s] at a certain time t
and, in order to propagate the incremental algorithm, sends the message decrease(xi, s, dt [xi, s], xi) to its neighbors (line 6).
The first three arguments of themessage have the samemeaning as in init, while the fourth argument is one of the endpoints
of the edge changed by σi, that is, either xi or yi.
The behavior of yi (when yi receives the message init(xi, s, dti [xi, s])) is symmetric. At most one between xi and yi will

propagate the incremental algorithm. In fact, if we assume, without loss of generality, that dti [s, xi] ≤ dti [s, yi], then the
test performed by xi at Line 1 of procedure Init is false. Thus, xi does not update RTxi [s] and does not propagate the decrease
message to its neighbors.
Conversely, under the same assumptions, yi may improve its distance from s. In this case yi updates RTyi [s] at a certain

time t and, in order to propagate the incremental algorithm, sends the message decrease(yi, s, dt [yi, s], yi) to its neighbors.
When a node v receives the message decrease(u, s, dt̃ [u, s], yi), t̃ ≥ t , from a node u, it performs procedure Decrease (see
Fig. 7).
Remember that, in our model, multiple messages init and decrease received by a node are stored and processed in FIFO

order.
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Procedure Decrease differs from the classical distributed Bellman–Ford algorithm (e.g., see [5]) in the way in which
messages are propagated. In the Bellman–Ford algorithms messages containing the estimated distances are sent to all
the nodes in the graph. In the algorithm described in this section these messages are sent only to the nodes that change
the shortest path with respect to at least one source as a consequence of an edge modification. To better explain this
characteristic it is convenient to formalize the notion of ‘‘nodes affected by an edge modification’’.
Given a node v and a weight decrease operation σi, if there exists a node s such that v decreases its distance from s as a

consequence of σi, then we say that v is affected by σi. Hence, δσi,s is defined as follows:

δσi,s = {v ∈ V | d
i(v, s) < di−1(v, s)}.

When a node v receives the message decrease(u, s, d[u, s], y) from a node u ∈ N(v), it performs procedure Decrease.
Before testing at Line 3 whether d[u, s] contributes to give a better estimated distance from v to s, Procedure Decrease
verifies at Line 1 if u ∈ via[v, y]. This test is due to the following fact.

Fact 4.1. The following properties hold:

1. if v ∈ δσi,s, then each shortest path from s to v in G
i contains edge xi → yi. Hence, such shortest paths are in the form

s  xi → yi  v

where the subpaths s  xi and yi  v are shortest paths in Gi−1. We remark that the subpaths s  xi and yi  v may be
empty, that is, s ≡ xi and yi ≡ v.

2. if v ∈ ∪ki=1δσi,s, then each shortest path from s to v in G
k contains at least a modified edge xi → yi. Hence, such shortest paths

are in the form

s  xi1 → yi1  xi2 → yi2  · · ·  xih → yih  v

where {i1, i2, . . . , ih} ⊆ {1, 2, . . . , k}, the subpaths s  xi1 , yij  xij+1 with 1 ≤ j ≤ h− 1, and yih  v are shortest path in
Gi, i = 0, 1, . . . , k. As in the previous case, we remark that such subpaths may be empty.

If only the weight decrease operation on the edge xi → yi occurs, then the messages necessary to update v with respect
to source s are delivered, according to Property 1 of Fact 4.1, only along the path yi  v. To achieve this, the algorithm
performs the test at Line 1 of procedureDecrease. If there are manyweight decrease operations, themessages are delivered
according to Property 2 of Fact 4.1.

Correctness analysis. The following lemma and the subsequent theorem show the correctness of the algorithm.

Lemma 4.2. For each node v, for each source s and for each time t the inequality dt [v, s] ≥ dk(v, s) holds.

