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A review on the bilirubin catabolism with special 

emphasis on the neonatal age

Unconjugated bilirubin (UCB) is the yellow pigment of 
heme catabolism responsible for icterus. Daily formed 
mainly from the degradation of senescent red blood cells 
in the spleen, UCB flows to the liver through the blood 

bound to serum albumin (see Figure 1). After entering 
the liver mainly by the active transport operated by the 
organic anion transport polypeptide (OATP) 1B1 and 1B3 
(1,2), UCB is transformed by the uridine 5'-diphospho-
glucuronosyltransferase 1A1 (UGT1A1) in the water-
soluble conjugated bilirubin (CB), thereafter excreted 
from the body after further biotransformation powered 
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by the intestinal flora (3). This degradation pathway 
balances bilirubin formation maintaining the total serum 
bilirubin (TSB: UCB + CB) level in a physiological range 
of 0.2–1 mg/dL (3.4–17.4 μmol/L), with UCB being the 
predominant fraction. When blood UCB level exceeds the 
serum albumin binding capability, the unbound portion 
of the pigment [free bilirubin (Bf), less than 0.1% in 
physiological conditions (4,5)] enters the tissues leading to 
the yellow coloration of the skin, the so-called icterus (from 
the Greek = yellow, or jaundice from the French “jaune” 

= yellow). Icterus is common in neonates, and mainly due 
to (see Table 1): (I) the increased red blood cell turnover 
occurring after birth (6,35,36); (II) the undeveloped 
UGT1A1 activity (6,7,9); and (III) the quite total absence of 
the intestinal flora in neonates (11-13). 

The high hydrophobic nature of Bf makes it able to 
diffuse across the cellular bilayer and entering the cells, if 
not bound to serum albumin. Based on that, in neonates 
(especially in pre-terms), which have a lower serum 
albumin level than the adults (see later on in the review, 

Figure 1 The liver-brain axis in bilirubin catabolism. *, potential UCB/CB transporter. zig-zag arrows: diffusion. ABCC1: also known 
as multi-drug protein 1 (MRP1); ABCC2: MRP2; ABCC3: MPR3; ABCB1: also known as P glycoprotein (PGP or multidrug resistance 
protein 1 (MDR1); ABCG2: breast cancer resistance protein (BCRP). Heme, hemoglobin; UCB, unconjugated bilirubin; Bf, unbound, free 
bilirubin; OATP, organic anion transport polypeptide; UGT, uridine 5'-diphospho-glucuronosyltransferase; CB, conjugated bilirubin; ABC, 
ATP binding cassette transporters; CYP, cytochrome P-450 mono-oxygenase; GSTs, glutathione-S-transferases; BBB, blood brain barrier; 
BCSFB, blood cerebro-spinal fluid barrier.
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Table 1 Human developmental expression of the determinants of bilirubin level in blood and brain

Variable Pre-term Full-term Ref.

Heme production (80% senescent 
red blood cells, 20% ineffective 
erythropoiesis + myoglobin and 
cytochromes)

Increased red blood cell fragility (vs.  
full-term)

Increased red blood cell turnover (vs. adult) (3,6,7)

OATP1B1/1B3 (liver) No data 0.2% vs. adult. In 1 year-old baby still only 1% of 
adult expression

(8)

UGT1A1 (liver) Increased immaturity (vs. full-term) 1% vs. adult. Reaching the adult level at 3 months 
of age

(6,7,9,10)

Intestinal microbiota Reduced motility, absence of the  
intestinal flora

Almost absent. Reaching the adult activity at  
6–12 months of age

(11-13)

Serum albumin <2.5 g/dL <3 g/dL (vs. adult level of 4.2–4.6 g/dL) (14)

Bilirubin-albumin (B/A) binding Larger inter-individual variability Lower {(3–5) ×107 M−1} than adult albumin 
(6.7×106–108 M−1)

(15-17)

Blood-CNS surfaces

BBB MVs sprouting starts at 8 Wg. Claudin 
expression similar to adult-one since 
18 Wg. BBB unit establishment 
since 20 Wg

Fully established, but the still forming  
basal-lamina and astrocytic end-feet surrounding 
the MVs, might make them more fragile to  
damaging stimuli than the adult

(18-20)

MVs density. Higher in the gray matter 
(about 111±30 MVs/mm2) vs. white 
matter (about 50±20 MVs/mm2) up to  
32 Gw

MVs density. Gray matter: about 250±90 vs. white 
matter: about 90±22 MVs/mm2 at 40 Gw. Still  
increasing postnatally, especially in the  
gray matter

CPs (forming the BCSFB) Already present at 7 Wg, but still  
uni-stratified and not polarized until 
16 Gw. Villi will develop from 17 to 28 
Gw. Since 29 Gw to birth, redefinition of 
the morphology and shape. Claudin 3 
more expressed prenatally

Claudin 2 more expressed postnatally (21,22)

ABCC1 [marker of the basolateral 
side (blood facing) of the choroid 
plexus (CPs)]

Already strongly expressed in CPs and 
ependyma since 22–26 Wg. Not  
detectable at the BBB (at any  
developmental age)

CPs: all ABC family C transporters are well  
expressed and active at birth

(23)

Detectable in pyramidal and Purkinje 
cells of the cerebellum at 26 Wg,  
increasing up to 30 Wg

ABCC2 (liver) No data 0.5% vs. adult. At 12 months, still only 1% vs. 
adult

(8)

ABCC3 (liver) Protein expression is fourfold lower 
in the fetus (16.4–37.9 weeks) than in 
infants and adults 

Higher in infants and adults (24)

Table 1 (continued)
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as well as Table 1), serum albumin has to be considered as 
an additional determinant controlling the Bf entrance into 
the brain (37-42). The importance of serum albumin is 
well demonstrated also by animal models, where the brain 
damage in hyperbilirubinemic Gunn rats (43,44) crossbred 
with an-albuminemic rats occurs at much lower (¼) blood 
bilirubin level than in the (normo-albuminemic) Gunn 
strain (45). In addition, the affinity of neonatal albumin for 
bilirubin is lower than that of adult albumin (15,36), and 
largely variable between individuals (39,46-49). 

