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Abstract
We establish asymptotic stability estimates for solutions to evolution problems with
singular convection term. Such quantitative estimates provide a measure with respect
to the time variable of the distance between the solution to a parabolic problem from
the one of the its elliptic stationary counterpart.
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1 Introduction

This paper concerns evolution problems whose model case reads as follows

⎧
⎪⎨

⎪⎩

ut − div
[
M(x, t)∇u + A x

|x |2 u
]

= − div F in �T ,

u = 0 on ∂� × (0, T ),

u(x, 0) = u0(x) in �,

(1.1)

Here and in what follows � denotes a regular bounded domain of RN with N ≥ 3,
A > 0, T ∈ (0,∞] and �T stands for the cylinder � × (0, T ). With regard to the
structure assumptions of the problem, we assume that M = M(x, t) : � × (0, T ) →
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R
N×N is a measurable, symmetric, matrix field satisfying the uniform bounds

λ|ξ |2 ≤ 〈M(x, t)ξ, ξ 〉 ≤ �|ξ |2 (1.2)

for every ξ ∈ R
N and for a.e. (x, t) ∈ � × (0, T ) where 0 < λ ≤ �. For the data of

the problem we assume that

F ∈ L2
(
�T ,RN

)
and u0 ∈ L2(�) (1.3)

The aim of this note is to provide a quantitative estimate related to the long time
behavior of the global in time weak solution u = u(x, t) of (1.1) (according to
Definition 3.1 below). As an example, we wonder whether the solution u = u(x, t)
defined in the whole of �∞ tends toward the one of the stationary problem

{
−�v − div

[
A x

|x |2 v
]

= − div f in �,

v = 0 on ∂�,
(1.4)

as t → ∞. For the data and for the structure assumptions relative to problem (1.4),
we assume

f ∈ L2(�,RN )

If all the assumptions above are fulfilled, an important property for the elliptic prob-
lem (1.4) relies on the fact that that if a solution exists then it is automatically unique
(see e.g. [16]). Obseve that our problem exhibits an unbounded and singular convection
term if 0 ∈ �, because of the presence of coefficient EA(x) := A x

|x |2 .
We introduce the following functions

K (t) := 1 + ‖M(·, t) − I‖L∞(�) (1.5)

H0(t) := ‖F(·, t) − f ‖L2(�) (1.6)

which can be read as measures in time of the distances between the matrix M and the
identity I and F and f respectively. We assume that

there exists t0 ∈ [0, T )such that (K − 1)2, H2
0 ∈ L1([t0, T )) (1.7)

Finally, we set

K := (K − 1)2‖∇v‖2L2(�)
+ H2

0

We assume that � contains the origin (so that the coefficient EA is singular) and we
state our result related to problem (1.1).
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Theorem 1.1 Assume that the solutions to problems (1.1) and (1.4) exist. If 0 ∈ � and
if

A <
N − 2

4
λ (1.8)

then

‖u(t) − v‖2L2(�)
≤ ‖u(t0) − v‖2L2(�)

e−μ(t−t0) + C0

∫ t

t0
K(s) ds (1.9)

for some positive constants μ and C0. Moreover, if T = ∞ andK ∈ L1([t0,∞)) then

‖u(t) − v‖2L2(�)
≤

[
‖u(t0) − v‖2L2(�)

+ C0‖K‖L1([t0,∞))

]
e− μ

2 t + C0

∫ t

t/2
K(s) ds

(1.10)
In the latter case, we have

‖u(t) − v‖2L2(�)
→ 0 as t → ∞.

Let us spend few comments on condition (1.8). First, one can observe that the time
independent coefficient EA(x) := A x

|x |2 appearing in (1.1) actually belongs to the

Marcinkiewicz space LN ,∞(�) (we refer the reader to Sect. 2.1 for the definition and
the basic properties of this function space) but does not belong to LN (�) as long as
0 ∈ �. Moreover

distLN ,∞(�)

(|EA|, L∞(�)
) = Aω

1/N
N (1.11)

where ωN stands for the measure of the unit ball in R
N . In (1.11) the distance from

L∞ in LN ,∞ appears, as defined in Sect. 2.1 below. With regard to general problems
of the type

⎧
⎨

⎩

ut − div [M(x, t)∇u + E(x, t)u] = − div F in �T ,

u = 0 on ∂� × (0, T ),

u(x, 0) = u0(x) in �,

(1.12)

the results of [9] state that one cannot expect existence of a solution (according again
to Definition 3.1 below) unless we assume some uniform with respect to the time
variable bound on the distance of the convective field E from L∞ in LN ,∞. Therefore,
condition (1.8) seems quite natural in our framework in light of (1.11).

