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ABSTRACT The transformer fault diagnosis based on dissolved gas analysis is greatly affected by the
uncertainties existing in measured data during oil sampling, handling and storage. This work aims to
develop an efficient code matrix based on dissolved gas percentages for accurate fault diagnosis considering
measurement uncertainties. Fuzzy system is utilized to produce the rules that map the limits of gas ratios for
different fault types. Each gas percentage range is divided into three regions represented by three fuzzy
memberships. The fuzzy system is then developed to relate the gas percentages to the fault type. The
membership limits are then optimized by using heuristic algorithms in order to maximize the accuracy.
Hybrid Grey Wolf Optimization (HGWO) algorithm is utilized to produce the diagnostic code matrix. The
proposed code limits the impact of measurement uncertainties on the output fault diagnosis. Different levels
of measurement uncertainties up to 20% are considered to validate the effectiveness of the new code in
improving the diagnostic accuracy. The accuracies during the training and testing processes attained 97.45%
and 95.45%, respectively, with the maximum uncertainty level of 20%. Moreover, randomly selected case
studies representing various fault types are investigated using the proposed method. For each case study,
various levels of uncertainties are imposed on the original data. The proposed method proved its easiness
towards diagnosing transformer faults and robustness against measurement uncertainties.

INDEX TERMS Power transformers, dissolved gas analysis, heuristic algorithms, fuzzy systems, measure-
ment uncertainty.

I. INTRODUCTION
Power transformers represent the vital power system equip-
ment. The accurate diagnostic accuracy of transformer faults
is an important topic for power system reliability and con-
tinuity. The early detection of transformer faults is bene-
ficial in planning the maintenance schedule and avoiding
unscheduled load curtailment and fire hazards. Nowadays,
transformers operate near their full capacity due to rapid
increase of load demand. This leads to an increase in the
electrical, thermal and chemical stresses on the transformer
insulation [1], [2]. The stresses can incept faults inside the
transformer such as overheating, partial discharge, and arc-
ing. Lack of proper diagnosis of these faults can cause severe
damage and eventual failure of the transformer. Therefore,
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several methods were proposed for accurate fault diagno-
sis in transformers based on the analysis of insulating oil.
Dissolved gas analysis (DGA) is the most used method for
fault diagnosis [3], [4]. DGA is based on the correlation
between dissolved gases in the oil and corresponding fault
type and severity. The most common faults in transformers
are classified into six types that are partial discharge (PD),
low energy discharge (D1), high energy discharge (D2), low
temperature fault (T1), medium temperature fault (T2), and
high temperature fault (T3). The most common dissolved
gases generated under these faults are five combustible gases;
hydrogen (H2), methane (CH4), ethane (C2H6), ethylene
(C2H4) and acetylene (C2H2). In addition, there are two other
gases responsible for diagnosing degradation of cellulose
insulation. These gases are carbon monoxide and carbon
dioxide. Since cellulose degradation is specific in its gas
generation, it can be dealt separately by diagnostic methods.
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Many conventional methods were proposed to identify the
transformer faults based on DGA such as key gas method [1],
ratio methods [5]–[7], and graphical methods [8]–[12]. Some
of these methods were targeting diagnosis of main fault types
in transformer oil and others were developed to include cel-
lulose degradation. These conventional methods are limited
in their diagnostic accuracy.

Artificial intelligent methods were widely used to develop
DGA based diagnosis with high accuracy. The first example
of these methods was the artificial neural network (ANN),
in which much training data were used to adapt the network
for DGA diagnosis [13]–[16]. The input for ANN can be
fuzzified gas concentrations [13], certain gas ratios [14]–[16],
or others [16], [17]. The second example of artificial intel-
ligent methods is the fuzzy logic system, in which several
If-Then rules were implemented to correlate DGA with the
proper diagnosis [18]–[20]. Also, support vector machine
(SVM) was proposed as an example of artificial intelligent
methods with a slight increase in the diagnostic accuracy
compared to others [21]–[23]. In addition, other artificial
intelligent methods have been introduced to increase the
diagnostic accuracy such as adaptive neural fuzzy inference
system [24], gene expression programming approach [25],
and Bayesian networks [26].