Proof. By contradiction, let us suppose that v is the first node to fail to update its routing table, that is, there exists a
minimum time tv such that dtv [v, s] < d

k(v, s). v updates its routing table as a consequence of the reception of a message
decrease(z, s, dtz [z, s], y) or init(z, s, dtz [z, s]), with tz < tv , from a node z ∈ N(v). The updating is performed at Line 5 of
Procedure Decrease or at Line 3 of Procedure Init. In any case, dtv [v, s] = w(v, z)+ dtz [z, s]. Since v is the first node to fail,
then dtz [z, s] ≥ d

k(z, s). Thus,

dk(v, s) > dtv [v, s] = w(v, z)+ dtz [z, s] ≥ w(v, z)+ d
k(z, s)

a contradiction. �

The following theorem shows that the incremental algorithm works also in the concurrent case under the hypothesis that
the messages are delivered, on each edge, in a FIFO order. In the next section we will show how to implement a FIFO order
in the actual model without getting worse the complexity bounds.

Theorem 4.3. There exists tF such that, for each pair of nodes v, s ∈ V and for each time t ≥ tF :

dt [v, s] = dk(v, s);
viat [v, s] ∈ viak(v, s).

Proof. Let us denote as tF (v, s) the timewhen the statement is true for nodes v and s. If there exists tF (v, s) for each v, s ∈ V ,
then tF = max(v,s)∈V×V {tF (v, s)}.
Let v, s be a pair of nodes in G, each shortest path from s to v in Gk is in the form

P = s  xi1 → yi1  xi2 → yi2  · · ·  xih → yih  v,

such that 0 ≤ h ≤ k, {i1, i2, . . . , ih} ⊆ {1, 2, . . . , k}. Note that, if h = 0, then v /∈ ∪ki=1δσi,s, hence P = s  v is a shortest
path in Gi, i = 0, 1, . . . , k, that does not contains any modified edge. Otherwise, the subpaths s  xi1 , yij  xij+1 with
1 ≤ j ≤ h−1, and yih  v are shortest paths in Gi, i = 0, 1, . . . , k. Moreover, if P ′ = a  b represents one of such subpaths,
then we assume that P ′ has the following property: it is the path induced by the values of the fields RTu[a].via before time
t1, for each node u 6≡ a belonging to P ′. We denote by P (v, s) the set containing all the shortest paths from v to s in Gk
having the above property, and we set len(v, s) = maxP∈P (v,s){`(P)}.
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The proof is by induction on len(v, s) for each pair of nodes v and s in G.
Inductive basis (len(v, s) = 0): a pair of nodes v, s is such that len(v, s) = 0 if and only if v ≡ s. In this case, at time t1 we
have:

dt1 [s, s] = 0
viat1 [s, s] = s.

Node s updates its routing table only after receiving init or decreasemessages. Let tm be the time when s receives the first
messagem from a node z ∈ N(s). Let dtz [z, s] be the distance estimate contained inm, where tz < tm.
By Lemma 4.2, dtz [z, s] ≥ d

k(z, s). Hence

w(s, z)+ dtz [z, s] ≥ w(s, z)+ d
k(z, s) ≥ 0.

Sincem is the first message received by s, dt1 [s, s] = dtm [s, s] = 0. Thus the conditions in lines 1 and 3 of Procedure Init and
Decrease respectively are false and s does not update its routing table.
If s receives further messages, the same arguments can be used to show that s never updates RTs[s]. Then tF (s, s) = t1.

Inductive step: by inductive hypothesis, for each pair of nodes s, v such that len(v, s) ≤ l− 1, v (s, resp.) correctly updates
RTv[s] (RTs[v], resp.) at time tF (v, s) (tF (s, v), resp.). We now show that the theorem holds for pair of nodes (v, s) such that
len(v, s) = l.
Let v and s be two nodes such that len(v, s) = l. If there exists a path P ∈ P (v, s) such that P is a shortest path in G0,

then P does not contains any modified edge. Since RTv[s] is correct before t1, at time t1 we have

dt1 [v, s] = d
0(v, s) = dk(v, s);

viat1 [v, s] ∈ via
0(v, s) ⊆ viak(v, s).

Hence, we have to show that v does not update RTv[s]. v updates RTs[v] only after receiving init or decreasemessages. Let
tm be the time when v receives the first messagem from a node z ∈ N(v). Let dtz [z, s] be the distance estimate contained in
m, where tz < tm.
By Lemma 4.2, dtz [z, s] ≥ d

k(z, s). Hence

w(v, z)+ dtz [z, s] ≥ w(v, z)+ d
k(z, s) ≥ dk(v, s).