Comparison quantitative estimates between solutions of evolutionary and stationary
problems as in (1.9) or (1.10) (see also (3.19) or (3.20) below) are available in [17]
for equations not having lower order terms. It should be also worth to mention that
recently in [10] new estimates for the behaviour at infinity of solutions to a wide class
of parabolic partial differential equations (including also anisotropic type equations)
have been considered.

Among all possible equations taking a form as in (1.1) we mention the following
homogeneous one

ut − �u − div (E(x, t)u) = 0
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which is known as Fokker–Planck equation. Its relevance in literature depends upon
the fact that such equation describes the evolution of some Brownian motion and of
some Mean Field Game. In case the convective term is bounded, many results are
available in literature (see e.g. [5] and the references therein). On the other hand,
in some context (see e.g. the case of the diffusion model for semiconductor devices
in [6]) the boundedness of the convective field is not immediately guarantee. In addi-
tion to Definition 3.1 below, further definitions of solutions have been introduced
for problem (1.1) under consideration as the renormalized solution (see e.g. [19]
where the Fokker–Planck equation is coupled with some Hamilton–Jacobi–Bellman
equation) and entropy solutions (see e.g. [3] where the authors do not address the
existence of weak solution and obtain the existence of entropy solution assuming that
E ∈ L2(�T ,RN )).

The plan of this paper is the following. In Sect. 2 we introduce the function spaces
which are related to our problems and some useful results which help us in proving
the asymptotic behaviour of Theorem 1.1. In Sect. 3 we will actually prove a result
for a general Cauchy–Dirichlet problem, in such a way that Theorem 1.1 is a special
case of this statement. The presence of the lower order term does not allow to follow
[17]. We establish an estimate of decay of the super-level sets of the solution which is
fundamental in order to obtain our result. Nevertheless, at the end of Sect. 3 we will
underline how the assumption (1.8) comes into play for the special problem (1.1).

2 Preliminary results

2.1 Lorentz spaces

Let � be a bounded open subset of RN . From now on the Lebesgue measure of a
measurable subset E of RN will be denoted by |E |. Fixed p, q ∈ (1,∞), the Lorentz
space L p,q(�) corresponds to the class of all measurable functions g defined on �

for which the quantity

‖g‖p,q =
(

p
∫ ∞

0
|�τ |

q
p hq−1 dτ

)1/q

is finite, where �τ = {x ∈ � : |g(x)| > τ } for any τ > 0. A standard feature of
‖ · ‖p,q relies on the fact that it is equivalent to a norm with the property that L p,q(�)

becomes a Banach space when endowed with it (we refer the reader to [18]). When
p = q, the Lorentz space L p,p(�) reduces to the classical Lebesgue space L p(�).
On the other hand, when q = ∞, the class L p,∞(�) corresponds to the class of all
measurable functions g defined on � for which the quantity

‖g‖p,∞ = sup
E⊂�

|E | 1p −1
∫

E
|g| dx
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is finite. The class L p,∞(�) is known as the Marcinkiewicz class and it is usually also
denoted by weak − L p. Moreover, if we set

�g�p,∞ = sup
τ>0

τ |�τ |
1
p

it results

p − 1

p1+
1
p

‖g‖p,∞ ≤ �g�p,∞ ≤ ‖g‖p,∞

We refer the reader to Lemma A.2 in [2] for the proof of the latter relation.
For the Lorentz spaces the following inclusions hold