The uncertainties and noises in measured DGA data affect
strongly the ability of DGA methods on transformer fault
diagnosis. In most methods, the diagnostic accuracy depends
on the numeric limits and the boundaries of gas contents
within DGA data. Therefore, uncertainties associated with
measured data may lead to serious deterioration in diagnostic
accuracy, and consequently, these uncertainties should be
considered during the evaluation process of the diagnostic
method. In [27], two SVM based algorithms were developed
using fuzzy c-means clustering and kernel fuzzy c-means
clustering methods to consider the possible noises, outliers
and imbalances in measurements without producing clear
curing code or numeric validation. In addition, the tech-
nique developed in [27] needs special programing, making
it impractical for the engineers at transformer stations. Thus,
more investigations are required to develop clear and robust
methodology for accounting such uncertainties in measure-
ments.

This work aims to develop DGA based diagnostic method
robust against measurement uncertainties using fuzzy logic
system and heuristic optimization techniques. The main tar-
get is to create a tabulated code that relates the percentages
of dissolved gases having different levels of measurement
uncertainties to the fault type.

The problem is formulated as a constrained optimization
problem that need to be solved using heuristic optimiza-
tion (HO) techniques. Hybrid GreyWolf Optimizer (HGWO)
technique was used to attain the global solution fast that
achieves the best diagnostic accuracy. The fuzzy system
is used to relate the actual percentages of gases with the
fault types utilizing the membership functions for various
percentages and the corresponding diagnostic rules. Then,

HGWO technique is used to specify the division limits of
gas percentages and the fault type aiming to maximize the
diagnostic accuracy. Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) was also used to validate that the
obtained solution is the global one.

A 407 datasets are used to test the proposed method. These
datasets were collected from Egyptian Electricity Utility and
literatures [28]–[31]. The obtained code is implemented con-
sidering different degrees of uncertainties in the collected
datasets, 5%, 10%, 15%, and 20%. The optimal limits of
gas percentages are converted into code tree that can be
easily used to specify the fault type. The results of the pro-
posed method were compared to other methods to validate its
robustness against uncertainty.

II. UNCERTAINTY AND RESEARCH MOTIVATION
DGA based diagnostic methods of transformer faults are
strongly affected by the exact measurement and analysis of
dissolved gases. Currently, the most adopted DGA process is
the offline one, which is composed of three main procedures.
The first procedure is extracting the oil sample from the
considered transformer. The second procedure is separating
the gas phases of the oil. The third and last procedure is diag-
nosing the fault type by any relevant method. Oil sampling is
carried out using special syringes. Then, samples are stored
and transferred to the laboratory for testing. During storage
and transfer, many factors affect gas concentrations such as
temperature and storage time. Several techniques were used
for gas separation. The most critical factor that affects gas
concentrations during separation is the air bubbles. The exis-
tence of air bubbles causes a significant reduction in dissolved
gases due to the diffusion of gases into the air bubble and
leaving the oil [32]. All these factors act towards increasing
uncertainties in input gas concentrations and reducing diag-
nostic accuracy. So, it is important to consider these factors
in developing any DGA based diagnostic method. According
to [33], the storage and temperature can cause uncertainties
up to ±14% and uncertainties due to measurement accuracy
are within ±5%. Accordingly, overall uncertainties in DGA
data can be considered as ±20%.

Regarding conventional DGA methods, they have already
limited accuracy. So, any further decrement in the accuracy
due to uncertainties in the input data will make these meth-
ods unpractical. For ANN, SVM, or any similar methods,
they tend to be a black box adapted for certain dataset.
Accordingly, they lack a proper representation of uncertain-
ties. For fuzzy logic, it can accommodate a proper infras-
tructure for dealing with uncertainties if proper membership
functions have been built and enough rules has been imple-
mented [34], [35]. To the best of our knowledge, none of the
previous DGA diagnostic methods considered uncertainties
in their implementation.

