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Abstract

The approximation of a function a0ected by noise in several dimensions su0ers from the so-called “curse of
dimensionality”. In this paper a Fourier series method based on regularization is developed both for uniform
and random design when a restriction on the complexity of the curve such as additivity is considered in
order to circumvent the problem. Optimal convergence theorems are stated and numerical experiments are
shown on several test problems available in the literature together with comparisons with alternative methods.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multivariate data approximation is acknowledged to be a di>cult problem for three main rea-
sons: @rstly, from a theoretical point of view not all convergence properties of the one-dimensional
approximations extend to the higher dimensional setting, especially when issues like positivity or
convexity are concerned; secondly the computational burden of the numerical methods heavily in-
creases with the number of dimensions; lastly, there is a sparsity of data inherent to the increased
volume in the high-dimensional case that degrades approximations and that could be solved only
by enlarging arbitrarily the set of measurements, which can be done only rarely. For these reasons,
several assumptions are made on the structure of the set of data or on the model to be approximated.
For example e>cient algorithms can be developed supposing a regular or line structure of the mesh
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[3]. Additive models represent a powerful and consolidated tool for simplifying approximation of
multivariate functions from noised samples. They are able to circumvent the “curse of dimension-
ality” associated with the sparsity of multivariate data, in the sense that they restore the optimal
convergence rate of univariate nonparametric regression (according to Stone [28,29] n2r=(2r+1), where
r is regularity of the function), whereas for the general p-variate case the optimal convergence
rate drops to n2r=(2r+p). The price to pay for the restored optimal convergence rate is the addi-
tional assumption of additivity, which restricts the complexity of the curve; several real applications
ful@ll this assumption. Pioneer works in additive models date to the 1980s, when Breiman and
Friedman [6] and Buja et al. [7] proposed a back@tting method; essentially it projects the solution
in the space of the additive functions that compose the solution and it solves the corresponding
normal equations based on actual data by an iterative method. Back@tting was used extensively in
application and simulation studies; however lack of full theoretical properties limited its universal
acceptance. Recently, Opsomer [22] and Opsomer and Ruppert [23] proved optimal convergence
rate for back@tting, even though under quite strong assumptions on the smoothing matrix and on the
design.
In 1990s other methods were proposed for solving additive models. An alternative procedure,

marginal integration, was developed in [17,31,19]. It is based on integration of a standard kernel
estimator and it involves only averaging instead of iterative solutions. Convergence properties were
easier to obtain and actually optimal convergence results at the one-dimensional rate have been
established.
Parallel with development of new methods, their software implementation was made available

(e.g., Venables and Ripley [32]), which increased their di0usion in applications.
Back@tting comes out to be quite computer intensive due to its iterative nature; on the contrary

marginal integration is much more tractable computationally, even though not very e>cient in prin-
ciple; an improvement can be reached by performing one back@tting step from its solution, which
however makes the method computationally intensive.
Recently, a wavelet based method (wavelet direct separation) was developed in Amato and An-

toniadis [1], able to directly separate the p-dimensional additive problem into p-unidimensional
ones, yielding both optimal unidimensional convergence rate and computational e>ciency of the
algorithm.
The present paper considers Fourier series estimators of additive nonparametric models. Fourier

regularization is a consolidated tool in smoothing one-dimensional data; it has optimal convergence
properties and computational properties (see, e.g., [13,24,33,14,9,30,2]). Analogously, to the wavelet
case, a direct separation of the p-dimensional problem into p-unidimensional problems is performed,
giving rise to similar optimal results both in terms of convergence rate and computational e>ciency.
An approach based on back@tting and Fourier smoothing was already proposed in Bilodeau [5],
where however no separation into unidimensional problems was present.
The paper is organized as follows. Section 2 is devoted to the description of the Fourier di-

rect separation method to build the estimator of the regression curve, both for uniform and ran-
dom design. Theorems of convergence and asymptotic optimality will be proved. In Section 3
an extensive numerical experimentation will be carried out on signi@cant test problems, coming
from synthetic data and from real data, both for uniform and random design. Comparisons of
performance and computational e>ciency with other methods available in literature will be
made.
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2. Fourier direct separation

A p-order additive smoothing model is de@ned by

Y = m(X) + U; (1)

where X=(X 1; : : : ; X p)t is a vector of p, real-valued coordinates {X j; 16 j6p}, Y is a real valued
square integrable random variable, U is a zero-mean, square integrable random variable conditionally
independent of X, and

m(X) =
p∑

j=1

mj(X j);

where {mj(·); 16 j6p} denotes a collection of p unknown functions belonging to Sobolev spaces
Hj = H
j([0; 1]) (
j positive integer) and periodic with their derivatives up to order 
j.
We will consider @rst the case of a deterministic regular design on an equally spaced grid of size

a power of two for each covariate and then the case of a random design. For the sake of simplicity,
the main features of the method will be presented in the bivariate case (p = 2), but all results
obtained in this paper hold in the more general setting.

