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Abstract: Graphene (Gr) with its distinctive features is the most studied two-dimensional (2D) material
for the new generation of high frequency and optoelectronic devices. In this context, the Atomic
Layer Deposition (ALD) of ultra-thin high-k insulators on Gr is essential for the implementation of
many electronic devices. However, the lack of out-of-plane bonds in the sp2 lattice of Gr typically
hinders the direct ALD growth on its surface. To date, several pre-functionalization and/or seed-layer
deposition processes have been explored, to promote the ALD nucleation on Gr. The main challenge of
these approaches is achieving ultra-thin insulators with nearly ideal dielectric properties (permittivity,
breakdown field), while preserving the structural and electronic properties of Gr. This paper will
review recent developments of ALD of high k-dielectrics, in particular Al2O3, on Gr with “in-situ”
seed-layer approaches. Furthermore, recent reports on seed-layer-free ALD onto epitaxial Gr on SiC
and onto Gr grown by chemical vapor deposition (CVD) on metals will be presented, discussing the
role played by Gr interaction with the underlying substrates.
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1. Introduction

Graphene (Gr), a two dimensional (2D) sheet of carbon atoms with hexagonal (sp2) structure, was
the first member of the 2D materials family produced experimentally 15 years ago, in 2004 [1]. It is
still the most studied 2D-material due to its peculiar features [2], such as the high carrier mobility
(from ~103 up to ~105 cm2 V−1s−1) [3] and micrometer electron mean free path [4,5], nearly constant
transmittance in a wide wavelength range [6], high thermal conductivity [7], and excellent mechanical
strength [8]. The combination of these properties give rise to great interest for future applications in
electronics, optoelectronics, and sensing.

As a matter of fact, the deposition of thin layers of high-k dielectrics (such as HfO2 or Al2O3)
onto the Gr is an essential requirement for the realization of many of these Gr applications. In fact,
the insulating layers can act as a gate dielectric in Gr-based field-effect transistors (GFETs) [9–11], as
tunneling barriers in vertical transistors, like the Gr-base hot electron transistor (GBHET) [12–14], as
protection [15] and functionalized over-layer to achieve specific chemical, environmental, or biological
Gr-based sensors [16].

Atomic Layer Deposition (ALD) is the most advantageous technique to deposit several kinds of
materials in the form of ultra-thin layers, due to the peculiarities of the deposition mechanism. It is
based on self-limited reactions between gaseous precursors and the substrate, which by a sequential
repetition ensure a layer-by-layer growth mode [17,18]. This deposition mechanism guarantees a
sub-nanometer control of thickness, a conformal and uniform coating on a large area, at relatively
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low deposition temperatures (100–400 ◦C). Thanks to these peculiarities, the ALD technique has been
employed in several innovative industrial fields. Most of its success has been related to the progressive
scaling down of microelectronic devices, and the consequent need for ultra-thin layers of “high-k”
dielectrics (such as Al2O3, HfO2) as gate insulators in complementary metal oxide semiconductor
(CMOS) technology. Besides microelectronics, the number of technological applications demanding for
ALD advantages is constantly increasing. These include photovoltaic devices [19,20], biotechnological
systems [21], water purification apparatus [22] and 2D material growth [23].

In the last years, ALD has also been widely explored regarding the deposition of ultra-thin
insulators in Gr-based devices. Early studies on the growth of thin insulators (SiO2, HfO2, etc.) on
Gr by alternative physical deposition approaches, such as electron beam evaporation (EBE), pulsed
laser deposition (PLD), and Radio Frequency (RF) sputtering, showed that a significant amount of
damage is introduced in the Gr lattice during the deposition [24]. On the contrary, thermal ALD of
high-k oxides does not significantly modify the structural properties of Gr. However, due to the lack of
out-of-plane bonds in the sp2-hybridized Gr structure, the chemisorption of the ALD precursors and,
consequently, the nucleation and growth of the expected material are typically hindered on the Gr
surface, with the exception of regions where structural defects (sp3 bonds) are present.

As an example, in the case of high quality Gr flakes mechanically exfoliated from highly oriented
pyrolytic graphite (HOPG) onto SiO2, the ALD deposition was found to occur preferentially close to the
edges, where most of structural defects and dangling bonds, active sites of nucleation, are localized [25].
Analogously, the polycrystalline Gr grown by chemical vapor deposition (CVD) on catalytic metals,
such as Cu and Ni, and transferred on SiO2 was characterized by an island-like ALD growth localized
on the grain boundaries, edges, and on Gr corrugations (wrinkles). In particular, the enhanced reactivity
in proximity of the wrinkle regions is due to the curvature of the Gr membrane which involves the
distortion of the sp2 structure and the strain of C–C bonds [26]. Density functional theory (DFT)
calculations of the reaction energy between the ALD precursor and strained Gr demonstrated that
such enhanced reactivity originates from the balance between the breaking of ALD precursor bonds,
the formation of bonds between the precursor and Gr surface, and the release of strain due to Gr
buckling [27]. As a matter of fact, the transferred Gr surface is typically characterized by polymeric
residues and little cracks associated to the transfer procedure. Although these can act as seeds of the
nucleation, on the other hand they adversely influence the electrical properties of Gr.