Lr (�) ⊂ L p,q(�) ⊂ L p,r (�) ⊂ L p,∞(�) ⊂ Lq(�)

whenever 1 ≤ q < p < r ≤ ∞. Moreover, for 1 < p < ∞, 1 ≤ q ≤ ∞ and
1
p + 1

p′ = 1, 1
q + 1

q ′ = 1, if f ∈ L p,q(�) and g ∈ L p′,q ′
(�), we have the Hölder–type

inequality ∫

�

| f (x)g(x)| dx ≤ ‖ f ‖p,q‖ f g‖p′,q ′ (2.1)

It is well known that L∞(�) is not a dense subspace of L p,∞(�). The distance to
L∞(�) in L p,∞(�) is defined as

distL p,∞(�)

(
f , L∞(�)

) = inf
g∈L∞(�)

‖ f − g‖L p,∞(�)

We conclude this Section by recalling the Sobolev embedding theorem in the setting
of Lorentz spaces in the sharp form given by [1].

Theorem 2.1 Let us assume that 1 < p < N and 1 ≤ q ≤ p. If u ∈ W 1,1
0 (�)

is a function whose gradient satisfies |∇u| ∈ L p,q(�) then u ∈ L p∗,q(�) where
p∗ = Np

N−p is the usual Sobolev exponent and

‖u‖p∗,q ≤ SN ,p‖∇u‖p,q (2.2)

where SN ,p = ω
−1/N
N

p
N−p and ωN is the measure of the unit ball in R

N .

2.2 Suitable subsets of the space L∞ (
0, T; Lp,∞(Ä)

)

Given T ∈ (0,∞] and δ ≥ 0, we consider the subset Xδ(�T ) of L∞ (0, T ; L p,∞(�))

defined as

Xδ(�T ) := { f ∈ L∞ (
0, T ; L p,∞(�)

) :
distL∞(0,T ;L p,∞(�))

(
f , L∞ (

0, T ; L∞(�)
)) ≤ δ}
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In other words, Xδ(�T ) consists of of all those functions f ∈ L∞ (0, T ; L p,∞(�))

such that there exists g ∈ L∞ (0, T ; L∞(�)) such that

‖ f − g‖L∞(0,T ;L p,∞(�)) ≤ δ

Clearly X0(�T ) is the closure of L∞ (�T ) in L∞ (0, T ; L p,∞(�)) and

L∞ (
0, T ; L p,q(�)

) ⊂ X(�T )

for p ≤ q < ∞.
A characterization of X(�T ) can be given in terms of the the truncation operator

at level ±κ (for κ > 0), that is

Tκ(s) = s

|s| min{|s|, κ}

for s ∈ R. The following lemma then follows (see e.g. [9]).

Lemma 2.2 For any given δ ≥ 0, f ∈ Xδ(�T ) if and only if

lim
κ→∞ ‖ f − Tκ( f )‖L∞(0,T ;L p,∞(�) ≤ δ

2.3 Abstract asymptotic estimates

An essential tool in the study of the time behaviour of our problem relies on the
following result, whose proof can be found in [17].

Proposition 2.3 Let t0 ≥ 0 and T ∈ (t0,+∞]. Assume that φ = φ(t) is a continuous
and non negative function defined in [t0, T ) verifying

φ(t2) − φ(t1) + M
∫ t2

t1
φ(t) dt ≤

∫ t2

t1
g(t) dt

for every t0 ≤ t1 < t2 < T , where M is a positive constant and g is a non negative
function belonging to L1([t0, T )). Then, for every t ≥ t0 we get

φ(t) ≤ φ(t0)e
−M(t−t0) +

∫ t

t0
g(s) ds

Moreover, if T = +∞ and g belongs to L1([t0,+∞)) there exists t1 > t0 such that

φ(t) ≤ �e− M
2 t +

∫ t

t/2
g(s) ds
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for every t ≥ t1, where

� = φ(t0) +
∫ +∞

t0
g(s) ds

.