2.1. Equispaced design

Let H1 and H2 be two real, separable Hilbert spaces of functions de@ned on [0; 1], and let us
consider the Hilbert space

W = H1 ⊗ H2;

with the tensor product and the scalar product de@ned as

h1 ⊗ h2 := h1 · h2; h1 ∈H1; h2 ∈H2;

〈h1 ⊗ h2; k1 ⊗ k2〉W :=〈h1; k1〉H1〈h2; k2〉H2
and the closed linear subspaces of W ,

W
1 = H1 ⊗ K2; W 
2 = K1 ⊗ H2;

where K1 and K2 are the linear closed subspaces of H1 and H2 spanned, respectively, by the constant
functions 11 and 12 on [0; 1], de@ned by 1j(t) = 1 for all t ∈ [0; 1]. It is easy to see that W
1 and
W
2 are isomorphic to H1 and H2, respectively.
According to the above notation, each component mj(X j) of the additive model can be represented

in W by Mj(X)∈W
j (j = 1; 2) de@ned by

M 1(X) = m1(X 1)⊗ 12(X 2); M 2(X) = 11(X 1)⊗ m2(X 2):

From this it follows that

m(X) =M 1(X) +M 2(X): (2)
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Let us consider the Fourier basis for L2([0; 1])

’k(X ) := ei2�kX :

It is easy to prove that
{
’1k1 ⊗ ’2k2 ; k1; k2 ∈Z

}

is a basis for L2([0; 1]2)=L2([0; 1])⊗L2([0; 1]). Therefore m(X) and each Mj(X) can be decomposed
as

m(X) =
∑
k1 ; k2

�k1 ; k2’
1
k1(X

1)’2k2(X
2); (3)

Mj(X) =
∑
k1 ; k2

�j
k1 ; k2’

1
k1(X

1)’2k2(X
2); (4)

where

�k1 ; k2 :=〈m(X); ’1k1 ⊗ ’2k2〉;
� j
k1 ; k2 :=〈Mj(X); ’1k1 ⊗ ’2k2〉;

�k1 ; k2 = �1k1 ; k2 + �2k1 ; k2 ; k1; k2 ∈Z:

Since the @rst moment of ’k(X ) is zero for k 	=0, we have
�1k1 ; k2 = 0; if k2 	=0;
�2k1 ; k2 = 0; if k1 	=0: (5)

In other words the two-dimensional Fourier transform of the additive model is simply given by the
coe>cients �1k1 ;0 and �20; k2 , k1; k2 ∈Z , the other ones being null.
Assume now to have a discretization of size n = n1n2 of m on a regular lattice (X 1

i1 ; X
2
i2 ) 06i1¡n1

06i2¡n2
in [0; 1]× [0; 1]. Assume further that n1 = 2S1 and n2 = 2S2 . The discretized values of m are denoted
by

mi1 ; i2 =M 1
i1 ; i2 +M 2

i1 ; i2 ;

where

mi1 ; i2 = m(X 1
i1 ; X

2
i2 ); M j

i1 ; i2 =Mj(X 1
i1 ; X

2
i2 ); j = 1; 2:

Let �1; nk1 ; k2 and �2; nk1 ; k2 be the discrete Fourier transforms (DFT) of M
1
i1 ; i2 and M 2

i1 ; i2 , respectively; similar
to the continuous Fourier transform, it is also true for the discrete Fourier transform that

�1; nk1 ; k2 = 0; −n2=26 k2 	=0¡n2=2;

�2; nk1 ; k2 = 0; −n1=26 k1 	=0¡n1=2:
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This means that the matrix (�n
k1 ; k2)k1 ; k2 of the Fourier coe>cients of mi1 ; i2 has the following

form:

k2 = 0

↓

k1 = 0→




0 · · · 0 �1; n−n1=2;0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 �1; n−1;0 0 · · · 0

�2; n0;−n2=2 · · · �2; n0;−1 �1; n0;0 + �2; n0;0 �2; n0;1 · · · �2; n0; n2=2−1

0 · · · 0 �1; n1;0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 �1; nn1=2−1;0 0 · · · 0




: (6)

Remark 1. The elements of the matrix corresponding to the nonzero coe>cients do not overlap
(except for the central element; where both �1; n0;0 and �2; n0;0 are present). In practice the central row
of the matrix; �2; n0; k2 ; is related only to the discrete Fourier transform of the component m2; while
the central column of the same matrix; �1; nk1 ;0; is related only to the discrete Fourier transform of the
component m1. This will have some important consequences in the sequel.

2.1.1. Regularization
When noise a0ects data, the Fourier transform for the additive model developed previously, leads

to estimators with small biases but with high variances. A regularization step is therefore necessary to
smooth data and reduce the variability of the approximation of the function m. Fourier regularization
has been widely analyzed in the literature (e.g., [13,24,33,14,9,30,2]) for one-dimensional problems,
but the theory can be extended to the p-dimensional case. We defer to the above-mentioned papers
for a full description of the method. Here we apply the method to models having an additive
structure. Basically, this allows us to estimate all components of the unknown function m and to
derive convergence results for the approximation in a much easier way by using the properties of
the Fourier transform. Let us suppose to observe a noisy sample of a discretized version of m on a
uniform grid of size n,

yi1 ; i2 = mi1 ; i2 + �i1 ; i2 ;

06 i1¡n1, 06 i2¡n2, the �i1 ; i2 ’s being independent random variables with mean 0 and variance �
2.

