
IDIS (2009) 2:99–114
DOI 10.1007/s12394-009-0033-3

Trusting third-party storage providers for holding
personal information. A context-based approach
to protect identity-related data in untrusted domains

Giulio Galiero · Gabriele Giammatteo

Received: 12 January 2009 / Accepted: 28 September 2009 / Published online: 14 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The never ending growth of digital information and the availability
of low-cost storage facilities and networks capacity is leading users towards
moving their data to remote storage resources. Since users’ data often holds
identity-related information, several privacy issues arise when data can be
stored in untrusted domains. In addition digital identity management is becom-
ing extremely complicated due to the identity replicas proliferation necessary
to get authentication in different domains. GMail and Amazon Web Services,
for instance, are two examples of online services adopted by million of users
throughout the world which hold huge amounts of sensitive users data. State-
of-the-art encryption tools for large-scale distributed infrastructures allow
users to encrypt content locally before storing it on a remote untrusted repos-
itory. This approach can experience performance drawbacks, when very large
data-sets must be encrypted/decrypted on a single machine. The proposed
approach extends the existing solutions by providing two additional features:
(1) the encryption can also be delegated to a pool of remote trusted computing
resources, and (2) the definition of the encryption context which drives the tool
to select the best strategy to process the data. The performance benchmarks
are based on the results of tests carried out both on a local workstation and on
the Grid INFN Laboratory for Dissemination Activities (GILDA) testbed.

Keywords Distributed computing · Distributed storage · Secure data storage ·
Parallelized encryption · Grid computing · Sensitive data · Digital identity

G. Galiero (B) · G. Giammatteo
Engineering Ingegneria Informatica S.p.A., Rome 00185, Italy
e-mail: giulio.galiero@eng.it

G. Giammatteo
e-mail: gabriele.giammatteo@eng.it

100 G. Galiero, G. Giammatteo

Introduction

The amount of digital data produced every year is growing exponentially.
From the end-users’ perspective, the digital world is a an unlimited virtual
drawer where their entire life can be stored: emails and attachments, docu-
ments and spreadsheets, holiday pictures, music and videos. The more data
are produced, the more the need for storage space increases. As a conse-
quence, digital data preservation is becoming a thorny concern: users do not
want to deal with managing such an amount of data, even though it is their pri-
vate data. Thus users, rather than relying on a do-it-yourself data management,
prefer to trust professional IT providers which offer support to outsource user
data on remote servers (e.g. Google—http://www.google.com, Yahoo—http://
www.yahoo.com, Facebook—http://www.facebook.com, Amazon—http://aws.
amazon.com/, etc.). Online storage scenarios can also include the need for the
end-users to transfer and store very large data set (i.e. magnitude of GiBs):
hard drives backup by private users, phone call logs by a telco company,
patients records and medical images (X-Rays, radiotherapy treatments) by
healthcare institutions.

As people rely on banks to save their money rather than hiding it at
home, users are now relying on third-parties to store their private data rather
than using their laptops as data repositories. The main difference between
money and data is that the latter brings along huge privacy issues related
to the sensitive content they hold, which probably makes data much more
valuable than money. However, users, no matter the privacy issues, are
strongly attracted by the plethora of online services for two main reasons:
(1) the anywhere, anytime, anyhow data access pattern is close at hand,
(2) it is - nearly always - free. The result is that private sensitive data are drifting
from local hard disks to remote storage sites. This trend is evidenced by the
recent spawning of online storage services available on the web. The more
online services are used, the more sensitive data are distributed throughout
several storage providers. The Amazon S3 (Simple Storage Service), for
instance, is the data storage service included in the Amazon Web Services
(Murty 2008; Amazon—http://aws.amazon.com/) suite, which has proved to
be very popular among the end-users. However, the data stored on the
Amazon servers is not encrypted (http://s3.amazonaws.com/aws_blog/AWS_
Security_Whitepaper_2008_09.pdf): the need for privacy is proved by the cur-
rent availability of third-party tools (Dropbox—http://www.getdropbox.com/,
Spideroak—http://www.spideroak.com/) that wrap the Amazon S3 function-
alities and introduce additional encryption features. Unfortunately, as more
services are available, the user digital identity is replicated, since new user
accounts are created for each different service.