3 Existence and uniqueness to the amore general parabolic problem

In this Section we consider the following evolution problem

⎧
⎨

⎩

ut − div [A(x, t,∇u) + B(x, t, u)] = − div F in �T ,

u = 0 on ∂� × (0, T ),

u(x, 0) = u0(x) in �,

(3.1)

which turns to be more general than the one in (1.1), because of the structure assump-
tions that we are going to describe below. Once again, � is a regular bounded domain
of R

N with N ≥ 3, T ∈ (0,∞] and �T stands for the cylinder � × (0, T ).
For the data of the problem we assume that (1.3) holds true. The vector field
A = A(x, t, ξ) : �T × R

N → R
N is a Carathéodory function satisfying the fol-

lowing conditions

|A(x, t, ξ)| ≤ β|ξ | + g(x, t) for some β > 0 and g ∈ L2(�T ), (3.2)

〈A(x, t, ξ) − A(x, t, η), ξ − η〉 ≥ α|ξ − η|2 for some α > 0 (3.3)

for a.e. (x, t) ∈ �T and for any ξ, η ∈ R
N . Moreover, we assume that B =

B(x, t, s) : �T ×R → R
N is a Carathéodory function satisfying the following prop-

erties

∣
∣B(x, t, s) − B

(
x, t, s′)∣∣ ≤ b(x, t)

∣
∣s − s′∣∣ (3.4)

B(x, t, 0) = 0 (3.5)

for a.e. x ∈ �, for any t ∈ (0, T ), for any s, s′ ∈ R and for some suitable measurable
function b : �T → [0,∞). With a slight abuse of terminology, the function b in (3.4)
is called convective term. Concerning the regularity of the convective term, we will
assume from now on that

b ∈ L∞ (
0, T ; LN ,∞(�)

)
(3.6)

We consider weak solutions of our problem, according to the following definition.

Definition 3.1 We say that

u ∈ L∞ (
0, T ; L2(�)

)
∩ L2

(
0, T ;W 1,2

0 (�)
)
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is a weak solution to problem (3.1) if one has

−
∫

�T

u ∂tϕ dx dt +
∫

�T

〈A(x, t,∇u) + B(x, t, u),∇ϕ〉 dx dt

=
∫

�T

〈F,∇ϕ〉 dx dt +
∫

�

u0 ϕ(0) dx
(3.7)

for all ϕ ∈ C∞(�T ) with suppϕ ⊂⊂ � × [0, T ). We say that u is a global weak
solution if

u ∈ L∞
loc

(
0,∞; L2(�)

)
∩ L2

loc

(
0,∞;W 1,2

0 (�)
)

and (3.7) holds true for any given T > 0 with ϕ as before.

The main goal of the present section is to introduce suitable conditions allowing
that the solution of (3.1) tends as t → ∞ toward the one of the stationary problem

{
div

[
Ã(x,∇v) + B̃(x, v)

]
= div f in �T ,

v = 0 on ∂�,
(3.8)

For the data relative to problem (3.8) and for the structure assumptions on the
Carathéodory functions Ã = Ã(x, ξ) : � × R

N → R
N and B̃ = Ã(x, s) : � × R →

R
N , we require that

α′|ξ − η|2 ≤ 〈 Ã(x, ξ) − Ã(x, η), ξ − η〉 (3.9)

| Ã(x, ξ)| ≤ β ′|ξ | + g̃(x) g ∈ L2(�) (3.10)

|B̃(x, s) − B̃(x, s′)| ≤ b̃(x)|s − s′| B̃(x, 0) = 0 (3.11)

b̃ ∈ LN ,∞(�) f ∈ L2(�) (3.12)

for some 0 < α′ ≤ β ′ < ∞. Problem (3.1) and its stationary counterpart (3.8) have
a common feature as far as existence and uniqueness of a solution are concerned.
Indeed, problem (3.8) admits a unique weak solution in W 1,2

0 (�) if

distLN ,∞(�)(b̃, L
∞(�)) ≤ δ (3.13)

for some δ ≥ 0 depending on the structure assumption of the problem and on N (see
e.g. [11,12]). It is worth mentioning that existence of a solution to (3.8) could possibly
fail if δ in (3.13) is too large (see Section 4 in [12]). We also recall that in the elliptic
framework a condition like (1.8) guarantees existence results (see e.g. [4]). We stress
that (3.13) and (1.8) can be compared as done in the Introduction. Similarly, existence
and uniqueness for problem (3.1) is obtained by assuming that the convective term
b = b(x, t) satisfies (3.13) uniformly with respect to the time variable, i.e.

distL∞(0,T ;LN ,∞(�))(b, L
∞) ≤ δ (3.14)