To overcome the above-mentioned issues, direct functionalization of Gr or the physical deposition
of seed-layers on its surface are the typically adopted approaches to enable the ALD nucleation and
therefore the uniformity of the deposition [28]. The functionalization of the Gr surface is achieved by
exposure to reactive chemical species, such as O3 [29] and XeF2 [30], or by plasma treatments with
different gases, mainly N2 [31], O2, and H2 [32]. Such surface treatments are effective methods for the
improvement of the ALD-precursor chemisorption directly on the Gr surface, because, in most cases,
they partially convert the sp2 bonds to out-of-plane sp3 bonds [32,33]. Ultra-thin dielectric films can be
obtained on Gr by these approaches. However, the loss of the sp2-hybridization typically results in a
partial degradation of the Gr electrical properties.

The seeding-layer method consists of the physical deposition on Gr of a very thin layer of
polymer [25], metal-oxide [34], or metal (naturally oxidized in air) [35,36], which act as seed of
nucleation. The main advantage of this approach is that it does not introduce defects in the Gr
lattice and, therefore, does not significantly affect Gr mobility. The seed-layer deposition is usually
performed “ex situ”, i.e., outside the ALD reactor chamber. As a matter of fact, this ex situ procedure
can be responsible for contaminations and impurities, which can be detrimental for the reliability of
the deposited material. Hence, “in- situ” seed-layer depositions, namely nucleation seeds directly
deposited inside the ALD reactor just before the dielectric growth, are highly desirable. Significant
progress in this direction has been made in the last years by the introduction of two step ALD processes,
consisting of the deposition of a few nanometer seed-like layer at a lower temperature step, followed
by a higher temperature one for the growth of a high quality metal-oxide (HfO2 or Al2O3) film [37–41].
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The structure (amorphous or crystalline) of the metal-oxide layers grown by ALD on Gr depends on
the high-k material, on the deposition conditions (especially the temperature), as well as on the specific
seed layer at the interface. As an example, Al2O3 layers grown by ALD process are typically amorphous,
although some authors reported the formation of Al2O3 nanocrystals at the interface using an oxidized
Ti seed layer on Gr [36]. In the case of HfO2, amorphous films have been grown on Gr at low deposition
temperatures of 180 ◦C, whereas polycrystalline HfO2 films have been obtained by a two-step deposition,
with the first step at 170 ◦C, followed by the second step at higher temperature (300 ◦C) [37].

The main disadvantage of seed-layer-assisted ALD is that this interfacial layer ultimately limits
the minimum film thickness that can be achieved. As an example, Fallahazad et al. [36] reported a
minimum thickness of ~2.6 nm for an oxide stack consisting of a ~0.6 nm oxidized Ti seed-layer and a
~2 nm Al2O3 film deposited by thermal ALD. Furthermore, the final seed layer/insulator stack typically
exhibits an increased equivalent oxide thickness with respect to a dielectric film deposited by pure
thermal ALD. Finally, the presence of electrically active defects at the interface between Gr and the
seed layer can be responsible for charge trapping effects commonly observed in Gr devices.

From the discussion above, it is clear that ALD of dielectrics on Gr without pre-functionalization
and seed layers would be highly desirable. Previous investigations focused on thermal ALD on the
pristine (i.e., untreated and seed-layer-free) Gr surface showed that the uniformity of the deposited
films can be tailored, to some extent, by properly tuning the deposition parameters, especially the
temperature and the precursor residence time [42]. Furthermore, for similar deposition conditions,
the quality of the deposited films strongly depends on the Gr synthesis method and the Gr substrate.
Interestingly, in some specific cases, direct ALD deposition could be obtained on pristine monolayer Gr,
by exploiting the peculiar interaction of Gr with its substrate. As an example, uniform Al2O3 thin films
were grown by thermal ALD with H2O and trimethylaluminum (TMA) on monolayer CVD Gr when it
was residing on the native metal substrate (Cu or Ni-Au), and the enhanced nucleation was ascribed to
the presence of polar traps at the interface with the metal [43]. More recently, highly uniform Al2O3

films were obtained by seed-layer-free thermal ALD on highly homogeneous monolayer epitaxial
graphene (EG) grown on on-axis 4H-SiC (0001), with the enhanced nucleation behavior related to the
peculiar of the EG/SiC interface, i.e., the presence of the so-called buffer layer beneath Gr [44].