Sincem is the first message received by s, dtm [v, s] = dt1 [v, s] = d
k(v, s). Thus the conditions in lines 1 and 3 of Procedure

Init and Decrease respectively are false and v does not update its routing table.
If s receives further messages, the same arguments can be used to show that v never updates RTv[s]. Then tF (v, s) = t1.
Let us now analyze the case in which each shortest path from v to s contains at least a modified edge. v correctly updates

RTv only if, at a certain time tu, it receives from a node u in viak(v, s) one of the following messages:

1. init(u, s, dk(u, s))
2. decrease(u, s, dk(u, s), yu) and viatu [v, yu] = u.

Let I be the set of messages init(u, s, dk(u, s)) such that u ∈ viak(v, s) and let D be the set of messages m = decrease(u, s,
dk(u, s), yu) such that u ∈ viak(v, s) and viatu [v, yu] = u, where tu is the time when v receives m. We now show that the
set I ∪ D is not empty.
If I 6≡ ∅ then I ∪ D is clearly not empty. Let us assume that I ≡ ∅, we have to show that in this case D 6≡ ∅.

Since each shortest path from v to s contains a modified edge, by inductive hypothesis, each node u in viak(v, s) correctly
updates RTu[s] and sends to v a message containing dk(u, s). Since I ≡ ∅, these messages are decrease messages. Let
m = decrease(u, s, dk(u, s), yu) be the message sent by u and tu be the time when v receives m. We have to show that
there exists a message such that viatu [v, s] = u. Note that u sends m only if RTu[yu] has already a correct value when u
performs procedure Init or Decrease, that is tF (u, yu) < tF (u, s). Furthermore may exist u1 6≡ u2 ∈ viak(v, s) such that
yu1 ≡ yu2 . Hence we define the following sets:

Y = {yu | u ∈ viak(v, s) and u sends decrease(u, s, dk(u, s), yu)}

for each y ∈ Y

Uy = {u | u ∈ viak(v, s) and u sends decrease(u, s, dk(u, s), y)}.

The sets Uy define a partition of viak(v, s), that is, for each y1 6≡ y2 ∈ Y , Uy1 ∩ Uy2 6≡ ∅ and
⋃
y∈Y Uy ≡ via

k(v, s).
For each y ∈ Y , two cases may occur:

• there exists a node u in Uy such that RTu[y] has never been changed since time t1 and then tF (u, y) = t1. Then, there
exists a shortest path from u to y that does not contains any modified edge. In fact, if by contradiction, each path in
P (u, y) contains a modified edge, then dt1 [u, y] = d

0(u, y) > dk(u, y). But, since tF (u, y) = t1, then dt1 [u, y] = d
k(u, y),

a contradiction. Furthermore, since I ≡ ∅, the edge (u, v) does not change and then there exists a shortest path from
v to y that does not contains any modified edge. As a consequence, for each u ∈ Uy, tF (v, y) = t1 < tu and then
viatu [v, y] = u

′
∈ Uy. Then, at time tu′ , viatu′ [v, y] = u

′.
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• each node u in Uy has correctly update RTu[y] at time tF (u, y) > t1. Hence, each u in Uy has sent to v the message
mu = decrease(u, y, dk(u, y), ·) at time tF (u, y). By inductive hypothesis, v correctly updates RTv[y] as a consequence
of mu′ , for a certain u′ ∈ Uy, at time tF (v, y). Since, for each u ∈ Uy, tF (u, y) < tF (u, s), by the FIFO assumption on the
messages delivering, v receives mu before m = decrease(u, s, dk(u, s), y). Hence, for each u ∈ Uy, tF (v, y) < tu and then
viatu [v, y] = u

′
∈ Uy. Then, at time tu′ , viatu′ [v, y] = u

′.