At present and in the clinical practice, TSB is the 
value on which the indication of phototherapy (PT) is 
decided to prevent neurological damage. Nevertheless, 

due to the large and partly unpredictable variables able to 
interfere with the bilirubin-albumin binding (see later on 
in the text) and altering Bf, the recent advances making 
easier the quantification of Bf also in clinic (50) offer the 
opportunity of positively impact on the management of 
the condition. 

Neonatal hyperbilirubinemia may lead to two opposite 
conditions: (I) the so-called physiological neonatal 
hyperbilirubinemia, un-risky and self-resolving in 1 to 2 weeks 
(36,51), not needing medical interventions, and (II) the 
severe neonatal hyperbilirubinemia, potentially leading 
to conditions ranging from mild-temporary deficits, to 
permanent neurological alterations, recapped under the 

Table 1 (continued)

Variable Pre-term Full-term Ref.

ABCB1 [marker of the endothelial 
cells forming the BBB, expressed 
at the apical side (blood facing) of 
the micro vessels (MVs)]

BBB. 22–26 Wg: detectable in 33–50% 
of samples of the brainstem, hindbrain 
ad thalamus. From 27 to 33 Wg, it  
became detectable everywhere

BBB. Detectable in MVs of all regions of the  
brain, but its expression is still increasing from 
birth to adult age

(23,25-28)

Neurons. 22–26 Wg. Detectable in  
pyramidal neurons of the brain stem and 
thalamus (20% of the samples), and 
Punkinje cells of the cerebellum (20% of 
the samples)

Neurons. 30 Wg: detectable in pyramidal neurons 
and h-Purkinje cells of the cerebellum (100% of 
the samples)

ABCG2 (potential UCB  
transporter)

Liver: 1.5 folds higher in fetus  
(16.4–37.9 weeks) than adult

Liver: lower in infants and adults (24-28)

BBB: since 22 Wg detectable No changes in expression both at the BBB and 
CPs (and until adult age). Possibly, its expression 
in CPs relies on the MVs inside the stroma

CPs: no/barely detectable

Detoxifying enzymes 
[CYP1A1/1A2; GSTs, GPs,  
SULT1A1, (rodent) UGTs]

Detoxifying enzymes activity: all higher 
in CPs than in other CNS structures

Mainly expressed in CPs (vs. brain parenchyma  
or BBB). Higher postnatal activity (more than in  
adult age)

(28-34)

SULT1A1 detectable since 15–20 Gw NB: Gsts (rat samples) still high at birth in the LV 
CP, decreasing with development in the 4V CP, 
with the exception of GSTα (ligandin) that is lower 
at birth than in adult life

NB: Gsts (rat samples) high since P2—
representing approximately human 
23–32 Wg)

ABCC1: also known as multidrug protein 1 (MRP1); ABCC2: MRP2; ABCC3: MPR3; ABCB1: also known as P glycoprotein (PGP) or 
multidrug resistance protein 1 (MDR1); ABCG2: breast cancer resistance protein (BCRP). Wg, weeks of gestation; OATP, organic anion 
transporters; UGT, uridine 5' diphospho-glucuronosyltransferase; BBB, blood brain barrier; MVs, micro-vessels; CPs, choroid plexuses, 
forming the BCSFB, blood cerebro-spinal fluid barrier; Wg, weeks of gestation; ABC, ATP binding cassette transporters; CYP, cytochrome 
P450 oxygenase; GSTs, glutathione-S-transferase; GPs, glutathione peroxidase; SULT, sulfotransferase; UGT, uridine glucuronosyl-
transferase; P, post-natal age in days; LV/4V CP, lateral and forth ventricle choroid plexuses.
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definitions of bilirubin induced neurological dysfunction 
(BIND) and kernicterus spectrum disorder (KSD) (52-54). 

From the “kern-icterus” to the KSD

For  a  long t ime,  the  term kernic terus  has  been 
used to identify the most dramatic consequences of 
bilirubin neurotoxicity in the course of severe neonatal 
hyperbilirubinemia. This term was coined by Schmorl 
in late 1903 to describe a specific pattern of yellow brain 
coloration (kern=core, nuclei; icterus = yellow) restricted to 
specific CNS structures in neonates who died with severe 
jaundice. Affected regions included the basal ganglia, the 
hippocampus, the central part of the cerebellum, and the 
wall of the third and fourth ventricle [reviewed in (51)]. 

In 1966, Diamond demonstrated that the portion of 
serum UCB able to enter the CNS is limited to Bf, with 
albumin (MW: 66 KDa), physically retaining the pigment 
into the vascular lumen (55). Conditions inducing an 
opening of the blood-brain interfaces (BBI) (for example 
hypoxia, hypercarbia, hyperosmolarity) will increase UCB 
brain content and alter the dynamics of clearance of the 
pigment from the brain (36,56-58). The same is true 
when blood UCB is displaced from serum albumin. In 
this respect, a long and ever-increasing list of displacing 
molecules exists, including typical drugs and nutritional 
approaches used especially in pre-term neonatal care  
(59-66). Altogether this data indicates that Bf crosses rapidly 
the BBI in either direction. 

Due to the good agreement with the main clinical 
symptoms, the MR/proton MR spectroscopy findings  
(67-71), and some extreme experimental model where UCB 
entry into the brain was acutely increased by the use of 
displacing agents (72-76), the concept that brain damage 
was due to the accumulation—the so-called “deposition”—
of bilirubin in specific CNS structures—the “kern-
icterus”—became a dogma affecting the research of the field 
for decades. 