123



Asymptotic stability estimates for some evolution problems...

for some small δ > 0 depending only on α and N . As before, we introduce the
following subset of L∞ (

0, T ; LN ,∞(�)
)

Xδ(�T ) :=
{
b ∈ L∞ (

0, T ; LN ,∞(�)
)
: (3.14) holds true

}
(3.15)

Let us assume from now on that some t0 ≥ 0 exists such that

∫

�

|F(x, t) − f (x)|2dx ≤ G0(t) (3.16)
∫

�

|A(x, t,∇v) − Ã(x,∇v)|2dx ≤ G(t) (3.17)
∫

�

|B(x, t, v) − B̃(x, v)|2dx ≤ H(t) (3.18)

holds true for t ≥ t0 and where G0,G and H belongs to L1([t0,∞)). According to
the terminology of [17], we refer to (3.16), (3.17) and (3.18) as proximity conditions.

The main result of this section reads as follows.

Theorem 3.1 Assume that both problems (3.1) and (3.8) admit solution. There exists
δ > 0 depending only on α and N such that, if b ∈ Xδ(�T ) then

‖u(t) − v‖2L2(�)
≤ ‖u(t0) − v‖2L2(�)

e−μ(t−t0) + C0

∫ t

t0
K (s) ds (3.19)

for some positive constants μ and C0 and where

K (t) := ‖b(t)‖2L2(�)
+ G0(t) + G(t) + H(t)

Moreover, if u is a global solution of (3.1) and if K ∈ L1([t0,∞)) then

‖u(t) − v‖2L2(�)
≤

[
‖u(t0) − v‖2L2(�)

+ C0‖K‖L1([t0,∞))

]
e− μ

2 t + C0

∫ t

t/2
K (s) ds

(3.20)

We remark that stability and continuity estimates similar to the ones of Theorem 3.1
are also available in [7–9,17]. On the other hand, it is also worth to mention that also
pointwise estimates of the spatial gradient are available in literature (see e.g. [14,15]).

4 Proof of themain result

Before we give the proof of Theorem 3.1, we focus our attention to a technical result
of its own interest which describes the decay of the measure of the superlevel sets of
the difference of the solutions of (3.1) and (3.8). Indeed, in the spirit of [4,9,16] we
prove the following lemma.
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Lemma 4.1 Assume that the solutions to problems (3.1) and (3.8) exist. Fixed T ∈
(0,∞] and k > 0 we have

sup
0<t<T

|{x ∈ � : |u(x, t) − v(x)| > k}| ≤ C log−2(1 + k) (4.1)

for some constant C > 0 which only depends on N , α, ‖∇v‖L2(�), ‖G‖L1(0,T ),
‖H‖L1(0,T ), ‖G0‖L1(0,T ) and ‖b‖L2(�T ).

Proof We fix T ∗ ∈ (0, T ), we test both equations in problems (3.1) and (3.8) with
ϕ = w

1+|w|χ(0,T ∗) where w := u − v and we subtract in order to get

∫ T ∗

0
dt

∫

�

(ut − vt )ϕ dx +
∫ T ∗

0
dt

∫

�

〈A(x, t,∇u) − Ã(x,∇v),∇ϕ〉 dx

+
∫ T ∗

0
dt

∫

�

〈B(x, t, u) − B̃(x, v),∇ϕ〉 dx =
∫ T ∗

0
dt

∫

�

〈F − f ,∇ϕ〉 dx
(4.2)

We observe that ∇ϕ = ∇w
(1+|w|)2 χ(0,T ∗). The first term at the left hand side of (4.2) can

be estimated as follows

∫ T ∗

0
dt

∫

�

(ut − vt )ϕ dx =
∫

�

dx
∫ w(x,T ∗)

w(x,0)

r

1 + |r | dr

so (4.2) is equivalent to

∫

�

dx
∫ w(x,T ∗)

0

r

1 + |r | dr +
∫ T ∗

0
dt

∫

�

〈A(x, t,∇u) − Ã(x,∇v),∇ϕ〉 dx

+
∫ T ∗

0
dt

∫

�

〈B(x, t, u) − B̃(x, v),∇ϕ〉 dx

=
∫ T ∗

0
dt

∫

�

〈F − f ,∇ϕ〉 dx +
∫

�

dx
∫ w(x,0)