III. PROPOSED METHOD
As discussed above, the fuzzy logic system can deal effec-
tively with uncertainties in input data if proper membership
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FIGURE 1. The proposed algorithm for new code preparation.

functions have been built and sufficient number of rules has
been implemented. Accordingly, the main structure of the
proposed method is built based on the fuzzy logic system.
Percentages of the dissolved gas concentrations vector (R)
in each dataset are used as input indices for predicting the
corresponding fault types (F) as follows:

R =


R1
R2
R3
R4
R5

 = 100×


H2
/
TCG

CH4
/
TCG

C2H6
/
TCG

C2H4
/
TCG

C2H2
/
TCG

 (1)

TCG = H2 + CH4 + C2H6 + C2H4 + C2H2 (2)

where, TCG is the total amount of dissolved combustible
gases in the transformer oil.

The first stage towards limiting the impact of uncertainties
is the use of the percentage gas, where uncertainty value
becomes normalized by the overall concentration of the total
combustible gases. Different uncertainty levels were ran-
domly assumed in the input data up to 20% as declared in the
previous section. The uncertainty was generated by applying
a random error or noise vector to the original vector [36]. The
percentage error (E) can be expressed as follows:

E = x × r (3)

where r is a random vector ranging between 0 and 1 and x
is the required step of uncertainty levels, which is taken as
5% in this study. This error is then added to an offset K to
increase the uncertainty level. As an example, ifK is specified
as 10%, the total uncertainty level after adding E will be 15%.
Different degrees of uncertainties in the collected datasets are
implemented in this study ranging between 5% and 20%with
a step of 5%. Based on the error vector in (3), a new vector of
uncertain data (U) is created as follows [37]:

U = [1± (E + K )]× R (4)

The original and modified data were combined together to
form the input data to the proposed methodology. The five

gas percentage values were used to specify the fault type. The
proposed code was obtained by dividing each gas percentage
into three regions (three memberships) with the correspond-
ing two limits between 0% and 100% as shown in Fig. 1.
Therefore, considering the five gas percentages and the limits
of each gas percentage (0, RA, RB, 100), the membership
limits matrix (RL) can be written as follows:

RL =


0 R1A R1B 100
0 R2A R2B 100
0 R3A R3B 100
0 R4A R4B 100
0 R5A R5B 100

 (5)

The five gas percentages with three ranges create 243 dif-
ferent rules which were used to build the membership func-
tions of the fuzzy system. These rules represent the initial
overall code matrix during the optimization process. Using
this large number of rules is intended to cover different
possibilities of input-output combinations. Then, the datasets
were processed using the fuzzy logic system to estimate
the fault type, by representing the different regions of each
gas concentration using membership functions. The fuzzifi-
cation process is the second stage towards limiting uncer-
tainties, where there will be a small shift in fuzzified value
after uncertainty. So, any violation of a certain rule due
to uncertainty will be compensated by other rules. Finally,
HGWO was used for optimizing the limits of membership
functions and the fault type corresponding to each rule
aiming to maximize the diagnostic accuracy considering
both original data and uncertain ones. GA and PSO algo-
rithms were also used to guarantee attaining the optimal
solution.

The main steps of the proposed algorithm are pre-
sented in Fig. 1. They contain three main processes as
follow:

A. The original datasets were collected, and new datasets
were created based on the expected random uncertainty
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FIGURE 2. Schematic diagram for fuzzy inference system.

in the gas concentrations by using (4). Furthermore,
the percentages of the dissolved gas concentrations
were calculated in each set.

