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Abstract 

A heart affected by atrial fibrillation (AF) presents 

atrial cells that depolarize in many sites, generating a 

chaotic electrical activity. On the electrocardiogram 

(ECG), this activity reflects in the appearance of 

fibrillatory (F) waves, consisting of low-amplitude 

oscillations at 4-10 Hz. Aim of the present study is to 

propose an automatic AF identification method based on 

F-wave frequency analysis in 10 s ECGs. To this aim, 10 

s ECG from 90 healthy subjects (HSs) and 50 AF patients 

(AFPs) were considered. ECGs were processed by the 

segmented beat modulation method to reduce components 

in the F-wave band. Then, the power spectral density 

(PSD) was computed and the F-wave frequency ratio 

(FWFR), defined as the ratio between the spectral area in 

the F-wave frequency band and the total spectral area, 

was computed. FWFR ability to discriminate AFPs from 

HSs was evaluated by analyzing the area under the curve 

(AUC) of the receiver operating characteristic, and by 

computation of sensitivity, specificity and accuracy. 

FWFR values were higher in AFPs than in HSs (P<10-11). 

AUC was at least 85%, whereas sensitivity, specificity 

and accuracy were at least 84%, 69% and 81%, 

respectively. In conclusion, F-wave frequency evaluation 

by FWFR represents a promising clinical tool to 

automatically identify AF. 

 

 

1. Introduction 

Atrial Fibrillation (AF) is a supraventricular 

arrhythmia that is expected to afflict millions of people 

worldwide by 2060 [1]. In normal sinus rhythm, a cardiac 

contraction regularly occurs thanks to an electrical 

impulse that auto-generates in the sinus atrial node, the 

native pacemaker, and then propagates in the heart 

through a specific pathway. From the sinus atrial node, 

the impulse propagates in atrial cells before reaching the 

atrioventricular node, where it reorganizes before 

spreading through ventricular cells. When stimulated by 

an electrical impulse, each cardiac cell initially 

depolarizes, generating its contraction, and then 

repolarizes, generating its relaxation. Thus, the combined 

electrical activity of all cells in the heart generates its 

organized contraction and relaxation. The 

electrocardiographic signal (ECG) is a graphical 

representation of the electrical activity of all cardiac cells. 

Normally, it’s a pseudo periodic signal characterized by 

the sequence of typical waveforms that are the P wave, 

which reflects atria depolarization; the QRS complex, 

which reflects ventricles depolarization and hides atria 

repolarization; and the T wave, which reflects ventricles 

repolarization.  

In a heart affected by AF, the sinus atrial node is no 

longer able to trigger atrial depolarization [2] so that atrial 

cells start to depolarize in many sites, generating a chaotic 

electrical activity. As a consequence, heart rhythm during 

AF is, on average, faster than sinus rhythm, and much 

more irregular [2]. In the ECG, AF is reflected by the P-

wave disappearance and by appearance of the fibrillatory 

(F) waves, which are low-amplitude and high-frequency 

oscillations around baseline.  

Visual [3] as well as automatic algorithms [4–7] for 

AF identification from ECG typically rely on the P-wave 

absence and the irregularity of the rhythm. In 

computerized applications, however, this approach, has 

several limitations. P-wave absence is a condition 

reflected also in other arrhythmias (e.g. PVC). P-wave 

segmentation is still challenging due to P-wave low 

amplitude. Automatic algorithms are usually 

implemented with the aim of finding the P-wave and do 

not confirm the P-wave absence [8]. Eventually, 

automatic quantification of the rhythm irregularity needs 

long-term ECGs, so that algorithms based on this 

criterion cannot be applied to standard 10 s ECG.   

Aim of the present study is to propose an automatic AF 

identification method based on F-wave frequency 

analysis in 10 s ECGs. Indeed, F-wave frequency content 

is mostly included in the 4-10 Hz band [9], which does 

not contain ECG fundamental frequency (typically falling 

in the 1-2 Hz band). Previous studies have investigated F-

wave frequency content [9,10], but not to provide an 

automatic tool to support AF diagnoses.  
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2. Data and Methods 

2.1. Clinical Data 

Clinical data consisted of 10 s ECGs from 90 healthy 

volunteer subjects (HSs) and 50 AF patients (AFPs).  