Our aim is to estimate a @nite dimensional approximation mn(X) of m(X) (Eq. (3)) by regularization.
We shall denote by Mj

n(X) the @nite dimensional approximation of Mj(X) (j=1; 2) (Eq. (4)). Then
mn(X) can be written according to Eq. (2) as mn(X) =M 1

n (X) +M 2
n (X). Let us consider the “raw”
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(unbiased) approximation of m

Yn(X) =
∑
k1 ; k2

Yk1 ; k2’
1
k1(X

1)’2k2(X
2); (7)

Yk1 ; k2 = DFT((yi1 ; i2)06i1¡n1 ;06i2¡n2);

for −n1=26 k1¡n1=2, −n2=26 k2¡n2=2. While this approximation is unbiased, its variance is
unacceptably large and some smoothing is necessary. To estimate mn(X) by regularization one
considers the following regularization problem:

min
Gn=G1n+G2n

‖Gn − Yn‖2L2([0;1]2) +  1‖G1
n − OG

1
n‖2W +  2‖G2

n − OG
2
n‖2W ; (8)

where  1 and  2 are regularization parameters to be chosen properly and OG
j
n := ave(G

j
n), j = 1; 2.

Invoking Eq. (7) and expanding Gn(X) in terms of the Fourier basis, the continuous regularization
problem can be expressed in terms of Fourier coe>cients as

min
G1k1 ; k2 ;G

2
k1 ; k2

−n1=26k1¡n1=2

−n2=26k2¡n2=2

n1=2−1∑
k1=−n1=2

n2=2−1∑
k2=−n2=2

|!1k1 ; k2G1
k1 ; k2 + !2k1 ; k2G

2
k1 ; k2 − Yk1 ; k2 |2

+  1

n1=2−1∑
k1=−n1=2

n2=2−1∑
k2=−n2=2

(k1 ; k2) �=(0;0)

(2k1�)2
1(2k2�)2
2 |G1
k1 ; k2 |2

+  2

n1=2−1∑
k1=−n1=2

n2=2−1∑
k2=−n2=2

(k1 ; k2) �=(0;0)

(2k1�)2
1(2k2�)2
2 |G2
k1 ; k2 |2; (9)

where according to Eq. (6) and Remark 1 we can set

!1k1 ; k2 = "0; k2 ;

!2k1 ; k2 = "k1 ;0:

It is easy to prove that the solution of the regularization problem (9) is explicitly given by

G0;0 = Y0;0;

G1
k1 ;0 =

Yk1 ;0

1 + (2�k1)2
1 1
; −n1=26 k1 	=0¡n1=2;

G2
0; k2 =

Y0; k2
1 + (2�k2)2
2 2

; −n2=26 k2 	=0¡n2=2; (10)

all other coe>cients being estimated by 0.
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It is worth making the following remarks:

Remark 2. Solution (10) of the regularization problem (9) is obtained by processing separately each
component and; in particular; an optimal regularization parameter can be estimated for each direction.

This is a direct consequence of the particular structure of the matrix of the Fourier coe>cients,
see (6) and Remark 1.

Remark 3. Solution (10) of the regularization problem (8) has exactly the same expression as for
the one-dimensional case for each coordinate.

The statement in Remark 3 permits to circumvent the curse of dimensionality: all theorems proved
in the one-dimensional case easily hold also in the two-dimensional case; in particular, convergence
of the estimator can be proved by the following theorem (here stated for the general p-dimensional
case).

Theorem 4. Let Mj
n(X) be the ?nite-dimensional approximation of mj(X j) : [0; 1] → H
j ; 
j pos-

itive integer; and Gj
n(X) the regularized solution of problem (8) along the jth coordinate; j6p;

with corresponding regularization parameter  j. Then

E‖Gj
n −Mj

n‖2L2([0;1]) = O(n−2
j=(2
j+1));
for  j =O(n−2
j=(2
j+1)).

Proof. See Amato and De Feis [2; Theorem 1; p. 264].

Note that convergence holds if n → ∞, that is if any of the nj → ∞; j = 1; : : : ; p.
This proposition serves therefore as an asymptotic justi@cation of our approach. For @nite, rea-

sonable sample sizes, it is necessary to de@ne a data-dependent method to appropriately choose
the regularization parameters  j. The data-based optimal regularization parameter can be estimated
through the generalized cross validation (GCV) criterion developed in Craven and Wahba [8]. The
estimate  GCVj is given by the minimum over  of the functional GCVj( ),

GCVj( ) =

∑nj=2−1
k=−nj=2 [(1− 1=(1 + (2�k)2
j ))Y

j
k ]
2

[1=nj
∑nj=2−1

k=−nj=2(1− 1=(1 + (2�k)2
j ))]2
; (11)

with Y j
k denoting the Fourier coe>cients of the jth component. For the GCV estimate the following

theorem can be proved (see Amato and De Feis [2, Theorem 8, p. 272]):

Theorem 5. The choice of  GCVj provided by the GCV criterion is asymptotically optimal in the
average; in the sense that if  nj is any minimizer of GCVj( ); then

lim
nj→∞

E‖(Gj
n(X;  nj)−Mj

n‖2L2([0;1])
min ¿0 E‖Gj

n(X;  )−Mj
n‖2L2([0;1])

= 1:
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Note that convergence for the jth coordinate holds when nj → ∞.
Summarizing, the procedure for computing the estimator of the two-dimensional additive model

in the case of an equispaced design goes through the following algorithm:

Algorithm 1.
Step 1: Calculate the two-dimensional Fourier transform of input data yi1 ; i2 ; 06 i1¡n1; 06 i2¡n2

and let Yk1 ; k2 ; −n1=26 k1¡n1=2; −n2=26 k2¡n2=2; be the matrix of Fourier coe>cients;
Step 2: Estimate the regularization parameters  1 and  2 using the GCV criterion (11) applied to

the middle row Y0; k2 , −n2=26 k2 	=0¡n2=2, and to the middle column, Yk1 ;0, −n1=26 k1 	=0¡n1=2,
of the Fourier matrix;