B. Sugeno type fuzzy inference system (FIS) was used
to relate the dissolved gas percentages and the fault
types through set of rules which covering all available
combinations of membership functions with the limits
specified in Equation (5). HGWO was used to con-
tinuously update the FIS by modifying the member-
ship limits and fault types corresponding to each rule
in the direction of diagnostic accuracy maximization.
Therefore, the actual percentages of the dissolved gas
concentrations (inputs) are used to determine the code
matrix (rules) based on the membership function lim-
its, which were provided from the HGWO as shown
in Fig. 2. The fault types are marked 1, 2, 3, 4, 5 and
6 to represent the fault types PD, D1, D2, T1, T2, and
T3, respectively.

C. The objective function (Accuracy) was calculated
using the percentage of the number of true estimated
fault types by the proposed model (Ntrue) and the total
number of samples (Nall). The sum of the width of
membership functions of each gas percentage must
be 100. The optimal limits of gas percentages were
specified by using the optimization process.

IV. OPTIMIZATION ALGORITHMS
The problem was formulated as a constrained objective func-
tion. Three optimization algorithms were used to obtain the
optimal gas percentage limits, thereby formulating the code
tree for accurate fault diagnosis. The fitness function was the

diagnostic accuracy.

Maximize :

f (x) = 100× Ntrue
/
Nall (6)

Subject to :

RiA ≤ RiB ≤ 100 i = 1, 2, . . . 5 (7)

A. THE BASIC GREY WOLF OPTIMIZER (GWO)
GWO is a population based optimization algorithm which
simulates the social behavior of grey wolves [38]. Equa-
tions (8) to (15) present the mathematical model which
includes the hunting process based on the best three positions
of grey wolves (xα, xβ , xδ). Random search behavior was
used to avoid falling into local minimum position by decreas-
ing the parameter a(.) from 2 to 0. In the current study, each
individual represents the membership matrix limits (RL) in
(5) and the fault types corresponding to all 243 rules described
in Fig. 2.

xk+1 = (x1 + x2 + x3)
/
3 (8)

x1 = xα − a1dα (9)

x2 = xβ − a2dβ (10)

x3 = xδ − a3dδ (11)

dα =
∣∣∣c1xα − xk ∣∣∣ (12)

dβ =
∣∣∣c2xβ − xk ∣∣∣ (13)

dδ =
∣∣∣c3xδ − xk ∣∣∣ (14)

a(.) = 2lr1 − l, c(.) = 2r2 (15)
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where xα , xβ , and xδ are the most three fittest positions of the
prey in the k iteration, x1, x2 and x3 are the modified positions
of the grey wolf, l is decreased from 2 to 0, and r1 and r2 are
random numbers between 0 and 1.

The basic GWO failed to catch the optimal solution where
the simulation was settled frequently at a local minimum
solution. Therefore, the algorithm was modified to enhance
the ability of GWO to settle at the optimal solution. Several
methods have been used to improve the convergence per-
formance of the GWO [39]. Modifications were applied to
improve the ability of GWO to discover the search area and
converge at the optimal solution.

B. HYBRID GREY WOLF OPTIMIZER (HGWO)
HGWO with GA was developed to improve the exploration,
the exploitation and diversity [39]–[43]. In this work, addi-
tional loop of PSOwas added to keep the gained experience of
the HGWO with GA by memorizing the local best positions
and global best position [30]. The individuals modify their
positions using the velocity (vk+1) based on the distance
between the position of individuals, their local best positions
(xklb) and global best position (xα). The best three positions
of grey wolfs are then memorized to be used in the next GA
loop.

xk+1 = xk+1 + χvk+1 (16)

vk+1 = wvk + Ar3
(
xklb − x

k+1
)
+ Br4

(
xα − xk+1

)
(17)

w = wmax − (wmax − wmin)× (k
/
max.Iteration) (18)

where A and B are constant between 1.2 and 2, r3 and r4 are
random numbers between 0 and 1, and χ is a construction
factor to control the diversity.