Several attempts have been put forward to streamline digital identity
management in distributed environments (Kreizman et al. 2007; Cameron
2005). The basic idea behind these approaches is to extract identity-related
information into an independent layer where users’ profiles can be held.
Thus, since identity is freed from the applications, the applications themselves

http://www.google.com
http://www.yahoo.com
http://www.yahoo.com
http://www.facebook.com
http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/
http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf
http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf
http://www.getdropbox.com/
http://www.spideroak.com/

Third-party storage providers holding personal information 101

can verify the identity of the users by talking to this new layer, where
identity authorities are put in place. Several user-centric technologies have
been delveloped to support such new scenarios (OpenId—http://openid.net/;
Recordon and Reed 2006; Information Cards—http://informationcard.net/;
Shibboleth—http://shibboleth.internet2.edu/). The main advantage of having
only one digital identity reveals to be a drawback with regards to held
identity-related data online. If each user is associated to a single digital id,
then users’ online activities can be entirely tracked back. Even though efforts
have been put into trying to achieve users digital anonymity or pseudonymity
(Rodrigues 2007) currently there is still high risk of identity correlation
(Schneier—http://www.schneier.com/essay-200.html/) as well as identity theft.
Other risks involve potential backdoor communications between third-parties,
who can build up knowledge about their users by exchanging identity-related
information between each other. OAuth (http://oauth.net/), for instance, is
a solution aiming at reducing or, if possible, preventing this scenario: the
main idea behind OAuth is to define a user-centric protocol which states the
interaction between third parties and users in order to allow the latter to issue
consent/dissent assertions on the behavior of the former.

The common approach to protect user information is to encrypt data
before they are uploaded to an untrusted domain, as suggested, for in-
stance, in the Amazon’s Security Whitepaper (http://s3.amazonaws.com/aws_
blog/AWS_Security_Whitepaper_2008_09.pdf). Our contribution is based on
this assumption and furthermore aims at taking into account the encryption
context in order to dynamically adapt the encryption operations.

The rest of this paper is organized as follows: We first discuss related work in
section “Related work” and then analyze potential challenges and motivation
toward secure storage in distributed environments in section “Challenges and
motivation”. In section “Design and implementation”, we present our design
and implementation in detail. We also carry out performance evaluation in
section “Performance evaluation” to show efficiency comparison. Finally, we
conclude the paper in section “Conclusions and future work”.

Related work

Several tools have been developed to protect sensitive data in distributed
environments. In this section three tools for grid distributed environments are
presented. Each implementation is evaluated against the following features:
(a) the support for local and/or remote encryption, (b) the pool of encryption
algorithms supported, (c) the way the encryption keys are managed, (d) the
support for Shamir Secret Sharing (1979). Further a proprietary data storage
service is presented.

S3 (Scardaci and Scuderi 2007)—Secure Storage System—is one of the
encryption services provided by the gLite (http://glite.web.cern.ch/glite/) mid-
dleware. S3 offers a security layer of abstraction to interact with files on the
Grid, which extends both the gLite-utils and the GFAL (http://wiki.egee-see.

http://openid.net/
http://informationcard.net/
http://shibboleth.internet2.edu/
http://www.schneier.com/essay-200.html/
http://oauth.net/
http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf
http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf
http://glite.web.cern.ch/glite/
http://wiki.egee-see.org/index.php/Data_Access_with_GFAL

102 G. Galiero, G. Giammatteo

org/index.php/Data_Access_with_GFAL) (POSIX like) APIs. User applica-
tions can leverage the S3 APIs to encrypt/decrypt data locally (on a single
node of the trusted domain) storing/retrieving data to/from remote storage
nodes. The encryption process is always performed via the AES-256 standard
algorithm. Key management is performed through the Keystore service, which
enables sharing of encrypted data among the members of a VO through Access
Control Lists (ACL). Shamir Secret Sharing support is not yet implemented,
but has been included in the development roadmap. A similar service, named
GS3 (https://grid.ct.infn.it/twiki/bin/view/Main/GridSecureStorageSystem)—
Grid Secure Storage System—, has been developed by Consorzio Cometa
(http://www.consorzio-cometa.it/). The most remarkable difference between
two services is that GS3 doesn’t support ACLs. Key Management is based on
PKI certificates, instead.

Hydra (Montagnat et al. 2006; https://twiki.cern.ch/twiki//bin/view/EGEE/
DMEDS) is a keystore server firstly developed for the AGIR (http://www.
aci-agir.org/) project to protect medical digital images of patients, and then
integrated into the gLite middleware. Data encryption is performed via the
AES standard algorithm of the OpenSSL version shipped with the Globus
Toolkit. Data are encrypted/decrypted locally, without any support for data
chunks encryption/decryption. Key management relies on a set of keystore
servers, which are the building blocks of the Hydra service ACLs, thus allowing
principals to share encrypted files among a group of users. In addition, to
increase security, Hydra supports also Shamir Secret Sharing (to split keys into
a set of key chunks stored in different Hydra servers).