Extensive work has been done searching the reasons 
for the selective UCB accumulation in specific brain areas. 
Differences in (in and out) transport (23,77-79), binding 
(78,80), metabolism (81), ability to oxidize, thus decrease, 
UCB level (74,82), as well as different circulatory rates 
among CNS regions, have been hypothesized, ever without 
replicating the “kern-icterus”. 

In the meantime, bilirubin was discovered preferentially 
binding to myelin (41,83), alter the cellular membrane 
permeability and functions (84,85), inducing a bioenergetics 

crisis, apoptosis and necrosis, inflammation, redox and 
calcium imbalance, glutamate neurotoxicity, and synaptic 
excitability and transmission (82,85-95). It also alters 
the cell cycle (96), and acts on several cellular signaling 
pathways [reviewed in (29,71,97-99)]. 

Only in 2000, two reviews by TW Hansen (51,100) 
started criticizing the dogma. Hansen carried out a careful 
rereading of the history, reporting that, among the infants 
that died with jaundice, only marginal cases (less than 5%) 
presented the “kern-icterus”, and that in the majority of 
the autopsies the brain was diffusely yellow. Thus, bilirubin 
accumulation in specific brain areas is not required for 
developing neurological damage, although bilirubin toxicity 
affects specific structures of the CNS, while others areas 
are insensitive to bilirubin, despite the equal bilirubin level. 
This observation is well supported by recent in vitro (101), 
ex vivo (102) and in vivo animal studies (74,103). 

One of the major alternative theories calls into play brain 
development, suggesting that the most affected regions of 
the brain are those in which key developmental processes 
are ongoing at the time of bilirubin challenging (104). In 
line with this conclusion are several experimental data. 

In vivo (animal models), PT given to jaundiced animals at 
specific post-natal ages [P7 +/− 3 in Gunn rats (105)], fully 
protects from cerebellar hypoplasia. Supportive is the fact 
that the areas undergoing differentiation at the moment 
when bilirubin plasma concentration peaks show a higher 
bilirubin induced damage (73,105,106). 

Recent ex vivo findings, obtained using organotypic brain 
cultures (OBCs) from rat pups at different post-natal ages 
exposed to UCB, demonstrated a developmental sensitivity 
to bilirubin toxicity (together with the regional sensitivity: 
hippocampus ˃ inferior colliculi = cerebral cortex), with the 
OBCs from an 8-day-old rat brain showing the maximal 
damage (102). 

It is well known that neurons are more sensitive to 
bilirubin toxicity than astrocytes (29,107), with less 
differentiated neurons [based on the day in vitro (DIV) 
(108,109)] showing a higher degree of mitochondrial 
damage, oxidative and energetic crisis (101,110), altered 
neurogenesis and synaptogenesis, in addition to increased 
mortality (111,112). Notably, ABCC1/MRP1 expression 
(ATP binding cassette C1/multidrug resistance protein 1, a 
UCB transporter) increases with the neuronal maturation 
in vitro, and ABCC1 inhibition (by MK571), enhances 
UCB cellular entry (113). This suggests a role of this 
transporter in maintaining intracellular bilirubin below 
damaging concentration. Despite that, ABCC1 looks not 
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to be sufficient to face the bilirubin challenge during severe 
neonatal hyperbilirubinemia in vivo (78,114), possibly due 
to its low expression in the brain parenchyma, moreover 
limited to few selected cellular populations (23,115). 

An alternative explanation to the increased sensitivity in 
less mature cells/brain area has been hypothesized to be an 
undeveloped cellular defense [reviewed in (29)]. 

The oligodendrocytes are the second neuronal population 
largely sensitive to bilirubin toxicity. In primary culture 
of oligodendrocytes, UCB can interfere with maturation 
and differentiation, and then with the myelination process 
(29,103,116). Importantly, while neurogenesis in humans is 
a pre-natal event (possibly relevant in pre-term newborns), 
oligodendrogenesis is still present after birth in humans, 
with myelination occurring up to 10 years after birth (117). 
In agreement, altered myelination has been reported both 
in animal models (103,118) and at autopsy of infants died 
with kernicterus (114,119). 

More recently bilirubin has been demonstrated to 
alter brain maturation by acting on the epigenetic of 
CNS development, including myelination, reinforcing 
the idea that bilirubin and CNS development are strictly 
interconnected (120). This hypothesis might be particularly 
important nowadays when the improvement of medical care 
allows more and more pre-term infants to survive. Thus, 
emerging is the need for a better understanding of the 
impact of CNS maturity (and immaturity) on the disease, as 
well as for a focus on bilirubin brain entry in pre- and full-
term neonates.

Severe neonatal hyperbilirubinemia: full-term 
and pre-terms as two distinct populations 

Hyperbilirubinemia in neonates is a benign condition in 
the majority of cases. However, an uncontrolled and rapidly 
increased blood bilirubin level can lead to neurotoxicity 
with even deadly consequences. Frequently considered an 
event of the past (121), the mortality of neonatal jaundice 
in the early neonatal period (0–6 days) still accounts for  
1,309.3 deaths per 100,000 subjects worldwide (122). The 
burden is highest in the low-middle income countries 
(LMIC), especially in Sub-Saharan Africa and South 
Asia, where neonatal hyperbilirubinemia is the 7th 
and 8th leading cause of  mortal i ty,  respect ively. 
In Western Europe and North America,  neonatal 
hyperbilirubinemia accounts for the 9th and 13th 
leading cause of mortality, respectively (122). Severe 
hyperbilirubinemia has been recognized as the cause of 

bilirubin-induced neurotoxicity which can manifest as acute 
brain encephalopathy (ABE), KSD, and death (123,124). 