GA is a heuristic iterative optimization technique
which tends to modify the individuals based on the
selection, crossover and mutation processes using (19)
and (20) [5], [44]. Fittest individuals (parents) were used to
generate new solutions (offsprings). The better individuals
survive and represent new parents for the next iteration. The
GAmechanismwas applied on the local best positions gained
by PSO individuals to keep diversity and discover new search
areas around the best solution. The target is to modify xα,xβ ,
and xδ to improve the ability of theGWO to obtain the optimal
solution [45].

xk+1ij = xklj (19)

xk+1ij = xkij + γ ∗(x
max
ij − x

min
ij ) (20)

x =
[
R1A R1B · · · R5B F1 · · · F243

]
(21)

where γ is a random generated number between 0 and 1, x is
the vector of variables, xmaxij and xminij are the maximum and
minimum limits, R1A to R5B are the gas percentage limits,
and F1 to F243 are the proposed fault types for all rules.
The pseudo code of the hybrid GWO is described as

follows:

Algorithm 1 Hybrid Grey Wolf Optimizer Algorithm
Initialize GWO, PSO and GA parameters
Initialize the population X (i = 1, 2 . . . n) of the HGWO
Calculate the individual fitness values by (5)
Record the best three individuals (xα, xβ,xδ)
While (t < maximum iteration number)
Update the position of all individuals of PSO by (15)
Check the variable limits
Calculate the fitness value of individuals by (5)
Update the best three individuals (xα, xβ,xδ)
Modify the position of GA individuals by (18)-(19)
Check the variable limits
Calculate the fitness values by (5)
Update the best three individuals (xα, xβ,xδ)
Update the position of GWO individuals by (7)-(14)
Check the variable limits
Calculate the fitness values by (5)
Update the best three individuals (xα, xβ,xδ)
Check the satisfaction of stopping criteria
t = t + 1
Update a, c, d
End While
Return the best individual, xα,

TABLE 1. Parameters of HGWO.

V. CODE IMPLEMENTATION
The new codes for transformer fault diagnostics were pre-
pared using the membership limits obtained from the opti-
mization process. The parameters of HGWO, PSO, and GA
with 30 population and 2000 maximum iterations are pre-
sented in Table 1.

The collected data were shuffled and randomly divided into
75% to perform the optimization process and the remaining
25% are used for testing purposes. The variables are the
10 membership limits as in (5) and the fault types corre-
sponding to all possible 243 fuzzy rules which were obtained
from the combination of the five gas percentages with three
memberships. Each of the five gas percentages had three
codes [1, 2, 3] based on the limits from zero to 100% as shown
in Fig. 2. The available 243 rules start from [1 1 1 1 1], [1 1
1 1 1 2], [1 1 1 1 3] to [3 3 3 3 3]. The target is to specify
the variables that maximize the accuracy of fault diagnosis.
Among these 243 rules, there will be operating fuzzy rules
resulted from the optimization process based on the correct
allocation of input data (gas percentages) and actual fault
types.
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TABLE 2. The diagnostic accuracy of the GWO and HGWO algorithms.

TABLE 3. The gas percentages coding and limits.

The optimization process was repeated many times using
HGWO and basic GWO. The results validated the ability
of HGWO to obtain the optimal solution each time. On the
other hand, basic GWO is settled at different local minima
due to the large number of variables in the problem under
investigation which combined continues variables (member-
ship limits) and discrete ones (fault types). Table 2 presents
the diagnostic accuracy of the basic GWO and HGWO opti-
mization algorithms. The results illustrate the effectiveness
of HGWO to detect the transformer fault types with different
uncertainty levels compared to the basic GWO.

The optimization process was carried out many times using
HGWO, GA, and PSO. Each time, HGWO proved not only to
catch the optimal solution but also to be the fastest algorithm.
The same optimal solution was obtained by using the three
optimization techniques with the same diagnostic accuracy.
Equation (22) presents the obtained optimal limits of gas
percentages and Table 3 presents the corresponding ranges
of the membership functions.

RL =


0 31.68 51.62 100
0 55.00 80.55 100
0 18.09 24.98 100
0 10.45 40.00 100
0 02.45 76.69 100

 (22)

FIGURE 3. Developed code tree formulation.