Step 3: Compute the estimates of the Fourier coe>cients of the components m1 and m2 of m
(G1

k1 ;0, −n1=26 k1 	=0¡n1=2 and G2
0; k2 , −n2=26 k2 	=0¡n2=2), by Eq. (10) with the regularization

parameters chosen in Step 2;
Step 4: Evaluate the inverse discrete Fourier transform of G1

k1 ;0, −n1=26 k1 	=0¡n1=2, and G2
0; k2 ,

−n2=26 k2 	=0¡n2=2; they are the approximations of the functions m1(X 1)− Om1(X 1) and m2(X 2)−
Om2(X 2), respectively; together with the estimate Om1(X 1)+ Om2(X 2)=Y0;0, they give the @nal estimate
of m(X).

Remark 4. Thanks to the linearity of averaging and of the Fourier transform; the whole procedure
is equivalent to compute the one-dimensional Fourier transform for all rows (or for all columns); to
average them and then to smooth by regularization the computed Fourier coe>cients. Moreover; it
also follows that the method is equivalent to project (i.e.; to average) directly data yi1 ; i2 over each
coordinate independently; and to then perform an ordinary Fourier transform on the one-dimensional
averaged arrays. This makes the algorithm really fast; since only averages and one-dimensional
Fourier transforms are required.

2.2. Random design

We now assume observing an independent nonidentically distributed sample (Xt ; Yt), t = 1; : : : ; n,
of size n, from model (1),

Yt =
p∑
i=1

mi(X i
t ) + Ut; t = 1; : : : ; n: (12)

All subsequent results hold conditionally on the Xt’s, and therefore, by assuming as in Stone [28],
that the distribution of X is absolutely continuous with a density that is bounded away from 0
and ∞ on its support, there is no loss of generality in supposing that the regression design is
deterministic but irregular. We will also assume that the density q(x) of the noise variables Ut

admits a twice continuously di0erentiable Fisher score function q(x)=q′(x) that is bounded above
by a di0erentiable real function L(x) such that L(U ) and L′(U ) admit @nite moments up to
the order 3. Note that if the noise is Gaussian these conditions are automatically ful@lled. Un-
der these conditions, following arguments similar to those of Low [18], our models under the
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deterministic or the random design are asymptotically equivalent to a continuous time white
noise model. The equivalence is understood in the sense of Le Cam [15] as that of statistical
experiments.
According to the above, it follows that our random design setting does not involve particular

modi@cations with respect to the deterministic design when the continuous time regression prob-
lem is considered. However signi@cant complications arise from the discrete point of view in
terms of computational e>ciency. Fortunately, in the literature several algorithms have been pro-
posed for the fast computation of the Fourier transform even in a nonuniform design setting ([4,
10–12,20,27]). All of them keep the computational cost (O(n log n)) of the famous FFT algorithm.
Moreover the algorithms admit an extension to the general p-dimensional case. Hereafter, in analogy
with the arguments of Remark 4 for the @xed equispaced setting, we develop a method for additive
models that keeps the O(n log n) computational cost and reduces the whole p-dimensional prob-
lem to the solution of p-unidimensional problems. Moreover, the appropriate choice of the relevant
FFT extension, allows us to obtain without e0orts comparable convergence results for the derived
estimators.
Starting point of the method are Eqs. (3)–(5), that still hold in the nonequispaced setting. There-

fore again only the central row, k1 = 0, and column, k2 = 0, are needed for restoring the second and
the @rst components, respectively.
Under discretization the classical nonuniform discrete Fourier transforms have to be

computed

Y j
kj =

n∑
t=1

Yt’
j
kj(X

j
t ); kj =−n

2
; : : : ;

n
2
− 1; (13)

by means of one of the known above-mentioned algorithms.
Note that analogously to Remark 4 for the @xed equispaced design, Eq. (13) is equivalent to project

data Yt on each coordinate independently, so that noise removal can proceed independently as well.
We considered the same tools as in Section 2.1 for the noise removal phase, namely regularization
endowed with the GCV criterion, suitably corrected for the spatial nonequispacity of input data.
The regularization problem will be

min
Y j;  
kj

−√
n=26kj¡

√
n=2

√
n=2−1∑

kj=−√
n=2

|Y j; 
kj − Y j

kj |2 +  

√
n=2−1∑

kj=−√
n=2

(2�kj)2
j |Y j; 
kj |2: (14)

Note that the sum is limited to
√
n elements (in practice only the central

√
n frequencies are

considered signi@cant).
The solution of Eq. (14) is straightforward

Y j; 
kj =

Y j
kj

1 +  (2�kj)2
j
; j = 1; 2;−

√
n
2
6 kj ¡

√
n
2

: (15)

The regularization parameter is estimated by the GCV criterion.
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Table 1
Summary of average and standard error of (16) for all experiments with the addfit predictor

