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Abstract

Dynamical downscaling (DDS) is performed using regional climate models (RCMs) with global atmospheric 
states as the input, but there is no consensus among researchers on how to define and estimate the resolvable scale 
of the various climatic variables obtained by DDS. Sources of RCM uncertainties, including both internal model 
and intermodel variability, have been assessed by performing ensemble simulations and model intercomparisons, 
sometimes under the controversial assumption that model bias is independent of the climatic state. Compared 
with low-resolution global climate simulations, DDS can add value in several ways. For example, because they 
consider high-resolution topographic data, RCMs can often capture mesoscale phenomena and can better repre-
sent climate dynamics. Another downscaling method, empirical statistical downscaling (ESD), is complementary 
to DDS because it is based on a different philosophy (i.e., sources of information) and on a mostly different set 
of assumptions. More collaboration and communication should be encouraged among those who develop models, 
those who use models and perform downscaling, those who use downscaling data, and those who make decisions  
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1.  Introduction

Products of atmosphere-ocean general circulation 
models generally need to be downscaled to repre-
sent climate changes at regional and local scales to 
increase their usefulness to studies of the impacts of 
and adaptation to climate change. Indeed, demands 
for both more accurate and higher resolution climate 
projection data are steadily increasing. The practice of 
dynamical downscaling (DDS) global climate simu-
lations using a regional climate model (RCM) was 
pioneered by Dickinson et al. (1989) and Giorgi et al. 
(1990).

With regard to RCM performance, Giorgi and 
Mearns (1991) reported that (1) DDS increases the 
accuracy with which orographic precipitation can be 
simulated and (2) RCM accuracy is strongly depen-
dent on features of the driving global model used for 
the lateral boundary conditions. The Third Assess-
ment Report from Working Group 1 of the Intergov-
ernmental Panel on Climate Change (IPCC 2001) 
reported the importance of validating model results 
with high-resolution observation data to determine 
the performance of an RCM (Rummukainen 2010). In 
addition, Wang et al. (2004) reviewed the application 
of DDS in Asian monsoon research and stressed the 
necessity of refining the physical processes used by 
the RCM to improve model performance.

In recent reviews, Hong and Kanamitsu (2014) and 
Xue et al. (2014) discuss the role of the initial condi-
tions in RCM performance in applications of DDS 
to weather forecasting, including intraseasonal and 
seasonal forecasting. However, because initial condi-
tions do not greatly affect climate change projections, 
we do not discuss them further in this paper.

In this work, we try to re-consider downscaling 
methods, not only DDS but also empirical statistical 
downscaling (ESD), in climate applications. We iden-
tify many of the challenges that are faced by climate 
downscalers. In particular, we discuss (1) improving 
the overall performance of RCMs, (2) extending the 
utility of dynamically downscaled data by coupling 

DDS with ESD, and (3) enhancing RCM accuracy 
by adopting ensemble techniques. We believe that 
framing downscaling in this way will benefit not only 
climate downscalers but also the users of the down-
scaled data who need to be aware of both the potential 
and the limitations of the downscaled regional climate 
data that they use in their applications.

The remainder of the paper is organized as follows. 
In section two, we summarize technical issues of 
DDS. In section three, we discuss issues with the use 
of downscaled data, whether obtained by DDS or 
ESD, in studies of climate impacts. In section four, we 
discuss ensemble DDS experiments. The final section 
is a summary.

2.  Technical issues of dynamical downscaling

2.1  Origin of dynamical downscaling
The technique of DDS was originally developed 

with the aim of applying the methodology of limit-
ed-area modeling, developed for weather forecasting, 
to climate problems over longer time periods. Because 
this is an ill-posed problem, a technical trick, called 
the sponge zone, was developed for dealing with the 
problem of noise generation by inconsistent phase 
speeds (Davies 1976).

In weather forecasting, the additional skill achieved 
by DDS over global forecasting runs comes from both 
the finer resolution of the downscaled model, which 
provides more detail to the relatively coarse struc-
tures at the lateral boundaries of the RCM domain, 
and the detailed features of the initial field. The daily 
routine of numerical weather forecasting justifies this 
approach and has demonstrated the skill of the down-
scaled models.

However, when limited-area models are run for 
longer periods of time, for example, years or decades, 
the conventional DDS approach can no longer utilize 
the small-scale features of the initial field. Instead, 
the added value must be generated exclusively by 
processing the coarse-grid boundary values with 
additional small-scale forcing (including processes 
allowed because of the higher resolution) such as the 

based on the scientific results provided by models. In addition, ensemble experiments should be devised that can 
more effectively benefit impact studies. Using DDS and ESD, separately or in combination, users can maximize 
the utility of local climate information.
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land–sea contrast in the more detailed topography.
In the early years of the development of DDS (i.e., 

in the early 1990s), it was hoped that this conven-
tional approach would not only add details on smaller 
scales but also overcome systematic errors present in 
the coarse-grid model driving the downscaled model; 
however, this hope did not materialize. It became 
apparent that only those components that are influ-
enced by the dynamics within the downscaled domain 
and are strong enough to overcome the coarse-reso-
lution value constraints inflowing across the lateral 
boundaries can be improved; however, few compo-
nents meet these criteria.

An example of the successful application of this 
conventional approach to DDS is found in the field of 
urban climate research. Kusaka et al. (2012) dynam-
ically downscaled local climate around three major 
metropolitan areas in Japan and succeeded in sepa-
rating the heat island effect from the general climate 
warming around these areas. In this case, temperature 
within the urban canopy was controlled mainly at the 
scale of the urban area, and the local model could 
successfully represent dynamic effects arising at that 
scale.