The risk threshold: TSB is not enough 

Several clinical differences exist among full [≥37 weeks 
gestational age (Wg)] and pre-term neonates (<37 Wg) 
(see Table 2) exposed to hyperbilirubinemia. Neonatal 
hyperbilirubinemia affects 60% of full-term and 80% of 
pre-term neonates (10,125,126), with pre-term infants 
having a higher risk of severe jaundice with or without 
bilirubin-induced neurotoxicity than do full-term infants 
(148-150). The increased percentage of hyperbilirubinemia 
in pre-terms is mainly due to the enhanced (with respect to 
full term neonates) fragility of the red blood cell (bilirubin 
production), the increased liver (transport and conjugation) 
and intestinal immaturity, and postponed enteral feeding 
(7,10,148) (see Table 1). 

While the TSB peak plotted as a function of the hours 
after birth is sufficient to estimate the risk of neurological 
sequelae in term infants (134,134), additional factors are 
required in pre-term babies (see Table 2). In this population, 
common is the so-called “low bilirubin kernicterus”, 
in which the neurological damage (symptoms and/or 
neuroimaging findings of brain damage) may be present 
even with peak TSB under the “safe level” (128,135-138). 
 In pre-term babies, usually, bilirubin induced brain damage 
is associated with extremely low birth weight (ELBW) and/
or strikingly low serum albumin level (1.4 to 2.1 g/dL) 
(135,137,138). Indeed, at equal TSB, the risk of developing 
neurological sequela increases as the gestational age 
decreases, as reported for example by Bhutani and Wong 
(e.g., 10% below: 30 Wg, 5.5% below 31–32 Wg, and 1.2% 
below 33/34 Wg). Thus, rather than a specific threshold, 
in pre-term infants a range of TSB levels is more likely 
to be associated with the onset of neurotoxicity (133).  
Both body weight and serum albumin level might be 
considered additional (possibly personalized) indicators 
of the developmental maturity of the infant, in addition 
to the gestational age, all affecting the Bf. In agreement 
with it, the presence of neurological dysfunctions or even 
death in ELBW pre-term infants have been associated 
with a high level of free/unbound bilirubin (139,151), 
suggesting Bf as a more sensitive predictor in respect to 
TSB (141,152). Bf has also been found as a good predictor 
for auditory dysfunctions in neonates with severe jaundice 
(142,143,153,154), as well as for the risk of apnea in 
pre-term infants (144,155). The bilirubin neurotoxicity 
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Table 2 Clinical differences between pre-term and full-term infants

Variable Pre-term Full term Ref.

Gestational age <37 weeks ≥37 weeks

Prevalence of 
hyperbilirubinemia

80% 60% (10,125,126)

Incidence in infants with severe hyperbilirubinemia (TSB >20 mg/dL)* 

ABE* 66.6% (n=20/30) 87.6% (n=80/89) (127)

KSD* 93% (n=27/29) 86.4% (n=83/96)

Death* 3.45% (n=1/29) 5.2% (n=5/96)

Clinical manifestation 

ABE More subtle, recurrent apnea and 
desaturation

Classic ABE signs: initial phase: stupor 
(lethargy), hypotonia, and poor sucking; 
Advanced phase: hypertonia, arching, 
retrocollis, opisthotonos, fever, high-pitched 
cry, apnea, inability to feed 

(52,128-131)

KSD Equally the same with term neonates with 
auditory neuropathy spectrum disorder 
predominant

Athetoid cerebral palsy (uncontrollable 
movement of the face, body, arms and legs), 
hearing loss, failure of upward gaze and 
dental enamel dysplasia

Incidence of apnea associated 
with ABE

 ≥35 to <37 weeks: n=14/28; 50% ≥37 weeks: n=27/80; 33.8% (132)

% of abnormal ABR in 
hyperbilirubinemic infants

25% (n=9/36) 14% (n=11/80) (60)

Parameter for diagnosis TSB, plus birth weight, serum albumin, and 
gestational age

TSB alone (128,133-139)

Mean TSB 23–34 weeks: 5.4±1.4 mg/dL; ≥28–34 
weeks: 8.6±1.6 mg/dL

≥37 weeks: 7.9±1.6 mg/dL; 5.2±3.2 nM (59,60,140)

Mean Bf 23–34 weeks: 13.1±8.4 nM; ≥28–34 weeks: 
17.8±9.7 nM

Peak Bf in infants with 
abnormal ABR

˂28 weeks: n=9/36; 19.0±15.9 nM – (39)

≥28–34 weeks: n=11/80; 21.9±21.1 nM

28–32 weeks: n=25/45; 10.5±3.4 nM – (141)

24–35 weeks: n=6/81; 30.1±22.4 nM – (142)

≥34 weeks n=24/100; 57.6±49.9 nM (143)

Peak of Bf in infants with 
central apnea

27–33 weeks: n=7/50; 39.3±44.4 μg/dL (144)

Treatments 

Phototherapy Prophylactic PT Perform as conservative mode (59,60,145)

Possibly inefficient in reducing Bf and 
largely affected by displacing compounds

% of TSB/Bf decrease after 
PT

43%/null 29%/19% (59)

Table 2 (continued)
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affecting auditory system including brainstem auditory 
nuclei, vestibular nuclei, and auditory nerve, has been 
reproduced in both  and animal model of kernicterus (Gunn 
rat) (156,157). Nevertheless, the interplay between body 
weight, serum albumin level, Bf and the immaturity of the 
brain, one of the reasons for the increased susceptibility 
to neuronal damage in the pre-term population even at 
lower bilirubin levels (135), still has to be fully unravelled. 
Reliable experimental models are required. 