Test n= 64 n= 256 n= 1024

Error Ratio Error Ratio Error Ratio

Regular design

1 0:17± 0:04 1 0:14± 0:02 1 0:13± 0:01 1 m1

0:10± 0:04 1 0:06± 0:02 1 0:05± 0:01 1 m2

2 0:17± 0:04 1 0:14± 0:02 1 0:13± 0:01 1 m1

0:10± 0:04 1 0:06± 0:02 1 0:05± 0:01 1 m2

312 0:04± 0:01 1 0:020± 0:005 1 0:009± 0:003 1 m1

0:05± 0:02 1 0:03± 0:01 1 0:021± 0:005 1 m2

334 0:04± 0:01 1 0:042± 0:005 1 0:042± 0:002 1 m1

0:4± 0:1 1 0:22± 0:06 1 0:15± 0:04 1 m2

Random design

1 0:16± 0:05 1:1± 0:1 0:14± 0:02 1:02± 0:03 0:13± 0:01 1:00± 0:01 m1

0:11± 0:04 1:1± 0:2 0:06± 0:02 1:1± 0:1 0:05± 0:01 1:01± 0:08 m2

2 0:4± 0:2 1:1± 0:2 0:22± 0:07 1:01± 0:07 0:16± 0:03 1:00± 0:03 m1

0:3± 0:1 1:1± 0:2 0:17± 0:07 1:01± 0:09 0:09± 0:03 1:00± 0:05 m2

312 0:04± 0:01 1:1± 0:2 0:020± 0:006 1:02± 0:09 0:010± 0:003 1:00± 0:06 m1

0:05± 0:02 1:1± 0:2 0:030± 0:009 1:02± 0:06 0:020± 0:005 1:00± 0:02 m2

334 0:04± 0:01 1:1± 0:1 0:042± 0:005 1:01± 0:03 0:041± 0:003 1:004± 0:008 m1

0:4± 0:1 1:1± 0:3 0:24± 0:07 1:1± 0:2 0:16± 0:04 1:0± 0:1 m2

412 0:05± 0:03 2± 2 0:03± 0:01 1:5± 0:9 0:016± 0:009 1:4± 0:6 m1

0:3± 0:1 1:02± 0:04 0:24± 0:05 1:01± 0:02 0:24± 0:03 1:002± 0:002 m2

434 0:21± 0:05 1:02± 0:05 0:24± 0:05 1:01± 0:02 0:25± 0:04 1:001± 0:007 m1

0:7± 0:3 1:1± 0:3 0:7± 0:2 1:1± 0:2 0:7± 0:1 1:0± 0:1 m2

Therefore the algorithm for solving the additive model in the nonuniform design goes through the
following steps:

Algorithm 2.
Input: Nonuniform two-dimensional sample of size n: (X 1

t ; X
2
t ; yt)16t6n

for j = 1; 2 do
Step 1: Project the sample on coordinate X j;
Step 2: Compute the one-dimensional nonuniform Fourier transform (Eq. (13)), Y j

kj ;
Step 3: Choose the regularization parameter by GCV criterion;
Step 4: Regularize the computed transform by Eq. (15) in correspondence of the regularization

parameter estimated in Step 3;
Step 5: Inverse Fourier transform the smoothed coe>cients, which yields the approximation of

the jth component.
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Table 2
Summary of average and standard error of (16) for all experiments with the funfits predictor