Perroquet (Blanchet et al. 2006) is a tool for grid environments developed
by the EGEE (www.eu-egee.org) project to secure biological data. Perroquet
is built on top of Parrot (http://www.cse.nd.edu/~ccl/software/parrot/) and
EncFile (Blanchet et al. 2006) to provide an encryption client which allows
“any applications to transparently read and write encrypted remote files as if
they were local and plain-text”. AES-256 is the algorithm used to encrypt data.
Data chunks encryption is not supported. The Perroquet architecture relies on
a set of key servers to store the encryption keys. Actually, since Perroquet
supports Shamir Secret Sharing, the key servers hold only chunks of keys, not
the key itself.

For each encryption tool reviewed in this section, a summary of the main
features is provided in Table 1.

Table 1 State of the art

Enc. location Algorithms Key management Shamir Secret Sharing

S3 Locally AES-256 Key server Included in the roadmap
GS3 Locally AES PKI to encrypt user’s enc keys No
Hydra Locally AES Key server Yes
Perroquet Locally AES-256 Key server Yes

Summary of reviewed tools

http://wiki.egee-see.org/index.php/Data_Access_with_GFAL
https://grid.ct.infn.it/twiki/bin/view/Main/GridSecureStorageSystem
http://www.consorzio-cometa.it/
https://twiki.cern.ch/twiki//bin/view/EGEE/DMEDS
https://twiki.cern.ch/twiki//bin/view/EGEE/DMEDS
http://www.aci-agir.org/
http://www.aci-agir.org/
http://www.eu-egee.org
http://www.cse.nd.edu/~ccl/software/parrot/

Third-party storage providers holding personal information 103

Challenges and motivation

Taking into account the encryption context

In a flexible secure storage service, the encryption strategy should depend
on the encryption context. We define the encryption context as the set of
values related to the following parameters: the input data size, the security
requirements and the encryption speed requirements. However, state of the
art tools provide users with a basic “no-choice” encryption strategy. In other
words such tools offer only one encryption algorithm (i.e. AES, the standard),
disregarding the encryption context.

In order to achieve better accuracy and efficiency, the encryption context
should drive the choice of the best strategy; that is which encryption algorithm
and key size should be used and whether the encryption should be either ex-
ecuted locally or parallelized on remote machines. Thus, a pool of encryption
algorithms should be available to cover a wide range of scenarios. Once the
encryption context has been set up, one of the encryption algorithms from the
pool can be selected, based on a best fit strategy. Based on our experience,
the pool of the encryption algorithms should satisfy the following three
properties: (1) should encompass the most representative encryption algorithm
families, (2) should be a minimal set of algorithms, (3) should have maximum
coverage over the potential encryption scenarios.

Harnessing grid resources

Encryption operations are CPU intensive. None of the tools reviewed in the
state of the art support remote parallelized encryption yet. It is a fact that using
a single machine for the encryption is a performance bottleneck when dealing
with large data-sets. On the other hand, data encryption is an embarrassingly
parallel problem: in fact, data can be split into several chunks so that the
encryption can be performed independently on each chunk. Grid Computing
platforms offer a ready-to-go infrastructure where embarrassingly parallel
algorithms can be run. However, privacy issues arise when data encryption is
executed on a world-wide distributed environment: plain sensitive data should
be processed in a trusted domain (i.e. the set of resources whose administrators
are fully trusted by the end-users), whereas only encrypted data should be
stored on untrusted nodes of the grid. The boundaries between the trusted
and the untrusted domains are not set a priori: they can change dynamically
depending on the encryption context.

Advanced key management

Generally speaking, each encrypted file has one encryption key related to it.
For security reasons, it is not advisable to use the same key for different files
(once the key is disclosed, all the files can be tampered). Then, the more files

104 G. Galiero, G. Giammatteo

are encrypted the more keys are generated and need to be securely stored,
thus increasing the burden of key management. Conversely, for the sake of
usability, encryption key management should be transparent to the end users.
Encryption tools should implement the business logic which manages the
secure storage and the access to the encryption keys. A keystore server is the
state of the art solution which enable users to store their keys in a remote
trusted node. This brings along two benefits: (1) user can access their keys
anytime/anywhere, (2) ACLs can be set to share keys access among a group
of users.

However, in distributed environments keystores can be deployed through-
out multiple—potentially untrusted—administrative domains. In such sce-
nario, the Shamir’s Secret Sharing algorithm can be useful, since it breaks the
encryption key in n parts which are stored in separate keystores. The original
key can be reconstructed by retrieving m pieces (m < n) from the keystores.