A comprehensive review of the research status on ALD for Gr devices integration has been recently
reported by Vervuurt et al. [28]. Hence, a general overview of this topic is out of the scope of the
present paper. The aim of our work is to provide a focused discussion about recent developments of
“in-situ” seeding-layer and seed-layer-free approaches for efficient atomic layer deposition of high-k
insulators, in particular Al2O3, on Gr for electronic applications.

Section 2 is devoted to the discussion of two-step ALD growth of high-k dielectrics on Gr with an
“in-situ” seed layer deposited at low temperature. This has been described in all its aspects, starting
from the seed layer optimization to the description of the morphological, structural, and electrical
properties of the deposited dielectric. The drawbacks related to this seed-layer based ALD process are
also discussed.

Section 3 is devoted to recent advances in the seed-layer-free ALD of oxides on Gr. The role played
by the deposition parameters, the Gr/substrate interaction, and the Gr thickness homogeneity on the
oxide nucleation onto pristine Gr is extensively discussed. The structural and electrical properties
of seed-layer-free Al2O3 grown on Gr/Cu or Gr/Ni substrates and on epitaxial graphene on silicon
carbide are presented.

2. Two-Step ALD Growth on Graphene with an “In-Situ” Seed Layer

The two-step ALD growth of metal oxides (including Al2O3, HfO2 and Ga2O3) with the “in-situ”
seed layer obtained by a low-temperature water-assisted process has been recently explored in several
experimental works [37–40,45].

This approach provides the initial physical adsorption, by the van der Waals interactions, of
H2O molecules on the Gr surface. The physisorbed H2O molecules behave as activation sites for a
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low-temperature deposited Al2O3, which in turn acts as seed layer of nucleation for a subsequent
standard ALD process. In order to ensure uniform physisorption of the H2O molecules on the Gr
surface, it is necessary to operate within an adequate temperature window [46], i.e., not too low to
avoid the water condensation and not too high to prevent the escape of molecules. As an example,
for the Al2O3 seed layer, obtained by using TMA and H2O precursors, the optimal temperature
window is 100–130 ◦C [46]. Besides the deposition temperature, other key parameters (such as the
precursor’s exposure and purging times) need to be optimized to achieve uniform coverage of Gr
with the seed-layer. Figure 1 shows the optimization study (carried out by atomic force microscopy,
AFM, measurements) of the deposition conditions for a 3–4 nm Al2O3 seed-layer on the surface of
CVD-grown Gr transferred onto a Al2O3−Si substrate [41]. For a fixed number of ALD cycles (60) at a
deposition temperature of 100 ◦C, optimal coverage was achieved using 100 ms exposure time to H2O
and TMA precursors, and 6000 ms purging time.
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Figure 1. Optimization study of the Al2O3 seed-layer deposition on CVD graphene (Gr) transferred
onto an Al2O3−Si substrate. Atomic force microscopy (AFM) images of the Al2O3 seed layer deposited
by 60 Atomic Layer Deposition (ALD) cycles at 100 ◦C using H2O and trimethylaluminum (TMA)
precursors, for incrementally long precursor exposure time (texp) and purging periods (tpurge): (a)
texp = 20 ms, tpurge = 2000 ms; (b) texp = 60 ms, tpurge = 4000 ms; (c) texp = 100 ms, tpurge = 6000 ms.
The root-mean-square roughness (RMS) estimated by the AFM images is also reported. Images adapted
with permission from [41]. Copyright of American Chemical Society, 2017.

As a matter of fact, the used temperature (100 ◦C) for the first deposition step is far below
the temperature range for optimal thermal ALD process of Al2O3 (200−250 ◦C), resulting in a poor
structural and electrical quality of the seed layer. For this reason, the low-temperature seed layer
deposition was completed with a second step, where the Al2O3 film growth is carried out at the
optimal temperatures [41]. Figure 2 shows the comparison of the AFM morphologies for the pristine
Gr monolayer transferred onto the Al2O3-Si substrate (Figure 2a), after the optimized seed layer
deposition at 100 ◦C (Figure 2b), and (Figure 2c) after the second ALD growth at 250 ◦C, resulting in a
final Al2O3 thickness of ~22 nm [41]. Both the seed layer and the complete film exhibit a conformal
coverage Gr without pinholes and a low surface roughness.