2.2  Scale-selective nudging
RCMs derive the dynamical state of a region from 

the lateral boundary conditions, but these do not 
always determine a unique solution in the interior of 
the downscaled domain. Rather, several different inte-
rior states are consistent with a given set of lateral 
boundary conditions. It might be possible to over-
come this mathematically ill-posed boundary problem 
by framing the regional modeling as a state–space 
problem. Based on this concept, a dynamical model 
can augment existing knowledge about the regional 
state using the large-scale state of the atmosphere 
above a certain vertical level, where the influence of 
regional physiographic details is small (Kida et al. 
1991; Sasaki et al. 1995; Waldron et al. 1996; von 
Storch et al. 2000). The spectral nudging technique, 
in which the regional model is exposed not only to 
lateral boundary values but also to scale-selective 
constraints in the interior that are considered well 
described by the global analysis or the global simula-
tion, is based on this concept. This general approach 
was first acknowledged in the Third Assessment 
Report of the IPCC (Giorgi et al. 2001).

2.3  Dynamical downscaling in climate studies
Originally, most regional modeling was aimed at 

the detailed analysis of mesoscale weather events 

as well as at weather forecasting; therefore, only 
short time periods were simulated. Later, multi-year 
simulations were conducted with present-day condi-
tions, mostly for determining the extent to which the 
models could reproduce the climatic distributions of, 
for instance, monthly temperature and precipitation 
amounts. These simulations were performed mainly 
for quality-control purposes. Then, a very popular 
line of application was the determination of possible 
future developments in so-called “scenario”-simu-
lations, when regional detail was adopted to global 
climate change simulations.

In recent years, an additional application of DDS 
has emerged, namely, a type of regional re-analysis 
that processes not local observations but the (hope-
fully) homogeneous information about a coarse-scale 
state, with the objective of arriving at a homogeneous 
description of mesoscale phenomena and their statis-
tical characteristics. For example, impact models, 
which project the potential impacts of, say, storm 
surges or ocean waves on a particular system, are 
sometimes added to limited-area models (Weisse et al. 
2009). Such simulations are valuable because they 
help to characterize changes in complex quantities, for 
example, the frequency of mesoscale storms such as 
polar lows, intra-seasonal percentiles of wind speed, 
or other complex impact-relevant parameters. These 
simulations are also used to derive realistic estimates 
of the risk to, for instance, offshore activities.

2.4  Remaining issues with dynamical downscaling
A significant open problem of DDS is the ques-

tion of how many grid points are needed to describe a 
phenomenon realistically. In other words, what should 
the resolution of the regional model be (as opposed 
to the grid resolution derived from the Nyquist 
frequency)? The appropriate number may depend 
on the time-averaging interval and the variables 
involved. So far, only ad hoc recommendations have 
been made (e.g., Pielke 1991); systematic studies are 
lacking.

A clear strategy for defining a “skillful scale” has 
not yet been developed. Both global climate models 
(GCMs) and RCMs have a minimum skillful scale 
that is not the same as the spatial resolution (e.g., it 
may be four grid boxes). Moreover, the minimum 
skillful scale varies, depending on the climate 
element and location. A straightforward definition of 
skillful scale has been elusive up to now (Benestad 
et al. 2008), and its definition may also depend on 
the model design. The skillful scale may derive partly 
from the fact that both GCMs and DDS use numer-
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ical algorithms to solve continuous functions in terms 
of discrete numbers, parameterization of surface and 
sub-grid processes, and approximations of primitive 
equations.

Climate downscaling itself may be another source 
of uncertainty because none of the numerical algo-
rithms used in DDS provide a perfect description of 
the relationship between the large and small scales. 
Hence, it is important to address the question of 
whether downscaling adds value to climate projec-
tions compared with the value offered by the GCM. 
It is usually claimed that the added value of DDS 
consists of “more spatial detail.” This is a claim that 
should be, but hardly ever has been, examined in light 
of the extent to which such detail can be generated by 
much simpler methods such as geostatistical interpo-
lation (using topography as the explanatory factor). 
Livezey (1995) described some standard procedures 
for determining the skill of weather forecast methods. 
A number of studies have identified enhanced vari-
ability at medium scales and more realistic spatial 
detail, not only of physiographic effects (e.g., coasts) 
but also of dynamical processes, such as polar lows, 
typhoons, or medicanes (Mediterranean tropical-like 
cyclones), as values added by downscaling (Zahn 
et al. 2008; Chen et al. 2012; Cavicchia and von 
Storch 2012; Feser et al. 2011; Di Luca et al. 2011).

Taken together, enhanced skill in reproducing 
the present-day climate by downscaling methods is 
a necessary but not sufficient condition for credi-
bility of projections in changes in statistics on many 
regional-scale phenomena. It is not obvious whether 
DDS can be used to skillfully represent changes in 
statistical descriptions of weather phenomena and 
other aspects of the climate system. Changes in, for 
example, the frequencies of synoptic disturbances, 
typhoons, and heat waves, reflect both internal vari-
ability and nonlinear feedback processes, and these 
might be different in a warmer climate. We still have 
no clear answer on designing experiments that more 
clearly demonstrate potential skill under perturbed 
climate conditions.

3.  The application of dynamical downscaling and 
empirical statistical downscaling in climate 
impact studies

3.1  Dynamical downscaling and empirical statis-
tical downscaling

Studies investigating the local impacts of climate 
change need reliable information about local climate 
characteristics. Moreover, several scientific issues link 
climate downscaling, whether statistical or dynamical, 

with studies of climate impacts on various sectors, 
though they are distinct fields of research.