Design and implementation

EncryptMe is a flexible tool to encrypt and store sensitive data on untrusted
remote nodes across distributed multi-domain environments. The EncryptMe
design is based on the following assumptions: (a) the tool must manage both
local (on the user workstation) and remote (on storage nodes) data storage,
(b) the tool must support both local and remote encryption. Considering such
assumptions, four data flows can be defined (Fig. 1):

• the (1) Local/Local data flow—this is supported by all the tools reviewed
in the state of the art (Related work). Input data are on the user worksta-
tion; the user runs EncryptMe to encrypt data locally and then uploads the
encrypted output to a storage node;

• the (2) SE/Local data flow—the user plain data are already stored on a
trusted Storage Element (SE). Firstly, input data are downloaded on the
user workstation where EncryptMe is running. Then, data are encrypted
locally and eventually is uploaded to the target storage node sitting in an
untrusted domain;

• the (3) SE/remote data flow—this is quite similar to the previous one,
except for the fact that data are encrypted by a pool of remote compu-
tational resources sitting in the trusted environment, rather than locally.
Thus, input data does not need to be downloaded on the user workstation.
Eventually, data are transferred straightly from remote resources to the
destination storage node;

• the Local/Remote (4) data flow—the input data are initially on the user
workstation, and it is then transferred to remote computational resources
which perform the encryption. Eventually, the encrypted data are up-
loaded to the destination storage node.

Third-party storage providers holding personal information 105

Fig. 1 System data flows

Remote parallelized encryption

EncryptMe supports remote parallelized encryption, which is not yet sup-
ported by any of the tools presented in the state of the art. There are two
modules of EncryptMe involved in remote operations:

• the EM-Remote schedules, launches, monitors and stops the remote
operations;

• the EM-Worker module is the one that actually performs encryp-
tion/decryption operations and it is executed on remote computational
resources.

When a remote encryption operation is triggered, EM-Remote splits the
input data-set in n virtual chunks. Every chunk is defined by an offset and a
byte length; in addition, n tasks are created, one task per each chunk. The
encryption is over when all tasks are completed successfully. EM-Remote
submits m jobs. When a job is executed, it firstly (a) looks up in the table
of undone tasks and gets assigned task ti, (b) it then reads from the input
location the data chunk associated with the task ti, (c) executes the EM-Worker
module to encrypt the data chunk, (d) and eventually uploads the encrypted

106 G. Galiero, G. Giammatteo

chunk on the destination storage node. In step (a), if the undone tasks table
is empty, then the job terminates. n, m parameters and chunk’s lengths are
dynamically calculated by EM-Remote depending on data-set size and grid
resources availability and their workload. It is reasonable to assume that m
should be less than or equal to n (m ≤ n), otherwise some resources could be
allocated in vain.

The mechanism described above decouples tasks and computational re-
sources. In this way a high degree of flexibility is achieved, thus allowing faster
resources to process more chunks than slower ones.

In distributed infrastructures, the time overhead related to the commu-
nication and coordination services is an important issue that needs to be
taken into account. EncryptMe must deal with time overhead in case of
remote encryption operations. The overhead time can’t be neither controlled
or annulled. EncryptMe tries to estimate the operation times for both local
and remote—considering overhead—execution and, hence, the fastest method
is suggested to the user. This mechanism assures that remote operations are
executed only when it’s time-convenient. In the “Performance evaluation”
section some experimental results are reported showing when it is convenient
a local encryption rather than a remote encryption and viceversa.

System components

The whole EncryptMe system consists of three main high-level components
that interact with each other: (1) the user application EM-UI, (2) the EM-
KeyServer and (3) the EM-Worker cryptographic module. This three com-
ponents can be deployed on different nodes of the infrastructure depicted in
Fig. 2.

Fig. 2 System components

Third-party storage providers holding personal information 107

EM-UI

EM-UI is the main component and represents the interface of the whole
system with the user. EM-UI runs on his workstation and enables the user
to browse the files to be encrypted/decrypted, to launch and monitor new
operations. EM-UI manages encryption process through two submodules:
(1) EM-Local which is responsible for local operations and (2) EM-Remote
for remote parallelized ones. Moreover, EM-UI interacts with the key server
when a new file needs to be encrypted, in order to associate a new key to
such file.

When a new encryption operation is submitted by the user, EM-UI interacts
with EM-KeyServer that create a new encryption key for the file and stores it
in its repository. Then, the newly created key is accessed by the EM-Worker
module that performs the actual encryption. Furthermore, through the EM-
UI module the user can define an ACL that defines the key—and, hence, the
file—access policies for other users.

EM-KeyServer

The EM-KeyServer is a node used by a system to store and retrieve encryption
keys. EM-KeyServer holds a binding between a key and the file encrypted with
that key. By default only the owner of the file can access the key stored on
the server, but it’s possible to set an ACL to define the key access policies
also for other users. Authentication is required to access to EM-KeyServer.
Valid authentication credentials are: (1) username and password pair or
(2) user certificates (e.g., X509 certificates used in the PKI).