0

r

1 + |r | dr

(4.3)

We observe that
∫ s

0

r

1 + |r | dr = |s| − log(1 + |s|)

and, since eσ − 1 − σ ≥ 1
2σ

2 for any σ ≥ 0, we have

∫ s

0

r

1 + |r | dr ≥ 1

2
log2(1 + |s|)

So we have

∫

�

dx
∫ w(x,T ∗)

0

r

1 + |r | dr ≥ 1

2

∫

�

log2(1 + |w(x, T ∗)|)dx
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From the monotonicity we have

∫ T ∗

0
dt

∫

�

〈A(x, t,∇u) − A(x, t,∇v),∇ϕ〉 dx ≥ α

∫ T ∗

0
dt

∫

�

|∇w|2
(1 + |w|)2 dx

From (4.2) and observing that w(·, 0) = u0 − v we get

1

2

∫

�

log2(1 + |w(x, T ∗)|)dx + α

∫ T ∗

0
dt

∫

�

|∇w|2
(1 + |w|)2 dx

≤
∫ T ∗

0
dt

∫

�

〈 Ã(x,∇v) − A(x, t,∇v),∇ϕ〉 dx

+
∫ T ∗

0
dt

∫

�

〈B(x, t, v) − B(x, t, u),∇ϕ〉 dx

+
∫ T ∗

0
dt

∫

�

〈B̃(x, v) − B(x, t, v),∇ϕ〉 dx +
∫ T ∗

0
dt

∫

�

〈F − f ,∇ϕ〉 dx

+ 1

2
‖u0 − v‖2L2(�)

(4.4)
Because of Young’s inequality, for δ > 0 we have

∫ T ∗

0
dt

∫

�

〈 Ã(x,∇v) − A(x, t,∇v),∇ϕ〉 dx

≤ 1

2δ

∫ T ∗

0
dt

∫

�

| Ã(x,∇v) − A(x, t,∇v)|2 dx + δ

2

∫ T ∗

0
dt

∫

�

|∇ϕ|2 dx
(4.5)

∫ T ∗

0
dt

∫

�

〈B̃(x, v) − B(x, t, v),∇ϕ〉 dx

≤ 1

2δ

∫ T ∗

0
dt

∫

�

|B̃(x, v) − B(x, t, v)|2 dx + δ

2

∫ T ∗

0
dt

∫

�

|∇ϕ|2 dx
(4.6)

and also

∫ T ∗

0
dt

∫

�

〈B(x, t, v) − B(x, t, u),∇ϕ〉 dx

≤
∫ T ∗

0
dt

∫

�

b(x, t)|u − v||∇ϕ| dx

≤
∫ T ∗

0
dt

∫

�

b(x, t)
|∇w|
1 + |w|dx

≤ 1

2δ

∫ T ∗

0
dt

∫

�

b2(x, t) dx + δ

2

∫ T ∗

0
dt

∫

�

|∇w|2
(1 + |w|)2 dx

(4.7)
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Taking into account all the above estimates, the fact that |∇ϕ|2 ≤ |∇w|2
(1+|w|)2 χ(0,T ∗) and

(4.4), we have

1

2

∫

�

log2(1 + |w(x, T ∗)|)dx + α

∫ T ∗

0
dt

∫

�

|∇w|2
(1 + |w|)2 dx

≤ 1

2δ

∫ T ∗

0
dt

∫

�

| Ã(x,∇v) − A(x, t,∇v)|2 dx

+ 1

2δ

∫ T ∗

0
dt

∫

�

b2(x, t) dx + 1

2
‖u0 − v‖2L2(�)

+ 1

2δ

∫ T ∗

0
dt

∫

�

|B̃(x, v) − B(x, t, v)|2 dx

+ 1

2δ

∫ T ∗

0
dt

∫

�

|F − f |2 dx + 3

2
δ

∫ T ∗

0
dt

∫

�

|∇w|2
(1 + |w|)2 dx

(4.8)