HS ECGs were extracted from the “The ECG-ID 

Database” by Physionet [11,12]. Specifically, they 

represent the first 10 s of the first acquired ECG, after 

filtration for noise removal of each subject [11,12]. Signal 

sampling frequency is 500 Hz.  

AFP ECGs were extracted from “The AF Termination 

Challenge Database” by Physionet [12,13]. Specifically, 

they represent the first 10 s of 20 recordings from the 

learning set and of 30 recordings from the test set A, 

selected in order to have only one ECG for each patient. 

All signals were originally sampled at 128 Hz and 

annotated for R-peak localization.  

 

2.2. Data Processing and Feature 

Extraction 

HS ECGs were resampled at 128 Hz (to match AFP 

ECGs sampling frequency) and submitted to the Pan-

Tompkins’ algorithm [14] for R-peak detection. RR-

interval sequences of both groups were used to compute 

heart rate (HR; bpm), computed as 60/mean RR interval, 

and heart-rate variability (HRV; ms), computed as RR-

interval standard deviation.  

ECGs of both groups were preprocessed for noise 

(bidirectional 3rd-order Butterworth filter; cut-off 

frequencies: 0.5-45 Hz) before being submitted to the 

segmented-beat modulation method (SBMM)[15,16]. 

SBMM is a template-based filtering technique that 

permits to extract the fundamental ECG waveform 

(FECG) from an ECG possibly affected by baseline 

wanderings, respiration modulation, ECG-morphology 

variability and F waves, the summation of which 

represents the residual ECG waveform (RECG). Thus, 

RECG can be obtained as follow: 

RECG = ECG – FECG.  (1) 

Power spectral density (PSD) of RECG was computed 

according to the following four methods: 

• PSD estimation via periodogram method (FFT). It is 

computed by using the Fast Fourier Transform, with a 

rectangular window (13.3 dB attenuation). 

• PSD estimation via Welch’s method (WLC). RECG 

was divided into 8 segments with 50% overlap. The 

periodogram was computed for each segment using a 

Hamming window (42.5 dB attenuation) and all the 

resulting periodograms are averaged to compute the 

final PSD estimation.  

• PSD estimation via Yule-Walker's method (YWK). 

The PSD was estimated using a 25th-order 

(experimentally determined) autoregressive model.  

• PSD estimation via the Thomson multitaper method 

(THM). The PSDs of mutually orthogonal windows 

(tapers) were averaged and opportunely weighted with 

their eigenvalues. The tapers are Slepian sequences 

(time-half bandwidth equal to 4).  

Presence of F-wave component in each spectrum was 

quantified by computation of the F-wave frequency ratio 

(FWFR), a new spectral index defined as the ratio 

between the spectral area in the F-wave frequency band 

(4-10 Hz) and the total spectral area. 

 

2.3. Statistics 

HR, HRV and FWFR distributions were described in 

terms of 50th [25th; 75th] percentiles and compared using 

the Wilcoxon Rank-Sum test for equal medians. 

Statistical significance was set at 0.05. 

The receiver operating characteristic (ROC) was analyzed 

in order to assess FWFR clinical utility in discriminating 

AFPs from HSs. Area under the curve (AUC) and 95% 

confidence interval (CI) of different ROCs were 

evaluated and compared using the DeLong’s test. The 

classification error (ε) was defined as: 

ε = 2∙FN+FP,    (2) 

where FP and FN are false-positive and false-negative 

classifications, respectively. Sensitivity (SE), specificity 

(SP) and accuracy (ACC) were computed based on the 

FWFR optimal threshold (OTHR), determined in 

correspondence of the ROC point that minimized ε.  

 

3. Results 

All considered features were significantly higher in 

AFPs than in HSs (Table 1). FWFR-based features, 

however, differed more significantly (lower P value) than 

HR and HRV. 

 

Table 1: Features comparison between groups 

(50th [25th; 75th] percentiles). 