At least one key server is required to get the system work: in this case the
server needs to sit in the user’s trusted environment, since that key server
becomes a single-point-of-attack. Alternatively, it is also possible to distribute
a pool of key servers throughout the infrastructure. In this case, the Shamir
Secret Sharing algorithm allows to split the key in n pieces which are stored
on separate key servers. Since the entire key is never stored on any of the key
servers, such servers can also sit in untrusted environments.

EM-Worker

EM-Worker is the piece of code that actually performs cryptographic op-
eration on input plain data. It can be either executed locally on the user
workstation when a local operation is being run, or it can be executed on
remote resources in case of remote parallel encryption. The EM-Worker code
is not deployed on remote resources a priori, but it is sent on the fly on the
resources when—and where—needed.

EM-Workers instances interact with EM-KeyServer to retrieve the keys for
the operation they are currently executing. The EM-Worker module needs to
be deployed in the trusted environment since it manages both plain data and

108 G. Galiero, G. Giammatteo

encryption keys. In this way, it is ensured that encryption keys are securely
managed and properly used only for the duration of the encryption process.

Implementation

The implementation of the system is in its first steps and some components
and features are not implemented yet. The main programming language used is
Java for his interoperability and the simplicity of deployment and execution on
infrastructure nodes. EncryptMe has been implemented to work on top of grid
infrastructures based on the gLite (http://glite.web.cern.ch/glite/) middleware.

The EM-Worker module implements all cryptographic primitives. Basically
it receives an input stream of bytes and outputs a stream of bytes as well. It
supports both local and grid file access. The grid file access is performed using
GFAL (http://wiki.egee-see.org/index.php/Data_Access_with_GFAL) APIs.
For the ciphers implementation included in this module the Bouncy Castle
Cryptographic Libraries (http://www.bouncycastle.org/) are used (the java
version).

To date, the major lack in the system is the key server that has not been
implemented yet. The key management operations are entirely delegated to
EncryptMe that creates the keys and stores them on the user workstation.
Hence users must protect their keys on their own. Furthermore in order
to share the encrypted file, the user must announce the key to other users
in—potentially—insecure ways. The current implementation of EncryptMe
application is quite complete. Since it is written with Java technologies, it’s
virtually compatible with many platforms and operating systems. It provides
a GUI written in Java Swing that is structured as a typical wizard that guides
the user through the input/output files selection, the setting of all operation’s
parameters and, eventually, the monitoring of the ongoing operation. To date,
EncryptMe doesn’t support grid operation by itself: all the grid operations are
executed via some bash scripts described below.

Grid operations are wrapped by some bash scripts that schedule, launch,
monitor and stop the grid jobs that realize the requested operation. These
scripts uses the gLite bash commands for linux (e.g., lcg-cp, lfc-ls). This
implies that only support gLite-based grid infrastructures are supported and
that the user needs a gLite installation on his workstation (best known as
gLite User Interface). These scripts should be replaced by a grid module
entirely integrated in EncryptMe application (using gLite java APIs), or, at

Table 2 State of the art and EncryptMe comparison: gap analysis

Features S3 GS3 Hydra Perroquet EncryptMe

Remote encryption x x x x �
Ciphers pool x x x x �
Keystore � � � � �
ACLs � x � � �
Shamir Secret Sharing scheme � x � � �

http://glite.web.cern.ch/glite/
http://wiki.egee-see.org/index.php/Data_Access_with_GFAL
http://www.bouncycastle.org/

Third-party storage providers holding personal information 109

least, EncryptMe main application should interface with these scripts. In any
case, users will not interact directly with these scripts.

A comparison between the features provided by EncryptMe and tools
reviewed in the “Related work” section is shown in Table 2.

Performance evaluation

Algorithms pool tests

Although many investigations about ciphers performance exists (Schneier
et al. 1999; Preneel 2002; Bernstein 2006; Aoki and Lipmaa 2000; http://
www.schneier.com/twofish-performance.html; http://www.scribd.com/doc/4522/
Comparison-between-AESRijndael-and-Serpent), it is difficult to compare
such results, since each research defines its own testsuites, software imple-
mentations, hardware architectures and measure units. Performance tests have
been executed on a group of candidate ciphers in order to select the subset of
ciphers to be included in the reference encryption algorithms pool. The refer-
ence hardware platform for these tests is an Intel Pentium 4 @ 3.0GHz with
1GB of ram, whereas the encryption algorithms reference implementation is
provided by the java Bouncy Castle (http://www.bouncycastle.org/) libraries.