After optimization process, the operating rules became
39 rules formed in a code tree to specify the fault types in
relation to the five percentages of dissolved gas concentra-
tions as shown in Fig. 3. The use of the code tree starts
with determining the code of R1 towards R5 based on the
membership limits at Table 3 and ends by the corresponding
expected fault type expressed as a code matrix. The overall
fault diagnostic accuracy of the optimal solution was 96.95%
considering both training and testing datasets. By analyzing
the code tree, the allocation of fault types with the actual
data without uncertainties belongs to 34 branches which
covers all fault types. This means that 5 fuzzy operating
rules became operative to account for the uncertainty in
measurements.

As a case study to illustrate step by step the usage of the
code tree, a sample of data was used with five gas values
of 37800, 1740, 249, 8 and 8 corresponding to H2, CH4,
C2H6, C2H4 and C2H2, respectively. The total dissolved gas
contents were 39805. The percentages of gases are 94.96%,
4.37%, 0.625%, 0.02% and 0.02%, which, representing R1,
R2, R3, R4 and R5, respectively. The fault diagnostic starts
with creating the code matrix corresponding to gas percent-
ages according to the limits in Table 3. The code matrix is
[3 1 1 1 1] based on the membership limits. By tracking the
branch in the code tree starting from R1 at 3, R2 at 1, R3 at 1,
R4 at 1 and R5 at 1, the branch ended by the corresponding
fault type that can be easily found as partial discharge (PD)
as shown in Fig. 4. This can be visualized by the rule viewer
of FIS depicted in Fig. 5. The code tree formulation can be
easily used by relevant engineers without any complicated
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FIGURE 4. Example for using the code tree for fault type estimation.

FIGURE 5. Rule viewer of the developed FIS model.

programming or data processing. For further easiness, the
developed code tree matrix in Fig. 3 was converted into
open access MATLAB code to facilitate the utilizing of the
proposed method by engineers at the transformer station.
This code was submitted as supplemental material with this
paper.

TABLE 4. Sample data for code tree application and fault diagnosis.

VI. RESULTS ANALYSIS AND VALIDATIONS
A. CASE STUDIES
Table 4 illustrates the code matrix formulation for randomly
selected five case studies from the original data representing
various fault types. The code corresponding to each percent-
age of dissolved gas concentration was obtained by compar-
ing the values with optimized membership limits in Table 3.
Then, the obtained code matrix was used to specify the
expected fault type using code tree starting from the center
at R1 towards the fault type as described above in Fig. 3. It is
clear that the proposed method performs well for the original
datasets.

The ability of the proposed code to consider the uncer-
tainties within input data was investigated at different levels.
Twelve samples with uncertainty levels of 0%, 5%, 10%, 15%
and 20% are considered as study cases. The data samples
and corresponding fault types are presented in Table 5. It is
clear that the impact of uncertainty in the overall diagnosis
was limited. The fault diagnosis using the proposed code tree
was correct in all cases except once where the fault changed
from T2 to T3 within the same category of thermal fault
type.

B. DIAGNOSTIC ACCURACY
Fig. 6 presents the diagnostic accuracy of all fault types
during the training stage (1530 data samples) and testing
stage (505 data samples) of the original data and uncertain
data for all fault types. The results illustrated that the clelosest
accuracy for training, testing and overall datasets with overall
accuracies of 97.45%, 95.45% and 96.95%, respectively.
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TABLE 5. Case studies for fault diagnosis under uncertainty with different levels.

The results verified the ability of the proposed code tree to
diagnose actual fault types with high accuracy. The accuracy
of the proposed method in estimating various fault types for

the original dataset without uncertainties was 100%. On the
other hand, the ability of the proposed code to specify the
fault type considering different degrees of uncertainties is
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FIGURE 6. Accuracy during the training and testing of all data.

TABLE 6. The diagnostic accuracy of data with 5% uncertainty.