 HSs AFPs P-value 

HR (bpm) 
76 

[69;85] 

86 

[72;96] 
<10-3 

HRV (ms) 
48 

[29;77] 

121 

[95;196] 
<10-11 

FWFR (%) 

FFT 
19 

[14;25] 

34 

[28;42] 
<10-11 

WLC 
19 

[13;27] 

35 

[29;42] 
<10-11 

YWK 
20 

[15;26] 

36 

[31;44] 
<10-11 

THM 
18 

[13;25] 

35 

[28;42] 
<10-11 
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Figure 1. Examples of data processing in a HS (left 

column of panels) and an AFP (right column of panels). 

PSD area in F-wave frequency band (4-10 Hz) is higher 

in the AFP (red area) than in the HS (blue area). 

Table 2. ROC analysis 

 FFT WLC YWK THM 

AUC (%) 86 85 86 86 

CI (%) 80-93 78-93 79-93 79-93 

OTHR (%) 25 23 27 25 

SE (%) 84 90 84 86 

SP (%) 78 69 77 74 

ACC (%) 82 82 81 82 

 

Figure 2. ROCs for each PSD estimation method. Stars 

identify points in which the OTHRs were determined.  

 

Figure 3. FWFR distributions for each PSD estimation 

method.  

Figure 1 depicts representative examples of data 

processing in a HS and an AFP. In RECG of the AF, 

presence of F-waves is clearly visible and reflected in 

spectral peaks in the 4-10 Hz band. Results relative to 

ROC analysis are reported in Table 2 and depicted in 

Figure 2. All AUC values were at least 85%, and not 

statistically different from one another. Figure 2 and 

Figure 3 show OTHR determination. Accordingly, SE, SP 

and ACC were at least 84%, 69% and 81%, respectively. 

 

4. Discussion 

The present study proposed automatic AF 

identification based on F-wave frequency analysis in 10 s 

ECGs. At first the ECG was processed using the SBMM 
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[15,16] in order to reduce as much as possible ECG 

frequency content in the F-wave band [9,10]. Then, PSD 

estimates were obtained using four different methods: 

FFT, WLC, YWK and THM. Eventually, a new spectral 

index, the FWFR, was quantified to discriminate between 

HSs and AFPs. This approach is alternative to what found 

in literature [4-8], and was specifically designed not to 

rely on the P-wave identification and the rhythm 

irregularity. Indeed, automatic determination of the P-

wave absence is still challenging (failure in detecting a P 

wave doesn’t necessarily imply P-wave absence), while 

the rhythm irregularity, although significantly different 

between HSs and AFPs (Table 1), is not specific for AF 

but may associate to other types of arrhythmia. 

FWFR power in discriminating AFPs from HSs was 

high (P<10-11; AUC≥85%) for all PSD methods. In order 

to provide a classification criterion possibly usable in 

clinics, OTHR was determined by minimizing an error 

function (Eq. 2) consisting in a weighted summation of 

FN and FP. Specifically, FP weight was set at half of FN 

one, since in clinical practice is more costly (in terms of 

clinical outcome) to detect an AFP as HS than vice versa. 

Accordingly, SE (≥84%) was always higher than SP 

(≥69%).  

Although results obtained by using all four methods 

were all good and comparable (not statistically different 

from one another), we tend to prefer FFT-based approach 

not only for its simplicity, but also because high values of 

SE (84%) and ACC (82%) associate to the highest value 

of SP (78%) and the narrowest CI (70-93%). However, 

before a definitive identification of the best PSD method 

for AF identification by FWFR, some optimization 

procedures on the methods should be performed. 

Examples of these procedures include best window 

selection for FFT, application of zero-padding to increase 

PSD resolution, and others.  

Overall, automatic AF identification by spectral 

analysis of F waves through FWFR evaluation represents 

an innovative and alternative tool to support diagnoses of 

atrial fibrillation. Its applicability to 10 s ECG combined 

with the neatness of FWFR computation are strengths that 

facilitate its introduction in the cardiologic clinical 

practice.  

 

5. Conclusion 

F-wave frequency evaluation by FWFR represents a 

promising clinical tool to automatically identify AF.  
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