Test n= 64 n= 256 n= 1024

Error Ratio Error Ratio Error Ratio

Regular design

1 0:13± 0:04 1:03± 0:09 0:07± 0:02 1:0± 0:1 0:04± 0:01 1:04± 0:08 m1

0:11± 0:04 1:0± 0:1 0:06± 0:02 1:0± 0:1 0:03± 0:01 1:05± 0:08 m2

2 0:3± 0:1 1:5± 0:2 0:14± 0:03 1:20± 0:05 0:07± 0:01 1:18± 0:04 m1

0:21± 0:05 1:24± 0:07 0:11± 0:02 1:16± 0:04 0:06± 0:01 1:17± 0:04 m2

312 0:02± 0:01 0:9± 0:2 0:008± 0:005 0:9± 0:2 0:004± 0:003 0:9± 0:2 m1

0:05± 0:02 1:0± 0:1 0:031± 0:008 1:0± 0:1 0:022± 0:004 1:05± 0:07 m2

334 0:04± 0:01 1:03± 0:06 0:022± 0:005 1:04± 0:06 0:013± 0:002 1:06± 0:05 m1

0:4± 0:1 1:03± 0:08 0:21± 0:06 1:0± 0:1 0:12± 0:03 1:04± 0:08 m2

Random design

1 0:13± 0:05 1:1± 0:2 0:07± 0:02 1:1± 0:1 0:04± 0:01 1:04± 0:09 m1

0:11± 0:04 1:1± 0:2 0:06± 0:02 1:1± 0:1 0:035± 0:009 1:0± 0:1 m2

2 0:4± 0:2 1:1± 0:3 0:20± 0:07 1:0± 0:2 0:10± 0:04 1:0± 0:1 m1

0:3± 0:1 1:1± 0:3 0:17± 0:07 1:0± 0:2 0:09± 0:03 1:0± 0:1 m2

312 0:02± 0:01 1:1± 0:7 0:008± 0:006 1:0± 0:5 0:004± 0:003 1:0± 0:6 m1

0:05± 0:02 1:1± 0:2 0:031± 0:009 1:0± 0:1 0:018± 0:004 1:04± 0:08 m2

334 0:03± 0:01 1:1± 0:2 0:020± 0:005 1:1± 0:1 0:013± 0:002 1:05± 0:06 m1

0:4± 0:2 1:2± 0:3 0:23± 0:06 1:1± 0:1 0:12± 0:03 1:1± 0:1 m2

412 0:03± 0:02 1:1± 0:8 0:01± 0:01 1:0± 0:7 0:007± 0:005 1:0± 0:4 m1

0:11± 0:05 1:2± 0:3 0:07± 0:03 1:2± 0:2 0:05± 0:02 1:2± 0:1 m2

434 0:08± 0:04 1:2± 0:3 0:05± 0:02 1:2± 0:2 0:03± 0:02 1:2± 0:1 m1

0:6± 0:3 1:2± 0:4 0:4± 0:2 1:1± 0:2 0:24± 0:08 1:0± 0:1 m2

As before, the mean value is estimated through the coe>cient Y0;0. The computational cost of
Algorithm 2 when the Steidl method is considered for evaluating the nonuniform Fourier transform
(Step 2) is O(&n log &n), with integer &¿ 1 being the oversampling factor (see [27] for details).
There are two reasons to consider the Steidl’s algorithm: @rst of all estimates of the approxi-
mation error are given, and second these estimates improve those obtained by Dutt and Rokhlin
[10].
We stress that sparseness of data inherent to the multidimensional setting and the nonuniform

design a0ect the solution of the proposed method by some bias. In order to reduce this problem,
two di0erent actions can be considered. The @rst one is to correct Eq. (13) as

Y j
kj =

n∑
t=1

aj(t)Yt’
j
kj(X

j
t ); kj =−n

2
; : : : ;

n
2
− 1;
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Table 3
Summary of average and standard error of (16) for all experiments with the wavelet direct separation predictor

Test n= 64 n= 256 n= 1024

Error Ratio Error Ratio Error Ratio

Regular design

1 0:15± 0:04 1 0:11± 0:02 1 0:08± 0:01 1 m1

0:14± 0:04 1 0:10± 0:02 1 0:072± 0:009 1 m2

2 0:15± 0:04 1 0:11± 0:02 1 0:08± 0:01 1 m1

0:14± 0:04 1 0:10± 0:02 1 0:072± 0:009 1 m2

312 0:05± 0:01 1 0:035± 0:006 1 0:025± 0:003 1 m1

0:06± 0:02 1 0:045± 0:008 1 0:032± 0:004 1 m2

334 0:04± 0:01 1 0:026± 0:004 1 0:018± 0:002 1 m1

0:5± 0:1 1 0:34± 0:06 1 0:25± 0:04 1 m2

Random design

1 0:29± 0:09 2:2± 0:9 0:20± 0:04 2:5± 0:7 0:15± 0:02 2:4± 0:4 m1

0:28± 0:09 1:7± 0:7 0:18± 0:04 2:1± 0:5 0:13± 0:02 2:1± 0:4 m2

2 0:4± 0:1 1:4± 0:6 0:30± 0:07 1:3± 0:3 0:22± 0:03 1:3± 0:2 m1

0:4± 0:1 1:2± 0:3 0:26± 0:07 1:2± 0:2 0:19± 0:04 1:2± 0:2 m2

312 0:19± 0:06 3± 1. 0:13± 0:03 5± 1 0:10± 0:01 5± 1 m1

0:3± 0:1 2± 1 0:23± 0:05 4± 1 0:16± 0:02 4:6± 0:9 m2

334 0:12± 0:04 1:01± 0:07 0:05± 0:01 1:02± 0:07 0:033± 0:006 1:04± 0:07 m1

3± 1 9± 4 2:4± 0:5 10± 3 1:7± 0:2 9± 2 m2

412 0:20± 0:07 2± 1 0:13± 0:06 2± 1 0:11± 0:05 3± 1 m1

0:4± 0:2 2± 1 0:25± 0:09 2± 1 0:20± 0:06 3± 1 m2

434 0:17± 0:07 1:1± 0:2 0:10± 0:05 1:1± 0:2 0:08± 0:08 1:1± 0:1 m1

2± 2 4± 4 2± 1 4± 3 1:5± 1 4± 3 m2

with

aj(t) =




(X j
t+1 − X j

t )=2; t = 1;

(X j
t+1 − X j

t−1)=2; 2¡t¡n;

(X j
t − X j

t−1)=2; t = n;

in order to get convergence of the (nonuniform) discrete Fourier transform to the Fourier coe>cients.
The second action is to reiterate the algorithm in a back@tting fashion, just as made in Linton [16]
for marginal integration. Computational speed of Algorithm 2 suggests Fourier direct separation to
have a better e>ciency.
From the results of Elbel and Steidl [12] and Steidl [27] on the approximation properties of the

nonuniform Fourier transform and its inverse, the e0ect of using a nonuniform Fourier transform
in deriving the error of approximation leads, after some tedious by straightforward calculations, to
an upperbound of the error by an expression proportional to the error for the equispaced deter-
ministic design, the proportionality constant being independent of the sample size. It follows then,
by a reasoning similar to that of Amato and De Feis [2] for the deterministic equispaced case,
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Table 4
Summary of average and standard error of (16) for all experiments with the Fourier direct separation predictor