The performance tests have been carried out in the following way: each ci-
pher has been tested against 5 data-sets of different size (1MB, 10MB, 100MB,
1GB and 10GB respectively) and the total encryption time has been recorded.
All the tests are based on the assumption that both input and output data
are stored on the same workstation where the encryption process is executed.
Tests results have been analyzed for two purposes: (a) firstly, to select a
subset of ciphers to be included in the reference encryption algorithm pool
and, secondly, (b) to extrapolate a performance function for each algorithm.
The algorithm’s performance functions are used by EncryptMe—together with
other parameters—to select the best ciphers for a given operation depending
on the encryption context.

According to the experimental results (Fig. 3) and the state of the art on
encryption algorithms, the chosen algorithms are: (1) AES 256—because it is
the worldwide standard for encryption, (2) RC6 256—because it is fairly faster
than AES, (3) HC 256—because it is the fastest one, though the less secure,
(4) Serpent 256—because, though it is the slowest, it is considered the most
secure (Anderson et al. 2000).

Grid tests

The current implementation of EncryptMe requires users to select whether to
execute the encryption locally or remotely. The next release of EncryptMe will
provide user support for the decision-making process, through the estimation
of the encryption time in a local or remote scenario. The latter scenario differs

http://www.schneier.com/twofish-performance.html
http://www.schneier.com/twofish-performance.html
http://www.scribd.com/doc/4522/Comparison-between-AESRijndael-and-Serpent
http://www.scribd.com/doc/4522/Comparison-between-AESRijndael-and-Serpent
http://www.bouncycastle.org/

110 G. Galiero, G. Giammatteo

Fig. 3 Cipher tests

from the former mainly for the time overhead related to the interactions with
grid resources and services. On the other hand, parallelizing the computation
on several remote resources reduces the encryption time. Since the overhead
time can be approximated to a constant value for all operations, the speed up
factor of the operation is—partially—controlled by the number of resources
that take part in the computation.

The aim of the grid tests taken is to estimate the overhead time introduced
in operations by the interaction with the grid resources and services. Then it
will be possible to calculate the threshold beyond that it’s time-convenient to
execute a remote operation instead of a local one. Since the operation time is
proportional to the data-set size, it is possible to define also a size threshold:
if the data-set is smaller than the threshold it’s not time-convenient to execute
the operation remotely.

The tests consists of seven encryption operations—that differs for the data-
set size—executed both locally and remotely. The chosen data-set sizes are:
10MB, 100MB, 500MB, 1GB, 5GB, 10GB, 15GB. The input data-sets are
stored on a grid storage element both for local and remote operations. Thus,
with reference to the data flows presented in “Design and implementation”
section, the SE/Local and the SE/Remote data flows are tested respectively.
In the remote operations the size of chunks is fixed to 100MB, except for
the 10MB data-set where there is only one chunk of 10MB. The number of
resources allocated for the remote encryption equals the number of chunks, up

Third-party storage providers holding personal information 111

Table 3 Local and remote
tests executions

Experimental results

Size Local Remote
Enc. time Tot. time

10 MB 44 40 312
100 MB 92 88 365
500 MB 349 233 521
1 GB 694 457 734
5 GB 3221 692 941
10 GB 6235 1025 1259
15 GB 9198 1432 1723

to a maximum limit of 30 resources. If there are more chunks than resources,
some resources will process more than one chunk. In tests, the encryption
algorithm is fixed at AES-256 for all operations.

Local tests have been executed on a machine equivalent to an Intel Xeon
CPU @ 2.0 GHz with 512MB of ram. Grid tests have been taken on GILDA
(https://gilda.ct.infn.it/)—the Grid Infn Laboratory for Dissemination Activi-
ties. GILDA is a testbed grid infrastructure provided by INFN—the Italian
National Institute of Nuclear Physics—which counts about 100 CPUs and 2
TB of storage space. It consists of four main computational sites (ct.infn.
it, cnaf.infn.it, sztaki.hu and rediris.es) plus other minor
sites in Ireland, Brazil and Argentina.

Fig. 4 Comparison between local and grid tests execution

https://gilda.ct.infn.it/

112 G. Galiero, G. Giammatteo

Tests results (Table 3, Fig. 4) show that the overhead time is quite high:
around 300 s. However, it is worth noting that GILDA is just a testbed,
hence its performances are much lower if compared to a grid infrastructure
in a production environment. 300 s is the time needed to encrypt a data-set
of 500MB locally, hence for all operations that involve less than 500MB of
data it is time-convenient to execute the operation locally. Conversely, in case
of operations on big data-sets—more than 1GB—, it is time-convenient to
execute the operation remotely because the grid overhead time is negligible
compared to the total operation time.