As is well known, although GCMs do not describe 
local climatic details accurately, a downscaling 
process can potentially provide a description of 
such details. Downscaling is based on the fact that 
local climate is affected by both local geographical 
conditions and the surrounding large-scale climate 
(Benestad et al. 2008; von Storch et al. 1993).

Both DDS and ESD are based on two different 
philosophies: DDS solves equations for local wind, 
temperature, and moisture through direct formula-
tions of all known relevant processes (dynamics and 
thermodynamics), whereas ESD makes use of infor-
mation from empirical data that may also embed 
unknown processes. In other words, DDS relies on 
information that is based on our understanding of 
physical processes, whereas ESD relies on informa-
tion obtained by the statistical analysis of observed 
past climate. Unlike DDS, ESD makes model results 
(calculations performed with either GCMs or RCMs) 
comparable with point observations through the 
introduction of statistical transfer functions, and the 
skillful scale concept does not apply to ESD as it does 
to RCMs. While the results obtained from DDS and 
GCMs may not be directly comparable with obser-
vations because they describe a mean value over a 
volume rather than a point measurement, ESD results 
may be directly comparable with the observed values 
used to calibrate the statistical models used in ESD. 
For most practical purposes, users of climate infor-
mation such as impact modelers often need informa-
tion on a local scale (about specific points or about 
a limited area such as a watershed, valley, or region) 
that is obtained by either DDS or ESD. Hence, the 
results obtained by these two downscaling strategies 
should be compared in terms of the suitability of the 
information provided to the stakeholders. 

Furthermore, different GCMs tend to exhibit 
different biases in their descriptions of regional and 
local climate features. For example, mean tempera-
tures may be either too high or too low, too many days 
with drizzle may be estimated, or the spatial shape of 
natural phenomena such as El Niño Southern Oscil-
lation (ENSO) may be distorted. In general, down-
scaling does not correct biases in GCMs, and incor-
rect wind patterns in a GCM will be passed on to 
the downscaled results, especially those obtained by 
DDS. In other words, downscaling is not a “magic” 
operation that fixes GCMs; nevertheless, biases in 
the mean state may be avoided using ESD, which 
tends to focus on the variability rather than on the 
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mean state or the annual cycle of a variable (because 
these aspects are trivial and can be obtained directly 
from the empirical data). DDS results, however, 
often have to be adjusted before they can be used in 
impact studies (Themeßl et al. 2011; Piani et al. 2010; 
Schmidli et al. 2006). This topic is discussed further 
in Section 3.4.

ESD is well suited for large GCM ensembles 
because of its low computational cost (Benestad 
2011); moreover, ESD can provide diagnostics about 
the projections: the degree of skill with which the 
GCMs reproduce the spatial characteristics of the 
predictor; the strength of the relationship between 
the predictors and the predictands; and the patterns 
of co-variability between large and small scales. 
ESD can also be used in some situations to predict 
the shape of probability distribution functions such 
as that for the 24-h precipitation, hence providing 
a description of conditional probabilities for a given 
set of predictors from a GCM (Benestad 2007; Pryor 
et al. 2005a, b). In addition, ESD can be used to 
derive changes in statistics of state such as percen-
tiles (von Storch and Reichardt 1997), full probability 
distributions, or even parameters in impact study 
models (Busuioc et al. 1999). Pattern-scaling and 
bootstrapping methods can also provide information 
about uncertainty in a climate analog (Ishizaki et al. 
2012).

It is also possible to combine ESD and DDS. 
In this case, ESD uses reanalysis-driven (such as 
ERA40) DDS results as predictors and observations 
as predictands, and the calibrated statistical model in 
ESD is subsequently fed by DDS results describing 
the future to derive downscaled future climate. This 
approach is similar to the “model output statistics” 
(MOS) technique, and it avoids the predictor simi-
larity problem (Wilks 1995). The statistical model 
used in ESD is able to detect the connection between 
large-scale conditions and local effects, even if the 
DDS depiction of the large-scale conditions has 
systematic errors. Hence, problems due to model 
biases in the GCMs may be bypassed through this 
MOS-like approach. However, regional biases in the 
GCMs driving the DDS for the future projections 
also produce biased DDS results, and these biases 
need to be considered. For example, (i) in the GCMS, 
storm tracks in the North Atlantic may be confined 
to a narrower range of latitudes than observed storm 
tracks, which also implies a narrower latitude range 
in the DDS results; (ii) errors in sea surface tempera-
ture may be caused by an ocean model’s inability to 
represent ocean heat transport in sufficient detail; (iii) 

the South Asia monsoon system may be misrepre-
sented with consequences for the downscaled results; 
and (iv) ENSO characteristics may be incorrect 
and result in incorrect downscaled rainfall. Reanal-
yses, on the other hand, use observations to force 
the results to look more like the real world than they 
would otherwise (using assimilation techniques with 
observations ranging from satellite data to surface 
measurements). Biases inherited from GCMs may be 
even more severe than those produced by the RCM 
itself, and such biases cannot be reduced by sequen-
tially applying the ESD-technique MOS because it 
assumes perfect boundary conditions (reanalyses) 
that are different from those provided by the GCM. 
In some cases, the MOS technique can be applied to 
DDS driven by an atmosphere-only GCM, if observed 
sea surface temperatures are used for the boundary 
condition in the GCM. However, this exception is 
not relevant to climate change studies, because to 
fully capture a future state, it is necessary to consider 
changes in the coupled ocean–atmosphere system. 
Because in the coupled ocean–atmosphere GCM 
results, unforced natural variations (such as ENSO) 
are not synchronized with those in the real world, 
using the MOS approach is impossible. Moreover, 
the approach requires consistency between large-scale 
fields of the DDS and reanalysis data; such consis-
tency can be ensured through, for example, spectral 
nudging (von Storch et al. 2000). Another technique 
is to use “common empirical orthogonal functions” 
(common EOFs) as a hybrid between the MOS 
approach and the traditional “perfect prog” approach 
used in ESD when the calibration of the statistical 
model is based on observed (historical) local and 
large-scale gridded data (Benestad 2001). Common 
EOFs can provide a reference frame for the statistical 
models in ESD, and when they are used, the results 
from both GCMs and reanalyses are combined into 
a single data matrix before calibrating the statis-
tical model used in ESD. Some data pre-processing 
is required because anomalies from both the reanal-
ysis and GCM results must be combined on the same 
spatial grid. Then, EOFs (Lorenz 1956) are derived 
from this data matrix. The common EOF approach 
avoids biases in the mean climatology but requires a 
good match between the spatio-temporal patterns of 
the reanalysis and the GCM results. Inspection of the 
common EOFs can also reveal systematic differences 
in terms of the predominant modes of variabilities, 
their common states, and their variance. Although 
such information can be used to weigh the model 
results based on their similarity with the reanalysis, 
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it is also possible to bias-correct the common EOFs 
before the ESD stage.