Hence, for each set Uy, there exists a node u ∈ viak(v, s) such that v receives, at time tu, a message decrease(u, s, dk(u, s), y)
and viatu [v, y] = u. Hence D 6≡ ∅.
Thus, I ∪ D 6≡ ∅. Let m be the first message in I ∪ D received by v, let u be the sender of m and let tm be the time when

v receives m. We now show that dtm [v, s] > w(v, u) + dk(u, s). By Lemma 4.2, we have dtm [v, s] ≥ d
k(v, s) = w(u, v) +

dk(u, s). Sincem is the first message in I ∪ D, any other messages m̄, sent by nodes in N(v) beforem, are such that, if t̄ is the
time when v updates RTv[s] as a consequence of m̄, dt̄ [v, s] > dk(v, s). Hence the condition dtm [v, s] > w(v, u) + dk(u, s)
holds and the test at Line 3 (resp. Line 1) of Procedure Decrease (resp. Init) is true. Then v correctly updates RTv[s] as a
consequence ofm at time tl.
Furthermore, if v receives messages decrease(z, s, dt̃ [z, s], ·) (resp. init(z, s, dt̃ [z, s])) at time tz > tl, by Lemma 4.2,

dt̃ [z, s] ≥ dk(z, s). Thus,

w(v, z)+ dt̃ [z, s] ≥ w(v, z)+ d
k(z, s) ≥ dk(v, s)

and then the test at Line 3 (resp. Line 1) of Procedure Decrease (resp. Init) is false. Hence, v does not update RTv[s] after tl.
It follows that tF (v, s) = tl.
To complete the proof we have to show that the concurrent update for two pair of nodes (v, s) and (v′, s′) such that

len(v, s) = len(v′, s′) = l does not lead to conflicts.
Let us consider two pair of nodes (v, s) and (v′, s′) such that s 6≡ s′ and len(v, s) = len(v′, s′) = l. If v 6≡ v′, then

the executions related to pairs (v, s) and (v′, s′) cannot conflicts each other because v and v′ write on two separate data
structures (RTv and RTv′ respectively). If v ≡ v′, then the executions performed by v of procedures Init and Decreasewrt s
and s′ cannot conflicts each other because, since len(v, s) = len(v, s′), s′ /∈ P (v, s) and s /∈ P (v, s′). �

Complexity analysis.
In what follows we give the complexity bounds of the algorithm in Figs. 6 and 7 in the concurrent case.
These bounds are given in terms of the number of affected nodes. More precisely, given a weighted undirected graph G,

a set of kweight decreases σ1, σ2, . . . , σk and a source node s, we denote as δσi,s the set of nodes that decrease the distance
to s as a consequence of σi. Formally:

δσi,s = {v ∈ V | d
i(v, s) 6= di−1(v, s)}.

If v ∈ ∪s∈V δσi,s we say that v is affected by σi. The total number of times that nodes of G are affected by the kweight decrease
operations is exactly∆ =

∑k
i=1
∑
s∈V

∣∣δσi,s∣∣.
Theorem 4.4. The concurrent update of all-pairs shortest paths over a graph Gwith n nodes and positive real edges weights, after
a set ofweight decrease operations, requires O (maxdeg ·∆)messages and O (n) space per node.

Proof. Given a source s and a weight decrease operation σi, a node v can update RTv[s] at most one time. Each time that
v updates RTv[s], it sends deg(v) messages. Hence, v sends at most maxdeg messages. Since there are

∣∣δσi,s∣∣ nodes that
change their distance from s as a consequence of σi, the number of messages related to the source s sent as a consequence of
operation σi ismaxdeg·

∣∣δσi,s∣∣. The sumof this value over all sources s ∈ V andweight decrease operations σi, i ∈ {1, 2, . . . , k}
is:

k∑
i=1

∑
s∈V

(
maxdeg ·

∣∣δσi,s∣∣) = maxdeg ·∆.
Thus, the message complexity is O (maxdeg ·∆).
The space complexity is O(n) per node because a node stores only RTv[·]. �

On the message delivering policy. In this section we explain how to implement the FIFO channels and provide an example
showing that they are necessary to the correctness of the algorithm.
During the execution of the incremental algorithm, each message sent by a node u is progressively numbered by integer

values. We may assume that the first message is numbered by 1. Messages sent to v and not yet processed are stored in a
buffer local to v. A message m stored in the buffer of v, numbered num(m), and sent by u ∈ N(v) is processed by v if and
only if the last message processed by v and sent by u is numbered num(m)− 1. It is easy to see that implementing the FIFO
channels does not affect the complexity bounds provided in the previous section.
In the following we provide an example to show that non-FIFO channels affect the correctness of the algorithm. This

example is based on the graph G represented in Fig. 8; G is modified bymeans of twoweight decrease operations. The figure
also shows some real values of distance and via related to the node v after each modification.
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Fig. 8. Graphs G0 , G1 , and G2 . G1 and G2 are obtained from G0 by applying two edge modification on edges x1 → y1 and x2 → y2 , respectively.

According to the hypothesis, at time t1:

• dt1 [v, s] = 20, viat1 [v, s] = y1
• dt1 [v, y1] = 10, viat1 [v, y1] = y1.

We assume that the first fourmessages received by v, ordered according to the time inwhich they are received, are listed
in the following. After each message we show the content of RTv[s] and RTv[y1].

1. init(x2, s, 16):
This message is sent by x2; we assume that x2 not yet updated its routing table according to σ1. After the message
processing, v changes its estimated distance to s. These are the new values:
• d[v, s] = 19, via[v, s] = x2
• d[v, y1] = 10, via[v, y1] = y1

2. decrease(y1, s, 9, y1):
This message is sent by y1; we assume that y1 has already updated its routing table according to σ1 (hence, now
d[y1, s] = 9). After themessage processing, v does not change its estimated distance to s since test at Line 3 of Procedure
Decrease returns false.
• d[v, s] = 19, via[v, s] = x2
• d[v, y1] = 10, via[v, y1] = y1

3. decrease(x2, s, 15, y1):
This message is sent by x2. As in the previous case, we assume that x2 has already updated its routing table according to
σ1 (hence, now d[x2, s] = 15). Test at Line 1 of Procedure Decrease returns false, hence v does not update its routing
table.
• d[v, s] = 19, via[v, s] = x2
• d[v, y1] = 10, via[v, y1] = y1

4. init(x2, y1, 6):
This message is sent by x2. Test at Line 1 of Procedure Init returns true, hence v updates RTv[y1].
• d[v, s] = 19, via[v, s] = x2
• d[v, y1] = 9, via[v, y1] = x2.

Notice that v does not receive further messages with respect to source s. Hence, after the termination of the algorithm
it results that d[v, s] = 19 versus d2(v, s) = 18. FIFO channels prevents this drawback since the delivering ordering of the
example cannot occurs. In particular, FIFO channels avoid that v processes the decreasemessages 2 and 3 before processing
the initmessage 4.

5. Experimental evaluation

In this sectionwedescribe the experimentsweperformed to check the effectiveness of our algorithms also in the practical
case.
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Experimental environment. All the experiments have been carried out on a workstation equipped with a 2,66 GHz processor
(Intel Core2 Duo E6700 Box) and a 8Gb RAM (PC6400 PRO Series, 800 MHz). The experiments consist of simulations within
the OMNeT++ environment, version 3.3p1 [1].
OMNeT++ is an object-orientedmodular discrete event network simulator, useful tomodel protocols, telecommunication

networks, multiprocessors and other distributed systems. It also provides facilities to evaluate performance aspects of
complex software systems where the discrete event approach is suitable.
An OMNeT++ model consists of hierarchically nested modules, that communicate through message passing. Modules

and messages can have their own parameters, stored in arbitrarily complex data structures, that can be used to customize
specific behaviors or topologies.
In ourmodel, we defined a basicmodule node to represent a node in the network. A node v has a communication gatewith

each node in N(v). Each node can send messages to a destination node through a channel which is a module that connects
gates of different nodes (both gate and channel are OMNeT++ predefinedmodules). In ourmodel, a channel connects exactly
two gates and represents an edge between two nodes. We associate two parameters per channel: a weight and a delay. The
former represents the cost of the edge in the graph, and the latter simulates a finite but not null transmission time.
Implemented algorithms. We implemented the algorithms described in Sections 3 and 4, that in the remainder we denote
as DECR and INCR, respectively. In order to compare their performances with respect to known algorithms in the literature,
we also implemented two different versions of the well-known Bellman–Ford algorithm [5,14]. They are denoted as BF.1
and BF.2 and briefly described in what follows.