The clinical manifestations

Full-term infants
In mature infants,  lethargy,  hypotonia,  and poor 
sucking are the early non-specific sign of acute bilirubin 
encephalopathy (ABE) (Table  2 ) ,  with hypertonia 
(retrocollis and opisthotonos), fever and high-pitched 
cry, apnea, and inability to feed representing the signs of 
advanced stage of ABE. 

The classical sign of the chronic and permanent clinical 
sequelae of bilirubin toxicity in term population includes 
motor symptoms, hearing loss due to auditory neuropathy 
spectrum disorder (ANSD) with or without hearing loss, 
visual impairment (visuo-oculomotor, usually manifests as 
paralysis of upward gaze, and visuo-cortical dysfunction), 
and dental  enamel dysplasia (54,129,130).  Those 
symptoms present a large variability among individuals, 
recently recapped by the term KSD (52). In addition, the 
neurodevelopmental sequelae, later described as spectrum 
of developmental disorder, have been considered as part of 
bilirubin-induce neurotoxicity disorders. Bilirubin-induced 
cognitive delay, attention deficit hyperactivity disorder 
(ADHD), autism spectrum disorder (ASD), specific learning 
disorder and language disorder are neurodevelopmental 
disorders (NDDs) that have been associated with bilirubin 

neurotoxicity (53,54). 
The stage of brain development (the main biological 

mechanisms: e.g., division, differentiation, migration, 
myelination, etc.) at the time of bilirubin insult has been 
hypothesized as one of the possible explanations for this 
variability, as discussed above. However, hyperbilirubinemia in 
un-treated full-term neonates may persist up to 1 or 2 weeks 
after birth, and, this might be too short a time to represent 
different stages of the CNS development. An alternative 
explanation may reside in individual genetic susceptibility, 
explaining also why kernicterus may develop under the TSB 
risk threshold, or, vice versa, do not develop despite franc 
toxic TSB levels (158). 

Pre-term infants
Pre-term infants less frequently exhibit the conventional 
bilirubin neurotoxicity signs (Table 2), likely due to 
incomplete maturation of neuronal circuit and organization. 
For this reason, pre-term infants are more at risk of late-
diagnosis or even stay undiagnosed, which lead them to 
suffer from “silent morbidity and mortality” (130,159). 
Meanwhile, the auditory predominant sequelae are more 
common in pre-term neonates (128,130,131). Pre-term 
infants with abnormal auditory brain evokes responses 
(ABR, the common clinical test performing among pre-
term infant to evaluate brainstem function related to 
auditory neural pathway), also present a more concurrent 
apneic events (155), possibly because both these conditions 
share the same neuronal location targeted by bilirubin. 
Moreover, increasing are the evidences reporting that 
hyperbilirubinemia in premature infants is followed by a 
higher number of apnea events (135,144,160). 

Concerning the chronic and permanent clinical sequelae 
of bilirubin toxicity, pre-terms share the same burden as 
that of the full-term neonates (129,130). This may suggest 

Table 2 (continued)

Variable Pre-term Full term Ref.

Exchange transfusion (ET) Based on TSB level threshold and 
gestational age, and the presence of ABE 
sign (less obvious)

Based on TSB level and the presence of 
ABE sign (most obvious)

(146)

Deaths within 7 days following 
ET

5% [37/704] 1% [5/457] (147)

*, the incidence of ABE, KSD, and death are among the infants with severe hyperbilirubinemia (TSB >20 mg/dL) only. Neither the healthy 
infants nor moderate-mild hyperbilirubinemia were included. ABE, acute brain encephalopathy; KSD, kernicterus spectrum disorder; TSB, 
total serum bilirubin; Bf, free bilirubin; PT, phototherapy.
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that, under chronic toxic stimuli, inducing the most severe 
molecular perturbations and cell death (71,104,161), the 
developmental stage of brain development is irrelevant. 

Various clinical studies tried to link the higher 
prevalence of NDDs (global cognitive delay, ADHD, 
specific learning disorder, ASD) in pre-term infants 
with hyperbilirubinemia but none showed a significant 
association (53). It must be underlined that most of them 
used TSB or UCB, but not Bf. 

Notably, the occurrence of athetoid cerebral palsy 
in more than 6 months old infants have been noticed 
among pre-term infants with a history of moderate 
hyperbilirubinemia (7–17.4 mg/dL) and despite PT during 
the neonatal period (128,136). A potential explanation 
might come from the recent and disturbing finding that 
PT may be ineffective in reducing Bf in pre-term infants, 
despite a significant decrease of the TSB (49,59,65). This 
dichotomy remains still unexplained. Certainly, pre-term 
infants often require in addition to PT drugs and nutritional 
approaches, and, among them, several can interfere with the 
bilirubin to albumin binding, increasing Bf [as previously 
discussed (48,65,66)]. 

Therapeutical approaches

Phototherapy
PT is the standard treatment for neonatal hyperbilirubinemia 
to convert bilirubin into water-soluble photoisomers that 
can be excreted through bile and urine. Effective PT has 
progressively decreased the need for exchange transfusion 
(ET) in pre-term infants (145). Recently, double-PT, which 
use two light sources, has been demonstrated more effective 
for reducing TSB level compare to single PT among pre-
term infants (162). 

In addition to the emerging inefficacy of PT in pre-
term babies (see above), PT is not a harmless treatment 
and overtreatment should be reevaluated in small pre-
term infants (Table 2). Side effects can include retinal 
damage, burns, disturbed circadian rhythm, conjunctivitis, 
rashes, dehydration, hyper- and hypothermia, loose stools, 
melanotic nevus, bronze baby syndrome, and electrolyte 
disturbances (163). 