3.2  Uncertainties
The concept of uncertainty in the context of climate 

services refers to information about what we know 
and what we do not know. Climate modeling and 
downscaling are currently active research arenas, in 
which the tools (models) are not yet settled, and the 
potential for predictability often is still not known. 
Uncertainty is a given in leading-edge research, in 
contrast to established science, which represents what 
we know. Therefore, it is necessary to change the 
focus from uncertainty to certainty. One of the funda-
mental uncertainties of climate modeling is future 
emissions. Individual GCMs also have shortcomings, 
and different GCMs tend to have different biases. 
Hence, a crude approach for exploring the range of 
uncertainty is to use an ensemble (see Section 4.2) of 
GCMs with a downscaling model (whether with DDS 
or ESD). The divergence of ensemble model results 
provides an indication of the range of uncertainty 
if it is not known which of the models forming the 
ensemble are more reliable; however, it does not prop-
erly describe probabilities of the possible outcome 
because the ensemble of models does not constitute a 
valid statistical sample.

Downscaling may make the model uncertainties 
more visible because downscaling using different 
DDS strategies often provides divergent results. 
Moreover, the process of downscaling can cause addi-
tional uncertainty, even though it produces a more 
realistic description of the local climate and reduces 
the differences between the description provided 
by the GCMs and observations. The role of down-
scaling in terms of uncertainties depends, of course, 
on the aim of the modeling exercise, but predicted 
changes in local climate are expected to be sensitive 
to the different parameterization schemes (“physics”) 
being used in the RCM and the driving GCMs. There 
are a number of different parameterization schemes, 
but it may be difficult to say which scheme is more 
appropriate for a given location. The sensitivity to 
the choice of parameterization scheme will result in 
physical inconsistencies and a different local clima-
tology in the downscaled product, and is one factor 
connected to the uncertainties associated with regional 
climate modeling.

The relationship between unresolved physical 
processes and their large-scale effect described by 
parameterization schemes may not be stationary. 
Likewise, ESD may potentially involve nonstationary 

links between the large and small scales that are also 
expected to produce biases. Part of these biases is 
invisible in GCMs, which only describe large-scale 
phenomena. Potential non-stationarities in the link 
between large and small scales are part of the overall 
uncertainty associated with the ESD. There is also 
the question of whether GCMs represent added value 
in terms of their ability to predict realistic trends at 
larger scales, which are translated to the local climate 
through downscaling. For example, the predictions of 
different GCMs differ as to how ENSO may change in 
the future (Collins et al. 2010).

Observations are key to modeling local climate 
and clarifying the uncertainties with both DDS 
and ESD. Obviously, ESD requires observations 
for model development, but observations are also 
needed to evaluate both ESD and DDS models. 
Without real data, there is no information about the 
skill with which DDS can reproduce a given climate 
element. This fact also implies that the expected skill 
of regional models to provide better descriptions of 
certain aspects of local climate cannot be proven 
without real data. Instead, the existence of such skill 
becomes a mere claim, one that may or may not be 
true. Of course, this situation always prevails when 
models are used to describe features and dynamics 
that cannot be documented with observations. More-
over, biases in one quantity, such as precipitation or 
snow, may not be directly related to biases in another 
(e.g., temperature) (Maraun 2013).

We encourage climate impact researchers to 
learn about these different sources of uncertain-
ties and their relative roles at different time scales. 
By considering uncertainties in downscaled climate 
information, as well as those introduced by impact 
modeling, researchers will be better able to design 
impact studies and interpret the results appropri-
ately. Uncertainties do not need to be an obstacle; 
rather, they are themselves useful information about 
what we know and what we do not know. One way 
to deal with uncertainties is to explore the impor-
tance of different factors, or to carry out sensitivity 
tests (Brown and Wilby 2012). Furthermore, a range 
of statistical methods can be applied to study the 
quality of model results and the dependency of these 
results on the choices made in the model set-up. It is 
also important to apply proper validation to the results 
(see COST action VALUE; http://www.value-cost.
eu/). To date, statisticians, who are experts at making 
sense out of information, have not been extensively 
involved in climate science, and climate scientists 
need to distil the most relevant and reliable informa-

http://www.value-cost.eu/
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tion from a range of different sources: observations, 
model results, and statistical framework. An improved 
dialog among impact researchers, statisticians, and 
climate researchers would possibly lead to progress 
in this area; however, because scholars from different 
communities speak different “dialects,” communi-
cation issues sometimes hamper progress. For this 
reason, several initiatives have been instituted to 
set up controlled vocabularies, common meta-data 
structures, and data structure syntax (i.e., CORDEX-
ESDM, COST-VALUE, and NPPC; https://www.
earthsystemcog.org/projects/downscalingmetadata/).