BF.1 This version is described in [5], a node v updates its estimated distance to a node s, by simply executing the iteration

d[v, s] := min
u∈N(v)
{w(v, u)+ d[u, s]},

using the last estimated distance d[u, s] received from a neighbor u ∈ N(v) and the latest status of its links.
Eventually, node v transmits the new estimated distance to its neighbors. It requires O(n ·maxdeg) space per node
to store the last estimated distance vector {d[u, s] | s ∈ V } received from each neighbor u ∈ N(v).

BF.2 This version is described in [14]. It assumes that each node v initially overestimates the distancewith the remaining
nodes in the network. Then, for each new d[u, s] received from a neighbor u ∈ N(v), it first checks whether its
estimated distance to s can be improved, and, in the affirmative case, it sends the new estimated distance to each
neighbor but u. It requires O(n) space per node.

Algorithm BF.1 and BF.2 have the samemessage complexity but BF.2 does not require to store the last estimated distance
vector {d[u, s] | s ∈ V } received from each neighbor u ∈ N(v), hence BF.2 is more space efficient than BF.1. However, BF.2
cannot be used when edge weights increase as it assumes that the routing tables initially contain overestimated distances.
Thus, we experimentally compared the performances of DECR against those of BF.1 and the performances of INCR against

those of BF.2.
Input data and executed tests. For our tests we use both real world and artificial instances of the problem. In particular, we
use CAIDA IPv4 topology dataset [12] and Erdös–Rényi random graphs [6].
CAIDA (Cooperative Association for Internet Data Analysis), is an association which provides data and tools for the

analysis of the Internet infrastructure.
The CAIDA dataset is collected by a globally distributed set of monitors. The monitors collect data by sending probe

messages continuously to destination IP addresses. Destinations are selected randomly from each routed IPv4 /24 prefix on
the Internet such that a random address in each prefix is probed approximately every 48 hours (one probing cycle). The
current prefix list includes approximately 7.4 million prefixes. In the current configuration, probes are made by sending
ICMP packets. For each destination selected, the path from the source monitor to the destination is collected, in particular,
data collected for each path probed includes:

• the set of IP addresses of the hops which form the path;
• the Round Trip Times (RTT), of both intermediate hops and the destination.

We parsed the files provided by CAIDA in order to obtain a weighted undirected graph GIP where a node represents an IP
address contained in the dataset (both source/destination hosts and intermediate hops), edges represent links among hops
and weights are given by RTTs.
As the graph GIP consists of n ≈ 50e+03 nodes, we cannot use it for the experiments. In fact, the amount of memory

required to store the routing tables of all the nodes is O(n2). Hence, we performed our tests in subgraphs of GIP induced by
the settled nodes of a breadth first search starting from a node taken at random.
We generated a set of different tests, where a test consists of a dynamic graph characterized by: a subgraph of GIP of

1000 nodes, a set of k concurrent edge updates, where k assumes values in {5, 10, 15, 20}. For the decremental tests, an
edge update consists of increasing the edge weight of a random selected edge by a percentage value randomly chosen in
[110%, 150%], while for the incremental tests weights are decreased by a percentage value randomly chosen in [50%, 90%].
For each test configuration – i.e. a subgraph of GIP and a set of kmodification – we performed 5 different experiments and
we report average values.
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Fig. 9. Number of messages sent by DECR and BF.1 on subgraphs of GIP .

Fig. 10. Ratio between the number of messages sent by BF.1 and DECR on subgraphs of GIP .