In a  large randomized control  tr ia l  aggress ive 
(prophylactic) PT was compared with conservative PT in 
ELBW (≤1,000 g) infants. Aggressive PT was provided at 
a TSB value of 5 mg/dL or higher in the first week and  
7 mg/dL or higher in the second week. Meanwhile, 
conservative PT was provided at a bilirubin value of 8 mg/dL 

or higher for 501–750 g infants and 10 mg/dL or higher for 
751–1,000 g infants. This study showed that aggressive PT 
in ELBW infants reduced neurodevelopmental impairment 
and hearing loss among surviving infants versus those 
receiving conservative PT. However, those results are offset 
by the post hoc analysis reporting a 99% probability of 
increased deaths among infants under 750 g birth weight 
with aggressive PT (164). These results suggest that 
moderate bilirubin levels may have clinically important 
oxidant benefits (165). Low concentration of bilirubin 
scavenges reactive oxygen species (ROS), reduces oxidant-
induced cellular injury and attenuates oxidant stress. Since 
the physiologic jaundice has to be accepted as a protective 
mechanism for the newborn infant against ROS in the first 
days of life (163), aggressive, prophylactic PT looks to be 
counterproductive. 

Indeed, the thin, translucent skin of ELBW infants and 
their high rate of serious illness and immature defense 
mechanisms may make them particularly vulnerable to the 
potential or documented adverse effects of PT, including 
photo-oxidative injury, lipid peroxidation, DNA damage, 
reduced mesenteric and cerebral blood flow, and hemolysis 
(163,166). Interestingly, a recent study reported that the 
cycled (intermittent) PT can reduce the mortality associated 
with continuous PT among the pre-term infant (167).

In any case, PT has significantly decreased the overall 
incidence of bilirubin neurotoxicity in most developed 
countries. Nevertheless, bilirubin neurotoxicity with 
lifelong neurological sequelae still occurs, and is a major 
problem in many areas of the world, especially in low- and 
middle-income countries (168,169). The access to health 
facilities, availability of PT, the possibility to measure TSB 
at the side of the newborn, and the variation in PT practices 
(such as the irradiance distances between infants and the 
light sources) have contributed to sub-optimal result of this 
therapeutical approach (168,170). 

Exchange transfusion
ET is the standard therapy for severe hyperbilirubinemia 
w i t h  A B E  ( 1 4 6 ) .  E T  w i l l  b e  p e r f o r m e d  i f  t h e 
hyperbilirubinemia exceeds the specific level defined 
in clinical guidelines and exposes infants tot the risk of 
bilirubin neurotoxicity (134). The incidence of severe 
hyperbilirubinemia adjusted according to the American 
Academy of Pediatrics thresholds for ET is low, involving 
~1.2 per 1,000 live births (171). The screening of 
hyperbilirubinemia and its underlying condition [e.g., rhesus 
and ABO isoimmunization, glucose 6 phosphate deficiency 
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(G6PD)], the treatment of pregnant women who are Rh-
negative with Rh-factor therapy, and the increased use of PT, 
have drastically reduced the number of ET performed (147). 
Nevertheless, premature infants have a tenfold increased risk 
of eventual bilirubin level meeting or exceeding thresholds 
for ET compared with term neonates (171). 

Furthermore, most studies suggest that sick pre-term 
infants experience a wide range of complications from ET 
more frequently than term infants (145,147,172,173). In 
a large cohort study of >1,200 pre-term and term infants 
who received ET for hyperbilirubinemia, pre-term infants 
especially those ≤29 weeks of gestational age, have greater 
odds of death following ET compared to term infants (147).

The novel treatment strategies
Despite PT and ET have been widely accepted as standard 
treatments for severe hyperbilirubinemia to prevent 
ABE, the limitation of both therapies calls for new 
neuroprotective treatment. 

Minocycline, the anti-inflammatory and antimicrobial 
drug, has been effectively demonstrated to prevent 
kernicterus in animal models of hyperbilirubinemia  
(174-176). However, the use of minocycline in neonates is 
prevented due to its inevitable side effects including tooth 
discoloration, increased skin hypersensitivity to light, skin 
and nail hyperpigmentation, and skin rash (146).

Other drugs under study for treating hyperbilirubinemia 
is tin-mesoporphyrin (SnMP), the potent competitive 
inhibitors of heme oxygenase, the key rate-limiting enzyme 
in the catabolism of heme to bilirubin (177). Reddy et al. 
have reported a very low birth weight infant with severe 
hyperbilirubinemia which, while awaiting an ET, underwent 
a SnMP single-dose treatment. After 10 hours of SnMP 
administration, TSB was gradually reduced (by 13%) and 
this eliminated the need for ET. No adverse effects were 
reported (178). A clinical trial of SnMP in 213 newborns 
has shown the early use of a single dose of SnMP decreased 
the duration of PT, reversed TSB trajectory (mean TSB 
declined by 18%), and reduced the severity of subsequent 
hyperbilirubinemia. However, data on long-term risk of 
BIND still lack in this study (179). 

A possible alternative approach might be focused 
on counteracting directly into the brain the molecular 
mechanisms of damage triggered by bilirubin, irrespective 
of the TSB (102). A recently published in vivo work 
reported that curcumin was able to fully restore brain 
damage and behavioral abnormalities in the spontaneously 
hyperbilirubinemic Gunn rat by counteracting the 

main pathological mechanisms of CNS damage (118). 
This approach might be useful where PT/ET are not 
available or efficient in (otherwise healthy) full-term 
hyperbilirubinemic newborns. 