3.3  Evaluation of downscaling assumptions and 
outputs

In ESD, four assumptions are made (Benestad et al. 
2008; Maraun et al. 2010): (1) the present relationship 
between small and large scales will also hold in the 
future (criterion of stationarity); (2) GCMs can skill-
fully reproduce the predictor used as input for ESD; 
(3) there is a strong relationship between predictor 
and predictand; and (4) the predictor contains the 
climate change “signal.” The validity of these 
assumptions can be assessed to some extent. It is also 
important to keep in mind that nonstationarity is also 
an issue in parameterization in both GCMs and DDS.

Evaluations of DDS have suggested that it tends to 
cause overestimation of downward short-wave radi-
ation throughout the year, and there are large inter-
model differences in the relationship between the 
snow-depth bias and temperature biases. Snow param-
eterizations in some dynamically downscaled models 
can be very coarse, and they vary considerably from 
RCM to RCM, but linking the RCM with a sophisti-
cated snow cover model may improve understanding 
of projected future changes, based on global warming 
scenarios, in the characteristics of snow extremes 
(Fujihara et al. 2008). Evaluation of such climatic 
variable interrelationships would also improve our 
understanding of sources of climate downscaling 
uncertainty’; for agricultural examples, see Iizumi 
et al. (2008).

Models should be evaluated to gain a better under-
standing of physical processes in both DDS and ESD. 
ESD should be viewed as an advanced analysis tech-
nique that provides a set of diagnostics in addition to 
projections (Benestad 2004). ESD can also be used 
to analyze DDS results with regard to variable inter-
relationships between large and small scales as well 
as teleconnections. DDS can be used in numerical 
experiments to test various hypotheses and examine 
specific processes. Recently, the VALUE research 

network (http://www.value-cost.eu/) was established 
to use a statistical framework to validate and develop 
downscaling methods for climate change research. 
Murphy et al. (2010) called for a comprehensive 
approach for validating downscaled results. In partic-
ular, a physics-based validation framework is also 
needed to check the physical consistency between 
the GCM and the RCM. For example, the different 
parameterizations and rain climatologies between 
a GCM and a RCM affect how vertical energy flow 
is modeled. This raises the question of whether the 
output of the RCM represents true added value or 
simply reflects this discrepancy in vertical energy 
flows.

3.4  Communication between different communities
Through most of the history of downscaling research, 

climate scientists have downscaled basic meteorological 
variables (e.g., surface temperature and precipitation) 
without adequately considering the utility of downscaling 
for impact model researchers. The traditional approach, 
as adopted by the European project FP7-ClipC (http://
www.ceda.ac.uk/projects/clipc/; a “one-stop shop” for 
climate data), has been to archive the downscaled data 
on a web site (e.g., Copernicus; http://www.ecmwf.
int/en/about/what-we-do/copernicus); then, an impact 
researcher visits the site and downloads the data of 
choice to drive his impact study model. This one-way 
approach to data dissemination works well provided 
that the downscaled data have very high accuracy and 
the user does not require any guidance in their use, 
but the reality is very different. Existing models have 
a limited ability to downscale climate signals, and 
the data currently being provided by the downscaling 
community do not necessarily meet user requirements 
with regard to, for example, choice of variables, accu-
racy, or temporal and spatial scales. Recently, efforts 
have been made toward establishing a provider–user 
dialog by asking users about what they need and 
in what form they would like to have the data (e.g., 
FP7-ClipC and FP7-EUPORIAS [http://www.eupo-
rias.eu]).

There are several good recent examples of collab-
oration between dynamical downscalers and impact 
model researchers, in which they work together 
from the beginning of a research project to design 
experiments that consider the needs and perspec-
tives of both communities. The European ENSEM-
BLES project (http://www.ensembles-eu.org/), which 
started in 2004, is an early example of downscaling 
researchers working with climate impact researchers. 
Currently, one focus of the Coordinated Regional 

https://www.earthsystemcog.org/projects/downscalingmetadata/
http://www.ceda.ac.uk/projects/clipc/
http://www.ecmwf.int/en/about/what-we-do/copernicus
http://www.euporias.eu
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Climate Downscaling Experiment (CORDEX; http://
wcrp-cordex.ipsl.jussieu.fr/) is to enhance interaction 
between downscalers and users working on climate 
change adaptation and impact assessment in various 
regions of the world. The FP7-EUPORIAS project 
works closely with a number of stakeholders who are 
interested in regional climate information and services 
on seasonal-to-decadal timescales. One research 
theme of JPI Climate (http://www.jpi-climate.eu/), a 
collaboration among European countries to coordi-
nate climate research, is climate service development 
and deployment. At the global level, it was decided 
at World Climate Conference-3 to establish the 
Global Framework for Climate Services (http://www.
gfcs-climate.org/), a United Nations-led initiative 
to guide the development and application of climate 
information and services for better decision-making 
in climate-sensitive sectors. The Climate Services 
Partnership (http://www.climate-services.org/), in 
contrast, is an open, informal coalition of “climate 
information users, providers, donors, and researchers” 
to improve the development and provision of climate 
services worldwide.

Collaborative frameworks such as these benefit 
downscaling research as well as impact studies, and 
they enable the downscaling community to provide 
downscaled data with much higher utility and appli-
cability. Despite these recent developments, short-
comings associated with downscaling, whether by 
DDS or ESD, are still not always communicated to 
users interested in climate impacts (Maslin and Austin 
2012), because the impact research community, which 
includes climate change adaptation practitioners in a 
broad sense, is rapidly expanding.