The graphGIP turns out to be very sparse (i.e.m/n ≈ 1.5), so it isworth analyzing denser graphs. To this aimwe generated
Erdös–Rényi random graphs. In detail, we randomly generated a set of different tests, where a test consists of a dynamic
graph characterized by:

• an Erdös–Rényi random graphs Grandom of 1000 nodes;
• dens, the density of the graph. It is computed as the ratio between m and the number of the edges of the n-complete
graph;
• k, the number of edge update operations.

We chosen different values of dens ranging from 0.01 to 0.41. The number k assumes values in {30, 100}. Edge weights are
non-negative real numbers randomly chosen in [1, 10e+03]. Edge updates are randomly chosen as in the CAIDA tests. For
each test configuration – i.e. a graph Grandom, a value of density dens, and a set of kmodification – we performed 5 different
experiments and we report average values.
Decremental algorithm. In Fig. 9, we report the number of messages sent by algorithms DECR and BF.1 on subgraphs of
graph GIP with 1000 nodes and an average value of 1411 edges. Fig. 9 shows that DECR always performs better than BF.1.
In particular, it always sends less messages than BF.1 and, according to Example 3.12 in Section 3, the gap increases with k
due to concurrent executions of the algorithms.
Fig. 10 shows the same results as Fig. 9 from a different point of view, that is, it shows the ratio between the number of

messages sent by BF.1 and DECR in the same settings as Fig. 9. It is worth noting that the ratio is more than 8 in the worst
cases, i.e. when k = 5, and it increases with k reaching the value of 25.5 in the cases when k = 20.
To conclude our analysis, we give the space occupancy per node of DECR and BF.1. BF.1 requires a node v to store, for each

destination, the estimated distance given by each of its neighbors, while DECR only needs the estimated distance of v and
the set via, for each destination. Since in these sparse graphs it is not common to have more than one via to a destination,
the size to store the routing table for DECR is much smaller than the size required by BF.1.
In particular, DECR requires in average 8000 bytes per node and 8020 bytes per node in the worst case. BF.1 requires in

average 9644 bytes per node and 740e+03 bytes per node in the worst case. This implies that DECR is in average 1.20 times
more space efficient than BF.1 and it is 92.27 times more space efficient than BF.1 in the worst case.
The goodperformances of DECR aremainly due to the sparsity of the graphs used. In fact, DECRuses two kind ofmessages:

increase and get-dist. The former is sent onlywhen a node v changes its routing table and it is used to propagate this changing,
while the latter is just used by v in order to know the estimated distances of its neighbors. Hence, the number of get-dist
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Fig. 11. Number of messages sent by DECR and BF.1 on graphs Grandom .

Fig. 12. Ratio between the space required by BF.1 and DECR in the average case on graphs Grandom .

Fig. 13. Ratio between the space required by BF.1 and DECR in the worst case on graphs Grandom .

messages is proportional to the average node degree of a graph. Note that, BF.1 does not need to use get-distmessages as it
stores, for each node, the estimated distances of its neighbors. Hence, in sparse graphs, where the average degree of a graph
is small, the number of get-dist messages sent by DECR is also small and this implies that, in these cases, DECR sends less
messages than BF.1.
By the above discussion, it is worth investigating how the two algorithms performwhen the graph is denser. To this aim,

Fig. 11 shows the number of messages sent by algorithms DECR and BF.1 on Erdös-Rényi random dynamic graphs with 1000
nodes, 30 edge weight increases and dens ranging from 0.01 to 0.41 which leads to a numberm of edges which ranges from
about 5000 to about 200e+03. The number of messages sent by DECR is less than the number of messages sent by BF.1 when
the number of edges is less than 100e+03. In most of the cases when the number of edges is more than 100e+03, BF.1 is
slightly better than DECR. This is due to the fact that DECR does not require a node to store the estimated distances of its
neighbors but it sends a get-distmessage to each neighbor (see Line 7 of Procedure Increase). Hence, the number of get-dist
messages is high when the average number of neighbors is high. Contrarily, BF.1 does not need to send such messages as it
stores for each node v the estimated distances of each neighbor of v. This implies an increase in the space occupancy of BF.1
as highlighted by Figs. 12 and 13. In detail, Fig. 12 shows the ratio between the average space occupancy per node required
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Fig. 14. Ratio between the number of messages sent by BF.1 and DECR on graphs Grandom .