From the serum to the brain: the BBI in brain 
development and KSD

To enter the brain, Bf has to cross the BBI, located at 
the endothelial walls of the brain vasculature [blood-brain 
barrier (BBB)], and at the epithelial layer of the choroid 
plexuses (CPs), the latter giving access to the cerebrospinal 
fluid (CSF) (blood-CSF barrier, BCSFB) (Figures 1,2). The 
barrier cells are sealed by tight junctions, and harbor multi-
specific efflux transporters and detoxifying enzymes that 
altogether prevent the diffusion of unwanted compounds 
into the brain or else increase the clearance of potentially 
harmful metabolites from the brain (181). They also fulfill 
an important brain delivery function for energy substrates, 
micronutrients and hormones, and contribute to the specific 
immune privilege of the brain (21,182). Contrary to the 
received idea of brain barriers lacking maturity during 
perinatal development, both interfaces display a barrier 
phenotype very early during fetal life, and are functionally 
efficient to supply the nervous system with nutrients and 
biologically active molecules that match the specific needs 
of the developing brain.

Development and differentiation of brain barriers

Brain barriers during pre- and postnatal brain 
development
Vascularization of the brain is an early event. It starts on 
embryonic day 9.5 in mice, when endothelial cells from 
the perineural vascular plexus invade the neuroepithelium, 
a process regulated by the canonical Wnt/β-catenin 
signaling. This pathway orchestrates the development 
of the vascular network, controls the secretion of 
extracellular matrix proteins, and initiates the induction 
in endothelial cells of their brain-specific properties such 
as the expression of glucose transporter 1 (GLUT-1) 
allowing glucose to fuel the brain (183). The endothelium 
of the newly formed vessels displays functional tight 
junctions characterized by the focal localization of tight 
junctions-associated proteins such as occludin and claudin 
5, and reduced pinocytosis activities, both typical of the 
BBB phenotype. Pericytes play an important part in 
inducing these latter properties (184,185). Astrocytes that 
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mature essentially postnatally in rodents, play a role in the 
maintenance of the BBB phenotype later on (Figure 2). In 
the postnatal brain, the surface of exchange across the BBB 
is more limited than in the adult because the neurovascular 
network develops and complexifies gradually throughout 
development, in two waves of angiogenesis, one prenatal, 
the other postnatal (180).

Morphological and immunohistological studies in 
humans indicate a pattern a vascularization and BBB 
development similar to that observed in rodents, although 
with a different timeframe. Vascularization of the 
telencephalon starts around week 8 of gestation (Wg)  
(Table 1), characterized by the co-migration of endothelial 
sprouts and intimately associated pericytes (18). The 
tight junction-associated proteins occludin and claudin 
5 are expressed in endothelial cells on week 12 Wg, and 
by week 18 Wg these proteins display an intercellular 
localization pattern similar to that of the adult. The blood 
vessel density and the percentage of blood vessel area are 
largest in the germinative matrix exposed to nascent CSF 
followed by gray matter and then the white matter in all 
of the gestational age between 16 and 40 weeks (19). In 
humans, astrocyte end-feet start to escheat endothelial cells 
before birth around week 20 Wg depending on the brain 
region (20). This is consistent with the mainly postnatal 

development of end-feet in rodents, as rat neonates are 
considered to be equivalent to human fetuses of that stage 
in terms of cortical development. 

Despite the early appearance of a typical morphologic 
BBB phenotype characterizing the developing brain vessels, 
the more limited thickness of the basal membrane and the 
gradual covering by astrocytic end-feet suggest that the 
BBB maybe more fragile and prone to disruption during the 
peri and early postnatal period than in the adult. 

The CPs start developing from the dorsal part of 
the neural tube even before the vasculature becomes 
significant in fetal life, at the seventh week of gestation 
in humans (Table 1).The concurrent formation of the 
choroidal epithelium and vascular conjunctive stroma 
(Figure 2) is complex, interrelated, and involves bone 
morphogenic proteins such as Gdf7 gene product, the 
homeobox protein Otx2, and sonic hedgehog signaling. The 
CPs mature early to present an “adult” phenotype at birth 
(Table 1). They keep extending after birth however to match 
brain growth, as a result of an active mitogenic epithelial 
area at the root of the CPs. A detailed description of CP 
development and differentiation is described in (21,22). 
The choroidal epithelium displays a tight phenotype as 
soon as it invaginate from the neural tube, and the signaling 
mechanism associated with this barrier phenotype has yet 

BBB

BCSFB

EC

EpC

CPs

CStr

Tight
junction

Fenestration

P

AE

Figure 2 Neurovascular and choroid plexus networks forming the blood-brain barriers. Blood vessels penetrating the brain tissue give birth 
to the cerebral microvascular network whose endothelial cells (EC) are sealed by the tight junction, in both adult and fetal brain, under the 
influence of pericytes (P). Astrocytic endfeet (AE) surrounding the vessels, also capable of influencing some barrier properties of the brain 
endothelium, are mature only later during the peri and postnatal period. The choroid plexuses, to the number of four, are located in the 
ventricular system of the brain (dark arrows, left panel). They are formed by a highly vascularized conjunctive stroma (CStr) surrounded by 
an epithelium. The latter presents a tight phenotype as soon as it differentiates from the neural tube, as a result of the tight junctions sealing 
the cells of the epithelium (EpC), while the stromal blood vessels irrigating the choroid plexuses (CPs) present a permissive phenotype. 
Modified from (180). BBB, blood-brain barrier; BCSFB, blood-cerebrospinal fluid barrier.
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to be identified. The CPs are also an important transport/
secretion site of nutrients and hormones delivery to the 
developing brain (21,186,187). The CPs epithelial tight 
junctions are made of a large number of different proteins, 
including the transmembrane proteins occludin, claudin1, 
claudin 2, and claudin 3. The relative proportion of these 
proteins however changes with development, with claudin 2 
being more expressed postnatally and in adults, and claudin 
3 being more expressed prenatally, possibly in connection 
with the selective choroidal function linked to CSF 
secretion which increases after birth (30).