The electrical uniformity of the seed-layer and of the two-step Al2O3 film was also investigated
by conductive atomic force microscopy (C-AFM) [41]. The C-AFM experimental setup for nanoscale
resolution mapping of the current through the dielectric layer is illustrated in Figure 3a, whereas
the morphology and current maps for the seed-layer and the two-step Al2O3 on Gr are reported in
Figure 3b–e. Although the Al2O3 seed layer is characterized by a continuous morphology, it shows a
conductive behavior in the Gr wrinkle regions due to the insufficient structural quality related to the
low growth temperature. However, excellent electrical uniformity with negligible leakage current is
observed in the case of the final Al2O3 deposited by the two steps.
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adapted with permission from [41]. Copyright of American Chemical Society, 2017.
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Figure 3. (a) Schematic of the conductive atomic force microscopy (C-AFM) setup for mapping of
leakage current through the dielectric on Gr. Morphology (b) and current map (c) on the ~4 nm thick
Al2O3 seed layer with an applied bias of −1.5 V. Morphology (d) and current map (e) on the final 22 nm
thick film deposited by the two-step ALD process with an applied bias of −8 V. Images adapted with
permission from [41]. Copyright of American Chemical Society, 2017.

The water-assisted seed-layer deposition does not introduce defects in the Gr. Figure 4 shows
three typical Raman spectra collected on as-transferred CVD Gr and after each deposition step [41].
The spatial uniformity of the main Raman features (D, G, and 2D peaks) of transferred Gr on the Al2O3

substrate are reported in [47]. Negligible changes can be observed in the D peak intensity (related
to lattice disorder), indicating no changes in the defect density after the ALD process. The increase
of the ratio between the 2D and G peaks intensities (I2D/IG) and the red-shift of the G peak after the
seed-layer deposition and the second step Al2O3 deposition can be ascribed to a reduction of the
starting unintentional p-type doping of transferred CVD-Gr [37].
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The electrical characterization of top-gated Gr field effect transistors with the 22 nm Al2O3 top
gate dielectric (see schematic in Figure 5a) allowed to evaluate the dielectric properties (breakdown
dielectric field, permittivity) of the Al2O3 film on Gr, as well as the interface trap density at Al2O3/Gr
interface and the Gr carrier mobility [41]. A relative dielectric permittivity (ε = 7.45) was first evaluated
from capacitance-voltage measurements between the top-gate and source electrodes. Figure 5b shows
the gate leakage current IG as a function of the electric field across the gate oxide, from which a
breakdown field EBD = 7.4 MV/cm was estimated for the Al2O3 insulator on Gr. Finally, Figure 5c
shows the transistor’s transfer characteristics (ID–VTG at a drain bias VDS = 0.3 V) measured under
forward and backward sweep of VTG. A Gr field effect mobility of ~1200 cm2 V−1s−1 was obtained
from these electrical characteristics, after excluding the effects of the contacts and access resistances [41].
The hysteresis between the two curves in Figure 5c was ascribed to electron trapping by traps located
at Gr/Al2O3 interface and in the Al2O3 near-interface region. A total traps density of 4 × 1012 cm−2 was
estimated from the relative shit of the current minima. The interface traps can be related, in part, to
residual polymeric contaminations from the polymethylmethacrylate (PMMA) aided Gr transfer [15].
On the other hand, the near-interface traps can be due to the lower structural quality of the interfacial
Al2O3 seed-layer deposited at low temperature (100 ◦C).
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Figure 5. Electrical characterization of a Gr field effect transistor with 22 nm Al2O3 top-gate dielectric
deposited by a two-step ALD process. (a) Schematic representation of the device. (b) Transfer
characteristics (drain current ID vs. top-gate bias VTG at fixed drain bias VDS = 0.3 V) measured under
forward and backward sweep of VTG. The hysteresis between the two curves is ascribed to electron
trapping by Al2O3 near interface traps. (c) Gate leakage current IG as a function of the electric field E
across the top gate oxide. A dielectric breakdown field of 7.4 MV/cm is indicated by the vertical dashed
line. Images adapted with permission from [41]. Copyright of American Chemical Society, 2017.
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As an example, Zheng et al. [37] performed cross-sectional TEM analyses (see Figure 6a) for
direct imaging of the lower density of a 4 nm Al2O3 seed layer (deposited by 60 ALD cycles at 100
◦C) with respect to the upper 5 nm Al2O3 layer (deposited by 75 ALD cycles at 200 ◦C). An energy
bandgap Eg = 7.3 eV was evaluated from XPS energy loss measurements performed on the two steps
deposited Al2O3 (see Figure 6b), whereas a significantly smaller bandgap (Eg = 6.3 eV) was obtained
for a reference Al2O3 film deposited with only one step by 135 cycles at 100 ◦C (see Figure 6c).
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Figure 6. (a) Cross sectional TEM image and (b) XPS energy loss spectrum of an Al2O3 film deposited
on Gr by a two-step ALD process (60 cycles at 100 ◦C + 75 cycles at 200 ◦C). (c) XPS energy loss spectrum
of an Al2O3 film deposited on Gr by single low temperature step (135 cycles at 100 ◦C). Images adapted
with permission from [38]. Copyright of American Chemical Society, 2014.