Test n= 64 n= 256 n= 1024

Error Ratio Error Ratio Error Ratio

Regular design

1 0:14± 0:04 1 0:09± 0:02 1 0:05± 0:01 1 m1

0:13± 0:04 1 0:09± 0:02 1 0:05± 0:01 1 m2

2 0:14± 0:04 1 0:09± 0:02 1 0:05± 0:01 1 m1

0:13± 0:04 1 0:09± 0:02 1 0:05± 0:01 1 m2

312 0:04± 0:01 1 0:030± 0:007 1 0:017± 0:004 1 m1

0:06± 0:02 1 0:043± 0:008 1 0:028± 0:004 1 m2

334 0:04± 0:01 1 0:026± 0:004 1 0:017± 0:002 1 m1

0:4± 0:1 1 0:23± 0:08 1 0:12± 0:05 1 m2

Random design

1 0:22± 0:08 1:4± 0:5 0:11± 0:02 1:1± 0:2 0:06± 0:01 1:02± 0:08 m1

0:30± 0:09 1:3± 0:3 0:13± 0:03 1:1± 0:2 0:07± 0:01 1:06± 0:09 m2

2 0:4± 0:1 1:1± 0:3 0:24± 0:08 1:0± 0:1 0:15± 0:04 1:01± 0:09 m1

0:4± 0:2 1:1± 0:2 0:25± 0:07 1:0± 0:1 0:14± 0:04 1:01± 0:08 m2

312 0:14± 0:04 1:2± 0:3 0:05± 0:01 1:2± 0:2 0:024± 0:004 1:1± 0:1 m1

0:24± 0:07 1:3± 0:4 0:10± 0:02 1:2± 0:2 0:043± 0:007 1:1± 0:1 m2

334 0:19± 0:06 1:0± 0:1 0:07± 0:02 1:03± 0:04 0:031± 0:006 1:01± 0:02 m1

1:1± 0:3 2± 1 0:5± 0:2 1:9± 0:9 0:17± 0:06 1:3± 0:4 m2

412 0:3± 0:1 1:1± 0:3 0:19± 0:08 1:0± 0:2 0:16± 0:07 1:1± 0:2 m1

0:5± 0:2 1:4± 0:4 0:4± 0:1 1:3± 0:2 0:3± 0:1 1:2± 0:1 m2

434 0:4± 0:2 1:0± 0:1 0:3± 0:2 1:01± 0:04 0:3± 0:2 1:00± 0:05 m1

0:8± 0:3 1:5± 0:9 0:6± 0:7 1± 2 0:4± 0:3 1± 1 m2

that, under the general assumptions in this section, the approximation shares the same asymptotic
properties.

3. Numerical experiments

A simulation study was conducted to assess the performance of the approximation proposed in
this paper. We have applied the Fourier direct separation method to several test problems considered
previously in the literature and to a real problem. In the simulations we make comparisons with
other known methods, namely the wavelet direct separation [1], the spline smoothing (funfits
code [21]), and the local polynomial regression (addfit code [23]). The algorithm to generate
the Fourier direct separation approximation was implemented in MATLAB. The MATLAB script is
available upon request for the interested readers.
For the simulation study we have used several two-dimensional models (purely additive and with

an interaction term) and several types of noise. They are the following:
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Fig. 1. Boxplot of error (16) for regular design, n=256, Examples 7, 8, 912, 934 and the predictors (1: kernel; 2: splines; 3:
wavelet direct separation; 4: Fourier direct separation).

Problem 7 (Sperlich et al. [26]):

m= m1 + m2 + �;
m1 = 1:5 sin(−1:5X 1); −26X 16 2;
m2 =−(X 2)2 + E(X 2)2; −26X 26 2:

X 1 and X 2 come from a regular design or from a uniform distribution on [ − 2; 2]. Noise � is
independent Gaussian with zero mean and standard deviation 0.5.

Problem 8. m= m1 + m2 + X 1X 2 + �; where X 1; X 2; m1; m2 and � are the same as Problem 7.
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Fig. 2. Boxplot of error (16) for random design, n = 256, Examples 7, 8, 912, 934, 1012, 1034 and the predictors
(1: kernel; 2: splines; 3: wavelet direct separation; 4: Fourier direct separation).

Problem 9 (Sperlich et al. [25]):
m= m1 + m2 + �,
where m1 and m2 are two diAerent functions from the set

f1(X ) = 2X;

f2(X ) = X 2 − EX 2;

f3(X ) = eX − EeX ;

f4(X ) = 0:5 sin(−1:5X ):
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Fig. 3. Average of predicted functions (dashed line) and MSE for Examples 7, 8, 912, 934 n = 256, regular design and
the Fourier direct separation predictor. True functions are shown by a solid line.

X can come from a regular design or from a uniform random distribution, both on [− 3; 3]. Then
the test problem is individuated by the code 3pq, where p and q(16p; q6 4) are the functions
chosen among the four listed. Noise � is independent Gaussian with zero mean and standard
deviation 0.5.

Problem 10. Same as Problem 9; but for X 1 and X 2 having uncorrelated Gaussian distributions
with mean 0 and variance 1 (test code 4pq).
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Fig. 4. Average of predicted functions (dashed line) and mean square error for Examples 7, 8, 912, 934, 1012, 1034,
n= 256, random design and the Fourier direct separation predictor. True functions are shown by a solid line.

We have considered also a real data example. The minitri data (available in the funfits
package) reports the results from a mini triathlon sponsored by Bud Lite, held in Cary, NC,
June 1990. Times are in minutes for the male 30–34 group. Components are: swim (12 mile),
bike (15 miles), run (4 miles). We have applied a two-dimensional additive model to this
dataset in order to explain the run record times as a function of the swim and bike record
times.
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Fig. 5. Surfaces predicted by the methods on the minitri data. The lower panel represents plots of the predicted
components by kernel (dashed line), spline (dotted line), wavelet (dotted-dashed line), and Fourier (continuous line)
approximations.