We choose δ = α/3 and reabsorb at the left hand side to get

1

2

∫

�

log2(1 + |w(x, T ∗)|)dx + α

2

∫ T ∗

0
dt

∫

�

|∇w|2
(1 + |w|)2 dx

≤ C

[ ∫ T ∗

0
dt

∫

�

| Ã(x,∇v) − A(x, t,∇v)|2 dx +
∫ T ∗

0
dt

∫

�

b2(x, t) dx

+
∫ T ∗

0
dt

∫

�

|B̃(x, v) − B(x, t, v)|2 dx +
∫ T ∗

0
dt

∫

�

|F − f |2 dx

+ ‖u0 − v‖2L2(�)

]

(4.9)
Since T ∗ can be arbitrarily chosen in (0, T ) and recalling conditions (3.16), (3.17)
and (3.18), we immediately obtain the desired conclusion. ��

Proof of Theorem 3.1 Let us require that

b ∈ Xδ(�∞) for δ ∈
(

0,
α

8SN ,2

)

where SN ,2 is the sharp Sobolev constant appearing in (2.2) whenever p = 2. This
means that

distL∞(0,T ;LN ,∞(�))(b, L
∞) <

α

8SN ,2
(4.10)

and so there exists M > 0 such that

sup
0<t<T

‖b(·, t) − TM (b(·, t))‖LN ,∞(�) <
α

8SN ,2
(4.11)

123



Asymptotic stability estimates for some evolution problems...

For fixed t1, t2 ∈ (t0,∞) with t1 < t2, we use ϕ = (u − v)χ(t1,t2) as a test function in
both (3.1) and (3.8) and subtract the results obtained from this method to get

1

2

∫

�

|u − v|2(t2) dx − 1

2

∫

�

|u − v|2(t1) dx

+
∫ t2

t1
dt

∫

�

〈A(x, t,∇u) − A(x, t,∇v),∇u − ∇v〉 dx

+
∫ t2

t1
dt

∫

�

〈A(x, t,∇v) − Ã(x,∇v),∇u − ∇v〉 dx

+
∫ t2

t1
dt

∫

�

〈B(x, t, u) − B(x, t, v),∇u − ∇v〉 dx

+
∫ t2

t1
dt

∫

�

〈B(x, t, v) − B̃(x, v),∇u − ∇v〉 dx

=
∫ t2

t1
dt

∫

�

〈F − f ,∇u − ∇v〉 dx

(4.12)

We have rearranged the terms in (4.12) so that we may argue as in the proof of
Lemma 4.1 to obtain

1

2

∫

�

|u − v|2(t2) dx − 1

2

∫

�

|u − v|2(t1) dx + α

2

∫ t2

t1
dt

∫

�

|∇u − ∇v|2dx

≤ C
∫ t2

t1
(G0(t)+G(t)+H(t)) dt+

∫ t2

t1
dt

∫

�

b(x, t)|u − v||∇u−∇v|dx
(4.13)

The only issue that matters is to estimate the latter term in (4.13). We observe that

∫ t2

t1
dt

∫

�

b(x, t)|u − v||∇u − ∇v|dx

≤
∫ t2

t1
dt

∫

�

|b(x, t) − TM (b(x, t))|u − v||∇u − ∇v|dx

+
∫ t2

t1
dt

∫

�

TM (b(x, t))|u − v||∇u − ∇v|dx

(4.14)

We setωk(t) := |{x ∈ � : |u(x, t)−v(x)| > k|.We use (2.1), Sobolev inequality (2.2)
and (4.11) to get

∫ t2

t1
dt

∫

�

b(x, t)|u − v||∇u − ∇v|dx

≤
∫ t2

t1

∫

�

‖b(x, t) − TM (b(x, t))‖LN ,∞‖u − v‖L2∗,2(�)‖∇u − ∇v‖L2(�)dt

+
∫ t2

t1
dt

∫

�

TM (b(x, t))|u − v||∇u − ∇v|dx
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≤ α

8

∫ t2

t1

∫

�

‖∇u − ∇v‖2L2(�)
dt +

∫ t2

t1
dt

∫

�

TM (b(x, t))|u − v||∇u

− ∇v|dx (4.15)

On the other hand, using again (2.1) and (2.2)