As a conclusion of this section, the current status of the ALD of metal oxide on Gr with
water-assisted in situ seed layers is illustrated in Table 1, where the experimental conditions employed
by different authors and the characteristics of the deposited films are reported.

Table 1. Summary of state-of-the-art of ALD processes for the growth of metal oxides on Gr with a
water-assisted in situ seed layer.

High-κ Graphene
Type Substrate Method Seed Layer Temperature Thickness Graphene

Damage

Al2O3 [46]
Exfoliated

from
HOPG

SiO2

One-step
ALD

process
- 100 ◦C 11 nm No defects

HfO2 [37]
Exfoliated

from
HOPG

SiO2

Two-step
ALD

process

H2O-based Low
temperature HfO2

layer
170 ◦C/300 ◦C 1 nm/20–30

nm No defects

Al2O3 [38] Transferred
CVD-Gr SiO2

Two-step
ALD

process

H2O-assisted low
temperature
Al2O3 layer

100
◦C/200–250–300

◦C

1–5 nm/8–3
nm

Defects
introduction at

250 ◦C and 300 ◦C

Al2O3 [41] Transferred
CVD-Gr Al2O3

Two-step
ALD

process

H2O-assisted
low-temperature

Al2O3 layer
100 ◦C/250 ◦C 4 nm/18 nm No defects

Al2O3, HfO2
[45] CVD-Gr Gr/Cu

Two-step
ALD

process

H2O-assisted
low-temperature
Al2O3/HfO2 layer

90 ◦C/200 ◦C 10 nm Defects after
Gr-transferring

Al2O3
(seed-layer)
/Gd2O3 [40]

Transferred
CVD-Gr SiO2

Two-step
ALD

process

H2O-assisted
low-temperature

Al2O3 layer
100 ◦C/200 ◦C 5 nm/20 nm No defects

3. Recent Approaches to “Seed-Layer Free” ALD on Graphene

Although the water-assisted seed-layers, as the other seed-layers species, do not significantly affect
the sp2 structure of Gr, the seed-layer/dielectric stack results in a higher equivalent oxide thickness
compared to a single dielectric layer grown by a direct ALD process. Moreover, the low structural
quality of the seed-layer can be responsible for charge trapping phenomena, which adversely affect
the electrical performance of the Gr-based devices. For the above-mentioned reasons, direct ALD
processes of dielectric materials on Gr, without pre-functionalization and seed-layer deposition, would
be the highly desirable for device applications.
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Great attention has been paid towards the possible approaches to enhance the direct ALD
deposition of high-k dielectrics on the Gr surface. Some reports demonstrated that the uniformity of the
dielectric nucleation is heavily dependent on the ALD deposition parameters, mainly the residence time
of the precursors and the temperature. As an example, Aria et al. [42] have shown that, by optimizing
the pulse length and using a conveniently long precursor residence time, sub-2-nm thin homogeneous
aluminum oxide (AlOx) layers can be obtained, without intermediate steps of functionalization and
seeding, at a deposition temperature of 200 ◦C and on different substrates (Gr/Cu, HOPG, Gr/Ge,
Gr/SiO2). Figure 7a,b illustrates two different ALD processes adopted by the authors [42]. In the first
process (the typically employed one), the H2O and TMA were dosed alternatingly into the reaction
chamber by separated pulses and purging periods. In the second process (Figure 7b), a H2O/TMA
soaking period was introduced by stopping the flow to create a static atmosphere in the process
chamber for several seconds (thold) right after the H2O/TMA was dosed. Before the subsequent pulse,
the flow was continued, and the chamber was purged. The results of the AlOx growth on different
graphitic substrates using the two process modes are illustrated in Figure 7, showing a relatively low
surface coverage of ~57% on HOPG (Figure 7c), ~47% on Gr/Ge (Figure 7e), and ~38% on Gr/SiO2