The Fourier direct separation approximation was built considering the cosine transform, in order
to deal with nonperiodic functions.
For each test problem, several sample sizes were considered and for each sample size=test function

combination, 500 Monte Carlo replications were performed. To fairly compare the approximation
methods, the codes were run on the same set of simulated data.
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To measure the quality of the @t of each approximation, m̂j, separately we have computed the
mean square error (MSE), sjk for each component separately,

sjk =
1
n

n∑
t=1

(m̂j(X j
t )− mj(X j

t ))
2; j = 1; 2; k = 1; : : : ; 500;

together with their averages over Monte Carlo replications (MASE).
Recalling however that the m̂j and mj are only unique up to some additive constant and to make

sure that the comparisons between methods only reQect substantial di0erences in shape between the
true and the estimated function we have used as a quality of @t criterion

sjk =
1
n

n∑
t=1

[(m̂j(X j
t )− ave(m̂j))− (mj(X j

t )− ave(mj))]2: (16)

The 500 values of sjk for each smoother are displayed graphically by means of boxplots and
summarized by their average with a standard error in suitable tables.
Moreover, in order to show the behavior of the approximations with respect to the test functions,

we have computed bias and MSE of each predictor as a function of each component. Their average
over the samples is shown in suitable error plots.
Finally, in order to rank our smoothers we derived an e>ciency measure. In particular the MASE

comparisons do not usually provide a simple ranking between estimators. Our approach is to measure
the e>ciency of the procedures against a similar procedure estimating m1(X 1) based on a knowledge
of m2(·) (and conversely). In our case the e>ciency is to compare the ratio of the sjk by the MSE
of the estimated mj when one smooths the partial errors Yt −m2(X 2

t ) (Yt −m1(X 1
t )) in the direction

of interest X 1 (X 2).
Experiments were carried out under di0erent settings: size (n = 64; 256; 1024) and design (@xed

and random). In the case of random design Steidl’s algorithm was considered for the computation
of the nonuniform Fourier transform, with parameter &= 2.
Tables 1–4 summarize all experiments in terms of average and standard errors of (16) for the four

predictors. Ratio with respect to the values obtained in the unidimensional @t as explained above is
also shown. In the case of Problem 3 results are not available since true values are not known. In
addition, for a fair comparison with respect to both components and across functions, the MASE is
normalized with respect to the L2 norm of the true function, so that values shown in the tables are
to be read as the square root of the actual relative MASE. Fourier direct separation is endowed with
just one back@tting step in order to reduce the bias of the estimator for the random design. This is
enough to give top performance of the method as con@rmed by e>ciency measure close to 1.
A visual representation of these results is shown in the boxplots of Fig. 1 for regular designs

and Fig. 2 for random designs, both for n = 256. Figs. 3 and 4 show plots of bias and MSE as a
function of covariate for n=256 and for regular and random design, respectively, in the case of the
Fourier direct separation predictor. We defer to Amato and Antoniadis [1] for a comparison with
analogous plots of the addfit, funfits and wavelet direct separation predictors. Fig. 5 shows the
three-dimensional scatterplots and surfaces as predicted by all the methods on the minitri data.
Analysis of tables and @gures shows that the funfits predictor generally performs better than

its competitors; we mention that addfit method often fails to @nd a solution, due to convergence
problems in the choice of bandwidth; in these cases empirical methods have been used. Moreover
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Table 5
CPU execution times (sec) of addfit (K), funfits (S), wavelet direct separation (W) and Fourier direct separation (F)
for di0erent sizes of the sample and regular and random design

Test n= 64 n= 256 n= 1024

K S W F K S W F K S W F

Regular design

1 0.08 0.01 0.01 0.01 0.36 0.02 0.01 0.01 0.96 0.1 0.02 0.01
2 0.06 0.01 0.01 0.01 0.3 0.02 0.01 0.01 0.96 0.11 0.02 0.01
312 0.06 0.01 0.01 0.01 0.27 0.01 0.01 0.01 0.9 0.05 0.02 0.01
334 0.06 0.01 0.01 0.01 0.31 0.01 0.01 0.01 0.97 0.07 0.02 0.01

Random design

1 0.1 0.02 0.03 0.02 0.34 0.06 0.04 0.03 1.34 0.25 0.06 0.11
2 0.1 0.01 0.03 0.02 0.36 0.06 0.04 0.03 1.35 0.24 0.06 0.11
312 0.1 0.01 0.03 0.02 0.38 0.06 0.04 0.03 1.36 0.21 0.06 0.11
334 0.1 0.01 0.03 0.02 0.36 0.06 0.04 0.03 1.39 0.26 0.06 0.11
412 0.09 0.01 0.03 0.02 0.37 0.06 0.04 0.03 1.36 0.23 0.06 0.11
434 0.09 0.01 0.03 0.02 0.34 0.06 0.04 0.03 1.37 0.26 0.06 0.11

in the case of regular design Fourier direct separation method retrieves functions with less bias than
funfits, even though variance is larger.
Finally, Table 5 shows CPU execution times for the four predictors under di0erent settings of

the experiments (MATLAB code was run on a 800 MHz Pentium III PC). In both regular and
random design, Fourier and wavelet direct separation show the best performances, with Fourier
direct separation outperforming signi@cantly the corresponding wavelet method. In conclusion we
can assert that the Fourier direct separation method provides the best compromise between accuracy
and computational cost.
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