Fig. 15. Number of messages sent by INCR and BF.2 on subgraphs of GIP .

Fig. 16. Ratio between the number of messages sent by BF.2 and INCR on graphs Grandom .

by BF.1 andDECRwhile Fig. 13 shows the ratio between theworst case space occupancy per node required by BF.1 andDECR.
The average space occupancy ratio grows linearly with the number of edges as the space occupancy of DECR remains almost
constant while the space occupancy of BF.1 is proportional to the average node degree. The worst case space occupancy of
BF.1 grows very fast as in the executed tests where dens > 0.10 there exists at least a node v such that deg(v) = n− 1.
A different point of view is given in Fig. 14 which shows the ratio between the number of messages sent by BF.1 and

DECR in the same settings as Fig. 11. Note that, the ratio is about 4 in the sparse graphs and it decreases until it assumes
approximately the value of 1 for dense graphs.
Figs. 11–14 refer to the case when k = 30, the case when k = 100 is similar and hence it is not reported.

Incremental algorithm. The space required by INCR and BF.2 is the same, then we focus only on the number of messages sent
by the two algorithms.
Figs. 15 and 16 show the performances of INCR and BF.2 in subgraphs of GIP and in Erdös-Rényi random graphs,

respectively.
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In Fig. 15 we can see that the number of messages sent by INCR is always smaller than the number of messages sent by
BF.2. In particular, the number ofmessages sent by BF.2 is between 1.47 and 1.55 times greater than the number ofmessages
sent by INCR.
The same behavior can be observed for Erdös–Rényi random graphs but in this case the ratio between the number of

messages sent by BF.2 and INCR is smaller when the graph is denser as we can see in Fig. 16 where such ratio is about 1.08
in the best cases and it tends to be 1 for dense graphs. Fig. 16 refers to the case when k = 30, the case when k = 100 is
similar and hence it is not reported.

6. Conclusions and future work

Most of the solutions known in the literature for the dynamic distributed all-pairs shortest paths problem suffer of two
main drawbacks:

• they are not able to update shortest paths concurrentlywhen multiple edge changes occur in the network. In fact, many
algorithms work under the assumption that before dealing with an edge operation, the algorithm for the previous
operation has to be terminated. This is a limitation in real networks, where edge changes can occur in an unpredictable
way;
• they are able to concurrently update shortest paths but, (i) either they suffer of the looping and counting phenomenons,
or (ii) their convergence can be very slow in the case of weight increase operations (possibly infinite).

In this paper we have provided partially dynamic solutions that are able to concurrently update shortest paths. In detail:
1. We have proposed a new robust decremental algorithm which is able to concurrently update shortest paths in the case
of multiple weight increase and delete operations. The algorithm requires O(maxdeg · n) space per node and can suffer of
the looping phenomenon. However, this algorithm has been shown to be experimentally efficient when compared with
two different implementations of the classical Bellman–Ford method.

2. We have proposed an extension of the incremental algorithm given in [7] for weight decrease and insert operations that
works also in the concurrent case, within the same bounds of [7], that is O(maxdeg ·∆)messages per operation and O(n)
space per node. Here,∆ is the number of nodes affected by a set ofweight decrease/insert operations. This is only a factor
maxdeg far from the optimal incremental solution. Besides being theoretically efficient, this algorithm has been shown
to be also experimentally faster than two different implementations of the classical Bellman–Ford method.

Furthermore, in real cases the concurrent executions of the algorithms of this paper for two (or more)
weight decrease/insert or weight increase/delete operations allows us to deliver a number of messages that is much smaller
than the number of messages delivered in the sequential case. An example is given for the decremental algorithm in
Section 3, an analogous example could be easily provided for the incremental algorithm. This considerations have been
confirmed by our experimental study.
The main future research direction is that of finding efficient and practical solutions for the more realistic fully dynamic

case of the problem at hand. Along this line we are working on the extension to the fully dynamic case of the partially
dynamic solutions given in this paper.
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