Conclusions and future work

In this paper we presented a solution to mitigate the risks related to the storage
of personal data in untrusted domains. Large-scale distributed computing has
mainly focused on data security by securing the communication channels (e.g.
to prevent eavesdroppers from listening at the conversation between two end-
points). However, user data are stored on remote servers in plain text; even
though ACLs are a common way to protect the information stored, stored data
are still vulnerable to insiders. Thus, the paradoxical result is that it is more
convenient to steal data by hacking the access to the storage nodes, than trying
to listen to the secure conversations.

EncryptMe, the tool proposed, aims at mitigating such risks by encrypting
the sensitive user information before the upload on an untrusted storage
server. In addition, our tool is designed to harness the distributed computing
resources available in a trusted environment, in order to speed up the encryp-
tion process. The definition of the encryption context (given in the “Challenges
and motivation” section) is the key point that drives the local/remote decision
making process. Performance tests have identified that 1GB is the threshold
beyond which it is more convenient to switch to remote parallelized encryp-
tion. Then two scenarios can be considered: (1) local encryption for data
sets smaller than 1GB (e.g. identity-related information, personal files such
as documents or pictures), and (2) remote encryption for data sets larger than
1GB (users’ personal backups such as entire disk partitions, or enterprise-level
backups such as very large logs or user accounting information to be stored for
long-term).

Future work is focussed on implementing the EM-KeyServer module to
improve the encryption keys management, making it transparent to the end-
users. If new algorithms or different encryption key size need to be added in
the tool, it can be done very easily due to its flexible design. The 1GB threshold
is the result of the tests performed on the GILDA testbed; the next steps will
be oriented to testing the tool against other platforms in order to synthetize
a wider spectrum of results into a set of performance indexes independent of
the hardware infrastructures. Finally, cloud computing environments will be
investigated in order to evaluate the adoption of encryption tools as integrated
services.

Third-party storage providers holding personal information 113

Acknowledgements The work presented here has been partially funded by the DHITECH as
part of the GRId For fINance project, based on the award n.DM28488 of Italian Minister of
Education, University and Research. Authors especially thank the GILDA support team for
the performance tests, their colleague Isabel Matranga for the proof reading work and all the
Distributed Computing team at Engineering Ingegneria Informatica S.p.A. R&D laboratories for
comments and suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Acronyms

ACL Access Control List
AES Advanced Encryption Standard
API Application Programming Interface
DN Distinguished Name
EGEE Enabling Grid for E-sciencE
e-Id electronic Identity
EM EncryptMe
EM-UI EncryptMe User Interface
GFAL Grid File Access Library
GILDA Grid INFN Laboratory for Dissemination Activities
GS3 Grid Secure Storage System
INFN Istituto Nazionale di Fisica Nucleare
PKI Public Key Infrastructure
POSIX Portable Operating System Interface
REST REpresentational State Transfer
S3 Secure Storage System/Service
SE Storage Element
VO Virtual Organization
WSDL Web Service Description Language

References

Agir. Global analysis of radiological images—web site. 2009. http://www.aci-agir.org/.
Amazon. Amazon web services web site. 2009. http://aws.amazon.com/.
Amazon. Amazon web services security whitepaper. 2009. http://s3.amazonaws.com/aws_blog/

AWS_Security_Whitepaper_2008_09.pdf.
Anderson R, et al. The case for serpent. 2000.
Aoki K, Lipmaa H. Fast implementations of AES candidates. In: In the third advanced encryption

standard candidate conference. 2000. p. 106–20.
Bernstein DJ. Comparison of 256-bit stream ciphers at the beginning of 2006. In: Workshop record

of SASC 2006 stream ciphers revisited, ECRYPT network of excellence in cryptology. 2006.
p. 70–83.

Blanchet C, et al. Building an encrypted file system on the egee grid: application to protein se-
quence analysis. In: ARES ’06: proceedings of the first international conference on availability,
reliability and security. Washington, DC: IEEE Computer Society; 2006. p. 965–73.

http://www.aci-agir.org/
http://aws.amazon.com/
http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf
http://s3.amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf

114 G. Galiero, G. Giammatteo

Cameron K. The laws of identity. 2005. http://www.identityblog.com/?p=352.
Consorzio. Cometa web site. 2009. http://www.consorzio-cometa.it/.
Dropbox. Dropbox—web site. 2009. http://www.getdropbox.com/.
Enabling Grids for E-sciencE (EGEE). EGEE homepage. 2009. www.eu-egee.org.
Facebook. Facebook web site. 2009. http://www.facebook.com.
GFAL. GFAL web site. 2009. http://wiki.egee-see.org/index.php/Data_Access_with_GFAL.
Gilda. Gilda project web site. 2009. https://gilda.ct.infn.it/.
Glite. Glite web site. 2009. http://glite.web.cern.ch/glite/.
Google. Google web site. 2009. http://www.google.com.
GRID CT. Grid secure storage service web site. 2008. https://grid.ct.infn.it/twiki/bin/view/Main/