TABLE 7. The diagnostic accuracy of data with 10% uncertainty.

TABLE 8. The diagnostic accuracy of data with 15% uncertainty.

presented in Tables 6, 7, 8 and 9 for 5%, 10%, 15% and
20% uncertainty degree, respectively. The overall diagnostic
accuracies are 98.77%, 98.03%, 95.09% and 93.12%, respec-
tively.

The results clarify that the obtained diagnostic accuracies
are acceptable and relatively high with respect to the assumed
high degree of uncertainties in measurements.

Fig. 7 and Fig. 8 depict the decrement in the diagnostic
accuracies for thermal and discharge faults, respectively. The

TABLE 9. The diagnostic accuracy of data with 20% uncertainty.

FIGURE 7. Decrement in the diagnostic accuracies against uncertainty
degree for thermal faults.

FIGURE 8. Decrement in the diagnostic accuracies against uncertainty
degree for discharge faults.

most affected diagnosis by uncertainty occurred for T2 and
D1 fault types. The proposed technique proved also robust-
ness against uncertainty above 20%, however this level of
uncertainty has not been presented in this study, since it is
not common in practice.

It was important to point out that the effect of uncertainty
was very limited within the same general group. For example,
most of the missing data in D1 fault type were diagnosed
as D2 fault which enforces the diagnostic accuracy within
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FIGURE 9. Diagnostic accuracy with different uncertainties for different
general fault types.

TABLE 10. Comparison of the proposed method with other methods.

the same category of faults. Fig. 9 presents a summary of
the diagnostic accuracies associated with different degree of
uncertainties for general groups of faults, partial discharge
fault, arcing or discharge fault, and thermal fault. It is clear
that the highest decrement in accuracy over the whole uncer-
tainty range was only about 1.3% either for thermal or dis-
charge faults.

C. VALIDATION AND COMPARISON
The ability of the proposed codes to correctly identify the
fault type is examined in comparison with other methods.
These methods are ANN, Cluster method, IEC ratio method,
Duval triangle, modified Rogers’4 ratio (ROG-MOD) [30],
and modified IEC ratio [6]. As shown in Table 10, the
overall diagnostic accuracy of the proposed method decre-
mented from 100% to 93.12% with a variation of uncer-
tainty from 0% to 20%, which is considered relatively
large.

The diagnostic accuracies of the ROG-MOD method (the
highest accuracy among the comparison methods) decreased
from 93.86% to 87.72% with uncertainty degree varied from
0 to 20%. The accuracy over the whole range of uncertainty
degree of the other comparison methods was kept below that
of the proposed method. Therefore, the proposed code tree
could be used to eliminate the impact of the high degree of
uncertainties in measurements.

VII. CONCLUSION
This work had been presented a framework to apply the
HGWO optimizer technique in order to generate a new
code matrix for the power transformer fault diagnosis con-
sidering the uncertainty associated with the measurements.
The GWO optimizer was modified by adding two loops
of PSO and GA to improve the ability to divert and con-
verge at the optimal solution. GA and PSO was additionally
used separately to guarantee obtaining the global optimal
solution. The uncertainty in the measured data that orig-
inated either during oil sampling or during storage and
transfer were considered up to 20% of the actual measured
data.

The developed code matrix succeeded to diagnose the fault
types with a high accuracy of 100% for the original dataset as
well as 98.77%, 98.03%, 95.09% and 93.12% in the case of
random uncertainty of 5%, 10%, 15% and 20%, respectively.
The proposed code matrix had high abilities to diagnose the
transformer fault types using simple codes and with high
degree of uncertainties in the measurements. The comparison
between the proposed code matrix and other DGA methods
such as ANN, Duval, IEC 60599 Code, Cluster, ROG-MOD
and IEC-MOD methods proved its effectiveness and appli-
cability in accurate fault diagnosis considering uncertain-
ties. The accuracies of the proposed code over the whole
range of uncertainty degree were higher than that of other
methods.
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