(Figure 7g) using the first mode, and >97% coverage ((Figure 7d), (Figure 7f) and (Figure 7h)) using the
second one.
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Figure 7. Schematic illustration of two ALD processes (a) with the typical oxidant/precursor pulse
sequence and (b) with a modified sequence by the introduction of a soaking period after each pulse.
A denotes the oxidant (H2O vapor), and B denotes the metal precursor (TMA). AlOx nucleation on
highly oriented pyrolytic graphite (HOPG), Gr/Ge, and G/SiO2 at Tdep = 200 ◦C using the first and the
second pulse sequence. The first process yields a relatively low surface coverage of ~57% on HOPG (c),
~47% on Gr/Ge (e), and ~38% on G/SiO2 (g). The second process results in an almost perfectly conformal
AlOx nucleation with surface coverage of ~97.1% on HOPG (d), ~97.9% on Gr/Ge (f), and ~98.7% on
G/SiO2 (h). Images adapted with permission from [42]. Copyright of American Chemical Society, 2016.
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In some cases, the nucleation of amorphous or nanocrystalline metal oxides on Gr can be
obtained by properly tuning the deposition parameters. As an example, some atomic resolution TEM
investigations on the nucleation of TiO2 on single layer Gr have been recently reported, showing the
formation of an amorphous layer with uniform coverage was at a low temperature of 60 ◦C, and the
nucleation of ~2 nm nanocrystals at a high temperature of 200 ◦C [48].

Besides the process parameters, the peculiar interaction between Gr and the underlying substrate
greatly acts on the ALD nucleation and, consequently, the uniformity of the deposited films on Gr.
As an example, Dlubak et al. [43] observed, under the same ALD conditions, an improved Al2O3

coverage on monolayer CVD Gr laying on the native substrates (Cu, Ni-Au), as compared to monolayer
Gr transferred to SiO2. On the contrary, a poor coverage was found in the case of multilayer CVD Gr on
Cu or Ni-Au, similarly to the case of HOPG. Figure 8a illustrates the behavior of the Al2O3 coverage (%)
as a function of the ALD growth temperature in the different cases. The enhanced nucleation in the case
of monolayer CVD Gr on the native metal substrates was ascribed to the wetting transparency of Gr in
the form of monolayer [49] and to the presence of peculiar polar traps (generated by the 2D-lattice/metal
interactions) at the interface. As schematically illustrated in Figure 8b, the polar traps promote the
adsorption of water molecules, namely the oxygen precursor of a standard thermal ALD process and,
consequently, the nucleation degree on the Gr surface. Clearly, the number of Gr layers is a crucial
aspect for this growth mechanism. In fact, the strength of the electrostatic interaction between the water
precursor and the Gr polar traps is weakened for multilayer Gr due to a decreased transparency.
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Figure 8. (a) Comparison of the coverage of the Al2O3 grown by ALD on different Gr materials as a
function of the growth temperature. High coverage was observed on monolayer Gr on Cu or Ni-Au,
whereas low coverage was found on HOPG, monolayer Gr on SiO2, and multilayer Gr on Cu or Ni-Au.
(b) Schematic illustration of the enhanced adsorption of water molecules arising from interfacial polar
traps in the case of monolayer Gr/metal samples, as compared to the low adsorption for monolayer Gr
on passive substrates. Images adapted with permission from [43]. Copyright of AIP, 2012.

The direct growth of Al2O3 or HfO2 on Gr residing on the native metal substrate (Cu or Ni)
has the advantage of providing a protective layer for Gr, avoiding the direct contact of Gr with the
polymeric films typically used for the transfer process [15,45]. Furthermore, after transfer to an
insulating substrate, the oxide layer on Gr can be exploited as a passivation layer of back-gated Gr
transistors or as gate dielectric for top-gated Gr FETs. As an example, Cabrero-Vilatela et al. [15]
showed greatly reduced hysteresis and residual doping in the transfer characteristics of back-gated
Gr transistors with an Al2O3 protective layer. Although the ALD grown protective layer allows to
overcome the problems related to polymeric contaminations on Gr surface, the transfer of the oxide/Gr
stack from the native metal substrate to the target substrate still remains a critical step. In the early
work by Dlubak et al. [43], the transfer process was carried out by using spin-coated PMMA as a
support on top of the Al2O3/Gr stack, as illustrated in the scheme in Figure 9a. Raman spectroscopy
analyses on the Al2O3/Gr stack transferred on a SiO2 substrate (see Figure 9b,c) showed a very small
ID/IG peak ratio, i.e., very low defects density in monolayer Gr, indicating no significant degradation of
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Gr due to the transfer. More recently, comparative studies of different oxide protective layers (Al2O3,
HfO2, TiO2) grown by ALD onto Gr/Cu and of different transfer processes (i.e., with and without a
polymeric capping layer) have been reported [15,45]. Although transfer of the protective oxide/Gr
stack without any polymer capping was found to be possible (by etching the copper substrate followed
by gentle fishing of floating oxide/Gr), the use of an additional PMMA film on the oxide/Gr stack made
the handling easier [45]. Furthermore, these studies revealed that the protective oxide layer did not
contribute to a major overall strain of Gr [45].
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The above-mentioned issues related to the Gr transfer process can be avoided by using another
kind of Gr, namely epitaxial graphene (EG) grown by the thermal decomposition of silicon carbide
(SiC) [50–52]. In fact, compared to the CVD Gr grown on metals, the EG is directly grown on a
semiconductor/semi-insulating substrate and is ready for device fabrication. Due to its outstanding
electronic quality, monolayer EG on semi-insulating SiC has been employed to build quantum Hall
effect standards [53], and to demonstrate top-gated high frequency transistors (fT > 100 GHz) with
a 10 nm HfO2 gate oxide deposited by ALD [9]. In spite of its high cost, SiC is gaining increasing
interest as the material of choice for high power electronics, with applications in energy efficient power
conversion, automotive, and aerospace [54]. These strategic interests are also the driving forces leading
to the improvement of the quality of 4H-SiC substrates, nowadays available on 150 mm sizes with very
low defects density. The possibility of integrating both high power and high frequency (Gr-based)
devices on the same material platform represents an important advantage of the SiC/graphene system
for future electronic applications.