Efflux transporters and enzymes that participate in 
the neuroprotective functions of brain barriers present a 
variable degree of expression and function at birth, which 
also differ between the cerebral vasculature and the CPs 
(Table 1). The BCSF barrier achieves an adult phenotype 
earlier than the BBB. This may be linked to the sensitivity 
of selected efflux transporters to the signals originating from 
the astrocytic endfeet, the later maturing mainly during the 
peri- and the postnatal period (188). For instance, at the 
BBB, the expression of several efflux transporters such as 
ABCB1 (PGP; MDR1), ABCG2 (BCRP), ABCC4 (MRP4) 
but not of others (SLC22A8/OAT3) increases from birth 
to adult stage. This is especially patent for ABCB1 which is  
5 times lower in the early postnatal stages than in adults  
(25-28). In CPs, the main efflux transporters are ABCC 
proteins (MRPs), and they are well expressed and active 
at birth. Glutathione-S-transferases and glutathione-
peroxidases, the sulfotransferase SULT1A1 and at least in 
rodents, UDP-glucuronosyl transferases are detoxification 
enzymes mainly found in the CPs,  that  keep the 
concentration of various toxicants low in the brain. Most of 
them are especially active postnatally (31-34). 

Permeability of BBB to bilirubin
As the paracellular pathway across brain barriers is sealed 
by tight junctions, and non-specific pinocytosis is very low 
at brain barriers, protein-bound UCB has no access to the 
brain, except for a small fraction that could access the CSF 
across specific protein transporting cells from the choroidal 
epithelium during development (189). 

In contrast, tight junctions are not a hindrance to the 
brain penetration of lipophilic Bf, which occurs through a 
transmembrane diffusional pathway (see Figure 1). Several 
mechanisms may however limit this diffusion of Bf in the 
postnatal brain. 

ABCC1, expressed mainly at the BCSFB, and to some 
extent ABCB1, expressed mainly at the BBB, recognize 

UCB as a substrate. These efflux proteins will pump part 
of UCB back into the blood. The process however is not 
expected to be very efficient in neonates as the expression 
of ABCB1, whose affinity for UCB is not high, is still low 
in brain capillaries at that developmental stage (see Table 1).  
UCB is also metabolized by UGT1A1 (see Figure 1). 
While choroidal UGT1A-dependent enzymatic activities 
are high during postnatal development (Table 1), whether 
the specific UGT1A1 isoform is active is not known. 
UCB can be oxidized by cytochrome P-450-dependent 
monooxygenases, such as CYP1A1/1A2 (Figure 1). This is 
however unlikely to constitute an important hindrance to 
the passage of UCB across the brain barriers, as CYP are 
not major detoxification enzymes at brain barriers [reviewed 
in (31,190)]. UCB transfer to the brain can also be slowed 
down through binding to glutathione-S-transferase 
(GST) subunits alpha, but the expression of these specific 
isoforms raises only postnatally in brain barriers, hence this 
mechanism is unlikely to be significant in neonates. 

Altogether the evidence points to transport and 
metabolic mechanisms at undamaged brain barriers that 
may prevent or reduce the diffusion into the brain of 
unbound UCB circulating at a physiologically very low 
level in the plasma, but that should be overrun if unbound 
UCB reaches higher pathological levels [reviewed in (31)]. 
The regional differences that have been observed in brain 
sensitivity to UCB appear not linked to regional differences 
in barrier permeability to UCB. Whether localized 
differences in interstitial fluid movements, and CSF flow, 
impact the cerebral bio-disposition of UCB, and influence 
this regional susceptibility remains to be investigated. 

Effect of bilirubin on BBB functions
Brain interfaces are the first cerebral cells exposed to the 
high concentration of UCB circulating in the plasma during 
pathological neonatal jaundice. They may therefore be 
a primary target for UCB toxicity, as an alteration in the 
development of the neurovascular network and CPs, and 
of their associated barrier phenotype, would impact brain 
maturation. 

So far, few investigations have been performed on 
this matter, and most are in vitro studies using cultured 
brain endothelial and epithelial cells. The integrity of the 
endothelial monolayers was found sensitive to UCB, while 
that of the choroidal epithelial monolayers was not (115,191). 

Because BBB models do not yet recapitulate all features 
of BBI in vivo, more information from in vivo studies 
needs to be collected before a conclusion can be drawn 
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on the effect of free UCB on brain barriers integrity. A 
case report of a pre-term neonate with severe kernicterus 
indicates that signs of neurovascular network alteration 
was observed on autopsied brain tissue, possibly linked to 
an increase in vascular endothelial growth factor (VEGF) 
signaling (192). Given the comorbidities associated, 
whether UCB alone was responsible for these alterations 
remains to be understood. One study performed in Gunn 
rats, an animal model of jaundice characterized by a rapid 
postnatal increase in serum UCB evidenced a decrease 
in ABCC1 protein levels in CPs. This finding could be 
reproduced in vitro on choroidal epithelial cells chronically 
exposed to UCB, suggesting that ABCC1 downregulation 
results from a direct effect of UCB on the BCSFB (115). 
In a model of bile duct ligation, a decrease in ABCG2 was 
observed at the BBB, with evidence that UCB mediates the 
effect, and without apparent impairment of the integrity of 
the barrier (193). 

These in vivo data suggest that UCB induces functional 
changes at brain barriers, rather than overt impairment of 
their integrity. 

Conclusions

In the last decades, a lot of bench-based work has been 
performed to unravel bilirubin-induced neurotoxicity. Some 
“dogma” fell and new knowledge raised new hypotheses 
that need to be experimentally and clinically explored by the 
“yellow researchers”. The cooperative, international, and 
multidisciplinary expertise will be the key to success.
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