∫ t2

t1
dt

∫

�

TM (b(x, t))|u − v||∇u − ∇v|dx

≤ k
∫ t2

t1
dt

∫

|u−v|≤k
TM (b(x, t))|∇u − ∇v|dx

+ M
∫ t2

t1
dt

∫

|u−v|>k
|u − v||∇u − ∇v|dx

≤ k
∫ t2

t1
dt

∫

|u−v|≤k
TM (b(x, t))|∇u − ∇v|dx

+ M
∫ t2

t1
dt

∫

|u−v|>k
|u − v||∇u − ∇v|dx

≤ k
∫ t2

t1
dt

∫

|u−v|≤k
TM (b(x, t))|∇u − ∇v|dx

+ MSN ,2

∫ t2

t1
ωk(t)

1
N ‖∇u − ∇v‖2L2(�)

dt

(4.16)

Due to Lemma 4.1, we have ωk(t) → 0 as k → ∞ uniformly w.r.t. t ∈ (0, T ). So, if
we choose k sufficiently large to have

∫ t2

t1
dt

∫

�

TM (b(x, t))|u − v||∇u − ∇v|dx

≤ k
∫ t2

t1
dt

∫

|u−v|≤k
TM (b(x, t))|∇u − ∇v|dx + α

16

∫ t2

t1
‖∇u − ∇v‖2L2(�)

dt

(4.17)
Then, using Young’s inequality we have

∫ t2

t1
dt

∫

�

TM (b(x, t))|u − v||∇u − ∇v|dx

≤ C
∫ t2

t1
‖b(t)‖2L2(�)

dt + α

8

∫ t2

t1
‖∇u − ∇v‖2L2(�)

dt

(4.18)

Inserting (4.18) in (4.15) we have

∫ t2

t1
dt

∫

�

b(x, t)|u − v||∇u − ∇v|dx ≤ α

4

∫ t2

t1

∫

�

‖∇u − ∇v‖2L2(�)
dt

+ C
∫ t2

t1
‖b(t)‖2L2(�)

dt

(4.19)
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Taking into account (4.13), we reabsorb by the left hand side and then we may find
some constants c1 and c2 such that

1

2
‖w(t2)‖22 − 1

2
‖w(t1)‖22 + c1

∫ t2

t1
‖∇w‖22 dt ≤ c2

∫ t2

t1
K (t) dt (4.20)

where w := u − v. Finally, by means of Poincaré inequality, we have

1

2
‖w(t2)‖22 − 1

2
‖w(t1)‖22 + c3

∫ t2

t1
‖w‖22 dt ≤ c2

∫ t2

t1
K (t) dt (4.21)

Thus, we may apply Proposition 2.3 to the function

φ(t) :=
∫ t

t0
‖w(x, τ )‖2L2(�)

dτ

and estimate (4.21) immediately yelds the desired result. ��
Proof of Theorem 1.1 With respect to the proof of previous Theorem 3.1, we perform
a different argument to estimate of the term

∫ t2

t1
dt

∫

�

〈B(x, t, v) − B(x, t, u),∇ϕ〉 dx

appearing in (4.12). Indeed, in this case we have B(x, t, u) = A x
|x |2 u and so the latter

term can be estimated

A
∫ t2

t1
dt

∫

�

〈
x

|x |2 v − x

|x |2 u,∇ϕ

〉

dx ≤ A
∫ t2

t1

∥
∥
∥
∥
u − v

|x |
∥
∥
∥
∥
L2(�)

‖∇u − ∇v‖L2(�) dt

(4.22)
Now, we make use of the classical Hardy inequality in its sharp form (see e.g. Lemma
17.1 in [20] for an elementary proof)

(
N − 2

2

)2 ∫

�

U 2

|x |2 dx ≤
∫

�

|∇U |2dx for all U ∈ W 1,2
0 (�)

to get

A
∫ t2

t1
dt

∫

�

〈
x

|x |2 v − x

|x |2 u,∇ϕ

〉

dx ≤ 2A

N − 2

∫ t2

t1
‖∇u − ∇v‖2L2(�)

dt (4.23)

The latter term can be reabsorbed by the left hand side because of condition (1.8),
while the rest of the proof goes without changes. ��
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