EG grown on the silicon face (0001) of SiC is characterized by single-crystal alignment with
the substrate and by the presence of an interfacial carbon layer (buffer layer) with partial sp3

hybridization [55,56]. These structural properties make the EG compressively strained, as compared to
transferred Gr [44]. Furthermore, the existence of electrostatic interactions between the EG and the
dangling bonds at the buffer layer/SiC interface is responsible for a high n-type doping (in the order
of 1013 cm−2) of the overlying Gr [57,58]. The EG thickness uniformity is a function of the growth
conditions, namely temperature and pressure [59], but also of the SiC morphology, in particular the
miscut angle [60], with better uniformity achieved for low miscut angle SiC. The EG grown under
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typical growth conditions (T = 1650 ◦C, p = 900 mbar in Argon gas) on “nominally” on-axis SiC (0001)
is commonly composed of homogeneous monolayer regions on the micrometer wide SiC terraces,
separated by narrow bilayer (2L) or trilayer (3L) strips at the step edges [59]. The direct ALD growth of
thin insulators (such as Al2O3 or HfO2) on such pristine EG samples typically resulted in a non-uniform
coverage [61,62], with poor or no oxide nucleation in the vicinity of the step edges, corresponding to
2L or 3L EG regions.

Recently, uniform Al2O3 layer deposition has been demonstrated by seed layer-free thermal ALD
at 250 ◦C using highly homogeneous monolayer EG (over >98% of SiC surface) grown under optimized
sublimation conditions [44].

Figure 10a shows a high resolution cross-sectional TEM image of the deposited Al2O3 film
(with ~12 nm thickness), characterized by an amorphous structure and uniform contrast on all
thickness, indicating a uniform density. Figure 10b shows a large scale (20 µm × 20 µm) AFM image
of the deposited Al2O3 film, showing a uniform and conformal coverage, with small depressions
corresponding to bilayer Gr areas. These features of the Al2O3 morphology are further elucidated in
Figure 10c, where the boundary region between the 2L and 1L areas is reported. Raman spectroscopy
measurements on EG before and after the Al2O3 deposition (see Figure 10d) indicated that the ALD
process does not significantly affect the doping and strain of the EG. For comparison, the same ALD
process was also performed on monolayer Gr transferred on on-axis SiC, showing an inhomogeneous
nucleation and 3D Al2O3 islands growth, similarly to the case of monolayer Gr on other substrates, like
SiO2. These results indicated that the uniformity of the ALD deposition of Al2O3 on the monolayer
EG is not related to the SiC substrate itself, but to the peculiar properties of the interface between the
EG and SiC, i.e., the presence of the buffer layer, responsible for a high n-type doping and strain of
EG. An enhanced chemical reactivity of Gr subjected to significant mechanical strain or doping has
been reported by several authors [63,64]. In particular, ab-initio DFT calculations showed an enhanced
adsorption energy for water molecules (working as co-reactant in the thermal ALD process) on highly
n-type doped monolayer Gr, indicating the doping of EG induced by the underlying buffer layer as the
origin of the excellent Al2O3 nucleation [44].
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Figure 10. (a) Cross-sectional TEM image of a 12 nm Al2O3 film deposited on monolayer epitaxial
graphene (EG) on SiC. (b) AFM morphology on 20 µm× 20 µm scan area, showing uniform and
conformal Al2O3 coverage on 1L Gr and small depressions on 2L Gr. (c) Higher resolution AFM
morphology, showing a compact Al2O3 film with small grains on top of 1L EG, and Al2O3 with larger
grains separated by small depressions (up to 2 nm) on the 2L EG region. (d) Typical Raman spectra of
virgin 1L EG and after the Al2O3 deposition. Images adapted with permission from [44]. Copyright of
Wiley, 2019.