Climate change adaptation policy has often been 
formulated by local governments in an ad hoc 
fashion, without coordination among stakeholders. In 
Denmark, for example, the government has issued a 
climate change adaptation strategy (Government of 
Denmark 2008) that has been heavily criticized by 
practitioners (e.g., by the Danish Society of Engi-
neers, IDA) for not offering any advice on how to 
coordinate efforts (IDA 2012). Often the informa-
tion on which such policy-making is based is derived 
from only one scenario. Furthermore, biases in RCM 
results are often strong in the case of quantities such 
as precipitation (Orskaug et al. 2011), and such 
results must be adjusted before they can be used for 
hydrological impact assessment. These biases can 
be corrected using techniques such as daily scaling, 
quantile–quantile mapping, regression, analogs, 
discrete wavelet transform, or a combination of these 

(Themeßl et al. 2011; Piani et al. 2010; Schmidli et al. 
2006). However, such adjustment may do no more 
than sweep these problems under the carpet if the 
question of whether biases in temperature and precipi-
tation affect the predicted changes is not answered. In 
some cases, an adjustment (e.g., altitude correction) 
may be needed because the model is not expected to 
reproduce the observations with a sufficient degree of 
precision for the users (e.g., the model resolution may 
be too coarse) when the correction merely addresses 
a limitation that does not necessarily affect projected 
trends (e.g., a general warming trend or a change 
in storm tracks). However, the possibility that bias 
correction might mask a more fundamental problem 
with the representation of important processes (e.g., 
thermodynamics of air and surface, cloud representa-
tion) is concerning. Hence, before such data are used, 
they must be rigorously evaluated by assessing the 
model’s ability to predict corresponding changes in 
the past. One difficulty in performing such rigorous 
evaluations, however, is that local temperature and 
precipitation are subject to both forced and unforced 
variability, both of which may be equally pronounced 
(Deser et al. 2012). The effect of internal unforced 
variations, however, may be reduced by using statis-
tical techniques such as regression (Van Oldenborgh 
et al. 2009; Lean and Rind 1998) or by examining 
linear trends over long time intervals (Benestad 2001). 
The time interval needs to be long enough to make the 
error estimates small compared to the slope coeffi-
cient.

The strengths and weaknesses of ESD and DDS 
are both different and independent; hence, these 
two downscaling techniques should be regarded 
as complementary. Thus, a convergence of results 
from the two approaches increases confidence in 
the results because of both their different technical 
caveats and their different philosophical approaches 
(sources of information). The use of both ESD and 
DDS, combined with the examination of past climate, 
trends, and relevant climatic phenomena, maximizes 
information about local climate, which may help in 
dealing with uncertainties. It is also important to eval-
uate the GCMs on which the downscaling is based. 
Communication barriers between the separate ESD 
and DDS downscaling communities, however, have 
often led to a failure to take advantage of the different 
strengths of the two downscaling methods.

It is legitimate to ask whether the traditional 
top-down approach is the most fruitful for stake-
holders when vulnerability to climate change is a 
function of potential impacts (exposure and sensitivity 

http://wcrp-cordex.ipsl.jussieu.fr/
http://www.gfcs-climate.org/
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to exposure) and adaptive capacity. In some cases, a 
bottom-up approach might be more valuable. In this 
approach, the impact research community examines 
the sensitivity of their subject matter to various clima-
tological and nonclimatological parameters, and then 
assesses what can be said about these parameters in 
terms of downscaled scenarios (Pielke et al. 2012). 
This type of assessment is first based on historical 
observations before including information derived 
through downscaling.

Both the traditional top-down approach and the 
bottom-up approach require good communica-
tion among climate modelers, impact modelers, 
and policy-makers for climate change adaptation. 
In the top-down approach, the results obtained by 
climate modeling are fed into impact models. In the 
bottom-up approach, factors affecting societal vulner-
ability are identified first, and then climate adapta-
tion is regarded as a form of risk management where 
climate is just one of several potential risk factors. 
The assessment of risk involves considering the prob-
ability of several risk factors occurring together (i.e., 
“contextual vulnerability”), not all of which may be 
affected by climate either directly or indirectly.

Sometimes there are unrealistic expectations about 
which variables models can provide data for, for 
example, in the case of impact research focused on 
very short time scales or very local conditions. It is 
therefore important to ask what types of data have 
been used before (what were previous decisions based 
on?) and to investigate whether downscaling can add 
value to such data by introducing further relevant 
information. A sensitivity analysis may clarify the 
relative importance of different weather or climate 
variables. Furthermore, providers of downscaled 
climate products need to realize that their job does 
not end when they publish the data. Rather, there must 
be a sustained dialog between decision-makers and 
scientists. In fact, climate projections, downscaling, 
and impact assessments should be part of a sustained 
and evolutionary process, where new information 
and improved models and analysis provide updated 
projections and assessments. In the work of down-
scaling for climate impact assessment, climatologists 
should devise methodologies together with modelers 
characterizing vulnerability and policy-makers 
managing adaptation to climate change. Regarding 
adaptation, some important considerations include 
the following: Are we adapted to the present climate? 
To what extent and when will we adapt to the future 
climate? And to which parameters? For climate adap-
tation and risk management, a quantitative risk index 

that shows how the range of risk varies between high- 
and low-risk areas can be easier to use than a qualita-
tive risk index.