GridSecureStorageSystem.
Hydra. Hydra web site. 2009. https://twiki.cern.ch/twiki//bin/view/EGEE/DMEDS.
Information Card. Information Card web site. 2009. http://informationcard.net/.
Kreizman G, et al. Hype cycle for identity and access management technologies. 2007.
Montagnat J, et al. Implementation of a medical data manager on top of glite services. Technical

report EGEE-TR-2006-002. 2006.
Murty J. Programming amazon web services. Sebastopol: O’Reilly; 2008.
Oauth. Oauth web site. 2009. http://oauth.net/.
Openid. Openid web site. 2009. http://openid.net/.
Parrot. Parrot web site. 2009. http://www.cse.nd.edu/~ccl/software/parrot/.
Preneel B. New european schemes for signature, integrity and encryption (nessie): a status report.

In: PKC ’02: proceedings of the 5th international workshop on practice and theory in public
key cryptosystems. London: Springer; 2002. p. 297–309.

Recordon D, Reed D. Openid 2.0: a platform for user-centric identity management. In: DIM ’06:
proceedings of the second ACM workshop on digital identity management. New York: ACM;
2006. p. 11–6.

Rodrigues R. Digital identity, anonymity and pseudonymity in India. 2007. http://ssrn.com/
abstract=1105088.

Scardaci D, Scuderi G. A secure storage service for the glite middleware. In: IAS ’07: proceedings
of the third international symposium on information assurance and security. Washington, DC:
IEEE Computer Society; 2007. p. 261–6.

Schneier B. Why “anonymous” data sometimes isn’t. 2009. http://www.schneier.com/essay-200.
html/.

Schneier B, et al. Performance comparison of the aes submissions. In: In proceedings of the second
AES candidate conference; 1999. p. 15–34.

Scribd. Comparison between aes-rijndael and serpent. 2009. http://www.scribd.com/doc/4522/
Comparison-between-AESRijndael-and-Serpent.

Shamir A. How to share a secret. Commun ACM 1979;22(11):612–3.
Shibboleth. Shibboleth web site. 2009. http://shibboleth.internet2.edu/.
Spideroak. Spideroak—web site. 2009. http://www.spideroak.com/.
The Legion of the Bouncy Castle. Bouncy castle crypto apis. 2009. http://www.bouncycastle.org/.
Twofish. Performance vs. other block ciphers (on a pentium). 2009. http://www.schneier.com/

twofish-performance.html.
Yahoo. Yahoo web site. 2009. http://www.yahoo.com.

http://www.identityblog.com/?p=352
http://www.consorzio-cometa.it/
http://www.getdropbox.com/
http://www.eu-egee.org
http://www.facebook.com
http://wiki.egee-see.org/index.php/Data_Access_with_GFAL
https://gilda.ct.infn.it/
http://glite.web.cern.ch/glite/
http://www.google.com
https://grid.ct.infn.it/twiki/bin/view/Main/GridSecureStorageSystem
https://grid.ct.infn.it/twiki/bin/view/Main/GridSecureStorageSystem
https://twiki.cern.ch/twiki//bin/view/EGEE/DMEDS
http://informationcard.net/
http://oauth.net/
http://openid.net/
http://www.cse.nd.edu/~ccl/software/parrot/
http://ssrn.com/abstract=1105088
http://ssrn.com/abstract=1105088
http://www.schneier.com/essay-200.html/
http://www.schneier.com/essay-200.html/
http://www.scribd.com/doc/4522/Comparison-between-AESRijndael-and-Serpent
http://www.scribd.com/doc/4522/Comparison-between-AESRijndael-and-Serpent
http://shibboleth.internet2.edu/
http://www.spideroak.com/
http://www.bouncycastle.org/
http://www.schneier.com/twofish-performance.html
http://www.schneier.com/twofish-performance.html
http://www.yahoo.com

	Trusting third-party storage providers for holding personal information. A context-based approach to protect identity-related data in untrusted domains
	Abstract
	Introduction
	Related work
	Challenges and motivation
	Taking into account the encryption context
	Harnessing grid resources
	Advanced key management

	Design and implementation
	Remote parallelized encryption
	System components
	EM-UI
	EM-KeyServer
	EM-Worker

	Implementation

	Performance evaluation
	Algorithms pool tests
	Grid tests

	Conclusions and future work
	Acronyms
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