The electrical quality of the Al2O3 film on EG was also evaluated by nanoscale resolution current
maps and local I–V analyses based on C-AFM [65], as illustrated in Figure 11a.
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Figure 11. (a) Schematic representation of the C-AFM setup for local current mapping through the
Al2O3 thin film deposited onto EG on axis 4H-SiC (0001). (b) Morphology and (c) current map (at a tip
bias of 6 V) of a sample area including both uniform Al2O3 on 1L EG and Al2O3 on a 2L EG patch.
(d) Two representative local current-voltage characteristics collected by the C-AFM probe on Al2O3 in
the 1L and 2L EG regions. Images adapted with permission from [44]. Copyright of Wiley, 2019.

Figure 11b,c reports a morphology and the corresponding current map, collected applying a tip
bias Vtip = 6 V on a sample area which includes both uniform Al2O3 on 1L EG and Al2O3 on a 2L
EG patch. While uniform low current values are detected in all the considered bias range through
the 12 nm Al2O3 film onto 1L EG, the presence of high current spots is observed in the 2L EG region.
Figure 11d illustrates two representative local current-voltage characteristics collected by the C-AFM
probe on Al2O3 in the 1L and 2L EG regions. While current smoothly increases with the bias for
Al2O3 on 1L EG, an abrupt rise of current is observed for Vtip > 6 V in the case of Al2O3 on 2L EG,
indicating the occurrence of local premature breakdown events probably due to the less compact Al2O3

structure and the lower average thickness in these regions. Assuming planar capacitor model for the
tip/Al2O3/EG system, a breakdown field EBD > 8 MV cm−1 was estimated for Al2O3 on 1L EG, whereas
EBD ≈ 6 MV cm−1 was evaluated for Al2O3 on 2L EG. Of course, when fabricating macroscopic devices
(capacitors or transistors) based on the Al2O3/EG stack, the 2L regions (even with a very low areal
density) represent the weaker points for device reliability, indicating the need to improve the EG
thickness homogeneity, up to 100% 1L coverage.

4. Conclusions and Outlooks

In conclusion, the main challenges related to the ALD of ultra-thin insulators on Gr for electronics
were discussed, with special attention to the state-of-the-art approaches employed to promote the
nucleation on the sp2 Gr surface. Recent developments in two-step ALD processes with “in- situ”
H2O-assisted seed-layer at low temperature were reviewed, as this approach presents many advantages
with respect to conventional ALD on Gr with ex-situ seed-layer deposition in terms of purity of the
grown film. The drawbacks of the seed-layer aided approaches in electronic applications, e.g., the
increase of the equivalent oxide thickness and charge trapping at the Gr/seed-layer interface, were also
discussed. Hence, due to their huge interest, the status of seed-layer free ALD growth of dielectrics on
pristine Gr was also reviewed. The approaches aimed at tailoring the deposited films uniformity by
tuning deposition parameters (e.g., temperature and the precursors residence time) were discussed.
Furthermore, the role played by the interaction of Gr with the underlying substrate on the ALD
nucleation was elucidated. In particular, the peculiar polar charges generated at the Gr/metal interface
are considered as responsible for very homogeneous ALD deposition on CVD Gr residing on the native
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metal substrates (Cu or Ni-Au). Highly uniform Al2O3 films were also obtained by seed-layer-free
thermal ALD on highly homogeneous monolayer epitaxial Gr on on-axis 4H-SiC (0001), where the
enhanced nucleation behavior is related to the buffer layer between the Gr and the underling substrate.

Several open challenges remain in the ALD of high-k dielectrics on Gr for electronics applications.
The majority of studies reported so far concern the ALD of binary metal-oxides on Gr, whereas
very limited work has been devoted to the development of ALD approaches for the growth of other
important insulators on Gr, such as the nitrides (including SiNx, AlN, etc.). To date, plasma assisted
CVD has been mainly employed for the integration of these insulators on Gr [66,67]. Although plasma
assisted-ALD allows a superior control on the uniformity of SiNx [68] and AlN [69] thin films, the
main issue is the plasma-induced damage or doping in Gr. Considering the increasing interest in the
integration of nitrides with Gr for optoelectronics and high frequency electronics [70], optimized ALD
approaches for the growth of these materials on Gr is envisaged for the next years.

Besides Gr, other 2D materials (including transition metal dichalcogenides, phosporene, silicene,
and other X-enes) need the integration of insulators for applications such as electronics, optoelectronics,
and sensing [71,72]. Additionally, in these cases, ALD has been employed as the method of choice for
low temperature deposition of thin high-k dielectric layers [73]. Detailed studies on the nucleation
mechanisms and seed layer approaches to achieve optimal coverage and dielectric properties on these
2D materials will be necessary in the next future.
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