3.5  Remaining issues with empirical statistical 
downscaling

Various statistical downscaling techniques need 
to be assessed in a systematic fashion with regard 
to accuracy scores, distributional similarity scores, 
and robustness under climate change conditions. 
The time frequency analysis method is useful for 
correcting biases in long-term temporal variations. 
One of the most important issues in ESD is whether 
the relationship between predictor and predictand 
will remain stationary in the future. To some extent, 
past and future stationarity can be tested using GCM/
RCM results (Busuioc and von Storch 2003). Further-
more, statistical models in ESD can be calibrated with 
a subset of data that excludes the highest or lowest 
values, and then they can be evaluated against these 
independent data.

4.  Ensemble dynamical downscaling experiments

4.1  Origin of dynamical downscaling ensemble 
experiments

The DDS modeling community was late in recog-
nizing the chaotic nature of regional climate dynamics 
(Ji and Vernekar 1997; Weisse et al. 2000). Already in 
the 1970s, global modelers understood (Chervin and 
Schneider 1976) that running the same model with 
slightly different conditions (such as slightly different 
initial states) would generate a different simulation 
trajectory. This insight has important consequences 
for the validation strategy of global climate models 
and for determining the response of such models to 
prescribed experimental modifications. In contrast, 
many regional modelers, even to this day, consider 
one short-duration simulation sufficient to determine 
both the quality of the model in reproducing “reality” 
and the model’s sensitivity to changes in components. 
Given the constraints imposed by boundary condi-
tions, it has been more-or-less assumed that internal 
model variability is insignificant in comparison to 
that of the large-scale forcing. The first ensemble 
studies based on analyses with multiple RCMs were 
published in the 1990s (Ji and Vernekar 1997; Takle 
et al. 1999), and convincing examples demonstrating 
the importance of internal variability have been 
published by Weisse et al. (2000) and Rinke and 
Dethloff (2000). More systematically, Christensen 
et al. (2001) compared the level of internal variability 
generated in RCMs to that of a GCM and showed 
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that, although the internal variability of the RCMs 
was by comparison substantially reduced, it was not 
negligible.

4.2  Multi-model ensemble projects
The earlier experiments, which mainly served to 

explore the existing possibilities for applying regional 
models, have been superseded by more systematic 
multi-model approaches and large-scale international 
modeling efforts. In Europe, the first major attempt 
to apply a systematic DDS approach with multiple 
RCMs was pioneered by the PRUDENCE (Prediction 
of Regional scenarios and Uncertainties for Defining 
EuropeaN Climate change risks and Effects) project, 
which was initiated in 2001 (Christensen et al. 2002, 
2007). PRUDENCE adopted a coordinated frame-
work and identified the importance of carrying out 
long-term simulations (30 years) so that intramodel 
variabilities could be addressed. PRUDENCE was 
set up and designed to assess the role of intra- and 
inter-model variability associated with DDS in future 
projections for Europe, and to a lesser degree to assess 
the role of the driving GCM. Christensen et al. (2007) 
summarized the main results of PRUDENCE, and 
Déqué et al. (2007) more specifically addressed the 
sources of chaotic behavior in the projections.

After the PRUDENCE project, the idea of 
portraying uncertainty in regional projections by 
systematically addressing the known sources of 
uncertainty in modeling using DDS has been further 
advanced by studying different regions and by more 
comprehensively addressing the sources of uncer-
tainty imposed by the driving GCM. The North Amer-
ican Regional Climate Change Assessment Program 
(NARCCAP) was initiated in 2004, about the time 
that PRUDENCE became operational (Mearns et al. 
2012). NARCCAP focused more extensively on the 
role of the GCM as a driver of uncertainty in regional 
climate change projections by designing a DDS 
set-up that used a wider combination of GCMs and 
RCMs. While PRUDENCE used only a 2 × 2 matrix 
combination, NARCCAP was set up to implement a 
balanced fractional factorial design in which half of a 
4 × 6 matrix was sampled in a statistically meaningful 
way to maximize the amount of information that 
could be obtained from the experiment; moreover, 
NARCCAP applied additional statistical techniques to 
fill in empty combinations in the matrix (Mearns et al. 
2012).

In Asia, the Regional Climate Model Intercompar-
ison Project (RMIP; Fu et al. 2005) was established 
to build on the developments in Europe and North 

America with similar goals, but with a different 
geographical focus than PRUDENCE and NARCCAP 
and with quite different climatological drivers. These 
included, for example, the Asian monsoon and the 
subcontinent (i.e., the Tibetan Plateau) downwind of 
the large-scale flows crossing the Eurasian continent.

The European ENSEMBLES project (see Section 
3.4) specified an even larger GCM/RCM matrix, but 
with a relatively sparse population. This makes the 
interpretation of the results somewhat more chal-
lenging, because the statistical approach for sampling 
the empty combinations was more difficult (Déqué 
et al. 2012). One of the major scientific objectives 
of ENSEMBLES was to establish a means of opti-
mizing the information obtainable from a multi-model 
DDS ensemble. A major effort was concentrated on 
defining model evaluation metrics that would high-
light performance indices that could be associated as 
uniquely as possible with RCM performance rather 
than with the driving boundary conditions. A series of 
metrics was developed, but the overall conclusion was 
that establishing a method to weigh the better models 
higher than the poorer models based on these metrics 
did not produce a different result or reduce the spread 
of the projections (Christensen et al. 2010; Déqué 
et al. 2012).

Other more specialized ensembles have been set up 
as well to highlight special national needs (see Iizumi 
et al. 2012; UKCIP 09 [http://ukclimateprojections.
defra.gov.uk]; Kjellström et al., 2011). The World 
Climate Research Programme has adopted a DDS 
agenda based on ensemble techniques in support of 
CORDEX (Giorgi et al. 2009; Jones et al. 2011). This 
project has initiated a multi-faceted exploration of the 
DDS technique across many geographical regions, 
although at present it has no clear overall scientific 
objective. Instead, CORDEX is mainly building on 
the expressed need for DDS information at local 
scales across the populated parts of the world. In 
fact, the aim of CORDEX is to offer this information 
to potential users in a coordinated and streamlined 
fashion. Thus, CORDEX is defining a framework 
under which further research can take place.

In the future, the scientific objectives underpin-
ning the use of multi-model ensembles of downscaled 
models needs to be clear by more explicitly defining 
scientific goals. At present, the use of ensembles in 
DDS climate scenarios is still in its infancy.

4.3  Implementation of an ensemble approach
Ordinarily, many computer resources are needed 

to cover all GCM and DDS combinations of an 

http://ukclimateprojections.defra.gov.uk
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ensemble. Therefore, for ensemble projects, an effi-
cient experimental design has been developed with 
the help of statistical mathematicians. The North 
American NARCCAP project (e.g., Mearns et al. 
2009) used four atmosphere-ocean GCMs (AOGCMs) 
downscaled by six RCMs. However, producing the 
full suite of 24 simulations (4 AOGCMs × 6 RCMs) 
was not possible owing first and foremost to funding 
limitations. Instead, a statistical design framework 
was used, in which the full matrix was sampled in 
a balanced manner with each AOGCM providing 
boundary conditions for three RCMs and each 
RCM using boundary conditions from two different 
AOGCMs. Another possible way to save resources 
is to implement the ensemble increment method 
proposed by Yoshimura and Kanamitsu (2013).

When a multi-model ensemble method is adopted, 
it is assumed that the bias of each model is of about 
the same magnitude and has the same degree of 
randomness. Because these assumptions may not 
hold, a perturbed physics ensemble can be adopted 
instead by changing the values of the main parame-
ters controlling the behavior of the physical models 
incorporated in the RCM. Such “detuning exper-
iments” are now being carried out in GCM research 
(Murphy et al. 2004; Shiogama et al. 2012). It might 
be possible to extend this method to DDS (Bellprat 
et al. 2012). Apart from providing a framework for 
assessing the realism of climate and climate change 
simulations using DDS, the use of model ensembles 
also allows data analyses to focus on more general 
model behavior than what is possible when a single 
model is used. In a study based on the ENSEM-
BLES RCMs, Boberg and Christensen (2012) found 
a common systematic bias in many downscaling 
models that would affect the downscaling of future 
projections. In essence, model errors appeared to vary 
depending on the overall temperature change (Chris-
tensen et al. 2008), hence violating the invariant bias 
assumption inherent in all climate change projections 
relying on direct model output, as well as in most 
statistically based bias correction methods that are 
used. If biases in DDS are not invariant, the so-called 
delta-change approach (e.g., Hay et al. 2000) is not 
valid. Understanding the role of systematic model 
errors in future projections is a scientific goal that 
can be better pursued using ensembles of models. An 
essential feature of this study is that all models in the 
ensemble were used to conduct similar experiments. 
The simulations representing both the present-day 
climate and climate change demonstrate a substan-
tial degree of overall warming bias. The former set of 

experiments allowed the authors to identify a system-
atic model bias that varies across the ensembles of 
models, while the latter set of experiments allowed 
them to validate the role of the bias identified. Firm 
conclusions could not have been deduced from the 
study if an ensemble of models had not been used. 
Moreover, Bellprat et al. (2013) cautioned against 
over-interpretation of the results because the under-
lying cause of the differential bias could be related 
to feedback mechanisms that would not continue to 
be a scalable effect for all plausible futures. Chris-
tensen and Boberg (2012) subsequently expanded 
their analysis to the Coupled Model Intercompar-
ison Project 5 models and overall found quite similar 
behaviors in global models. Hence, it is possible to 
use the knowledge gained from analyzing ensembles 
of RCMs to identify needs for more general anal-
ysis targeted aspects also relevant when using GCM 
ensemble-based information.

5.  Summary

At present, one of the main topics in downscaling 
research is how to make climate information more 
useful for the many different kinds of application 
studies, because downscaled data are increasingly 
being used as input data for impact models.

It should also be stressed that we need to clarify the 
“skillful scale” used in downscaling research. Would 
the skillful scale differ if histograms of hourly data 
were being examined instead of the climatic value of 
seasonal averages? Unfortunately, currently we have 
no measure by which the skillful scale of a model can 
be judged. If the target region of DDS is sufficiently 
small, DDS can be regarded as a response function, 
and we can assume that the local climate is actually 
controlled at the selected scale. However, the accu-
racy of the GCM used to set the lateral boundary 
conditions for DDS becomes an issue when down-
scaling is considered as a technique for making future 
projections.

There are many different sources of uncertainties 
in downscaled products, including future emission 
scenarios, internal RCM variability, and inter-RCM 
variability. To advance downscaling science and to 
aid the users of downscaled data, the characteristics of 
these uncertainties need to be systematically assessed. 
A number of ensemble simulations and model inter-
comparison projects have been carried out to address 
this issue.

ESD is a complementary approach to DDS; 
however, the DDS and ESD communities have been 
mainly working independently, and there is much 
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room for better collaboration and communication 
between them. Users of downscaling products and 
impact study researchers would benefit by gaining 
access to both DDS and ESD products, which have 
different strengths and weaknesses.

Another important consideration is “added value.” 
What is the added value provided by a GCM in the 
first place? Does downscaling provide added value 
comparable to that obtained by simpler methods such 
as spatial interpolation or by different strategies such 
as a bottom-up approach and sensitivity analysis? 
Does DDS or ESD produce added value in addition 
to that obtained by using a GCM? The answer to this 
question may differ depending on the intended appli-
cation of the downscaled product.
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