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Discrete Fourier Calculus and Graph Reconstruction
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Building on results of E. Barletta et al., [4], we give several applications of discrete Fourier calculus and the
convolution product of functions defined on binary codes and generalize a result by R.P. Stanley, [17], on the
vertex-switching reconstruction problem.
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1. Introduction

A linear code is a linear space over Z, (the binary field). Given a code V a vector v € V is a codeword. For any finite
dimensional code Z5 the weight M(v) of a codeword v € Z3 is the number of ones in v. The use of codes in graph
theory is prompted by the fact that as long as a graph G of order 7 is recognized by looking at its edge set, G may be
identified with a codeword in Z;("_W % and |E(G)| (the number of edges of G) is the weight of that codeword. Precisely,
let G, be the set of all graphs on the vertices {xi,---,x,}. Let K" € §, be the complete graph on {xi, - - -,x,} and let us

denote the edges of K" by E(K") = {e},---,ey} where N = |[E(K")| = (Z) = n(n — 1)/2. Then the map
(1) k:4,— 7Y, kG = (xew(en, - xec(en), G € G,

is a bijection, thus providing the identification mentioned above. Here xg) : {e1,---,en} — Z, is the characteristic
function of the edge set of G € §,, (thought of as Z,-valued, rather than real valued).

The code Z) may also be thought of as a finite graph Gy whose vertices are the codewords X € Z) and two
codewords X, Y are joined by an edge if the Hamming distance H(X,Y) is 1. We adopt the notations and conventions
in [8] and [7] (see also our Section 2 for a supply of definitions and basic results used throughout the paper). There is a
natural Z;-analog to the Fourier transform (cf. [7], p. 325) i.e. an invertible linear map F : D(Gy) — D(Gy) (where
D(Gy) is the space of all functions f : Z]ZV — R) which possesses many of the properties of the classical Fourier
transform e.g. transforms the convolution product of functions on Z) into the ordinary product of the transformed
functions (cf. e.g. Lemma 2 in [4], p. 15). P. Diaconis & R. L. Graham, [7], used ¥ to characterize the invertibility of
the Radon transform Rs : D(Gy) — D(Gy) based on translates of a set S € V(Gy): Ry is invertible if and only if
F(xs) # 0 everywhere. This is the Diaconis-Graham lemma, cf. Lemma 6 in Appendix A to this paper. It also turns out
that ¥ transforms finite differences D, f(X) = f(X + ey) — f(X) (cf. Section 2.2 below) into products with a,(X) =
(—1)X« — 1 of the transformed function, thus making # suitable for applications to combinatorial PDEs on Gy (in a
way similar to the use of the classical Fourier transform). Indeed the discrete Fourier transform on Gy was used (cf. [4])
to solve the initial value problems for the combinatorial analogs to the heat, wave and Cattaneo equations on a
Hamming graph. As a continuation of the ideas in [4] we address two types of applications of the Fourier transform on
lev . One is to discuss discrete analogs to the notion of fundamental solution for the combinatorial Laplacian A defined
by (5) below. In particular we start a calculus (Fourier transforms, convolution products, etc.) with distributions on a
Hamming graph i.e. linear maps 7' : D(Gy) — R (cf. Section 3). Another application concerns reconstruction problems
in graph theory (cf. [5]).

Let G € §,. If x € V(G) is a vertex let G(x) be the graph obtained from G by switching at x i.e. by deleting all edges
of G incident to x and inserting all possible edges incident to x originally not in G

V(G(x) = V(G) = {x1,- -, xa}
E(G(x)) = [E(G) \ NG(x)] U [Ng»(x) \ Ng(x)],
where Ng(x) = {e € E(G) : x € e} is the set of all edges of G incident to x. The vertex-switching reconstruction
problem (cf. [17]) is: can G be reconstructed from G(xy),---,G(x,)? That is, if H is another graph on {xi,---,x,}

such that G(x;) &~ H(x;) (graph isomorphisms) for any 1 <i < n then are G and H isomorphic? This is a variation
of the Kelly-Ulam conjecture (cf. [5]) where vertex-deletion is replaced by vertex-switching. A technique introduced
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by R. P. Stanley, [16], led him to a positive solution when n £ 0 (mod4) cf. Corollary 1 below. Remarkably a
key ingredient in Stanley’s proof of Corollary 1 is the discrete Fourier calculus on Z5 and the Diaconis-Graham lemma
mentioned before. Let U : L*(§,) — L*(§,) be the unlabelling operator (see Section 4.1) where L2(4,,) is the space
of all functions F : 4, — R (which turns out to be isomorphic to !D(Z;("*D/ 2)). The usefulness of the unlabelling
operator (due to [17], p. 134) comes from the fact that U(x(s) = U(x#)) if and only if the graphs G and H are

isomorphic (cf. (4) in [17]). We show that when G(x;) & H(x;) for any 1 < i < n then
2 U(xuy) = U(xa)) + Fon

where F = Fgy : §, — R is given by
F(g) — an(nfl)/z Z (_I)XAk(g) Z[(_I)XAI{(U-H) _ (_1)X~k(0‘~G)]

F(xs)X)=0 o€,

for any g € §,. Cf. our Theorem 2. Here S C Zg(”fw 2 corresponds under the isomorphism (1) to the set of all claws
K -1 on the vertices {xj,---,x,}. It follows that

Corollary 1. (R. P. Stanley, [17]) Let G,H € §, be two graphs on the vertices {xy,---,x,} so that G(x;) ~ H(x;)
forany 1 <i<n. If n% 0 (mod4) then G~ H.

Proof. Stanley’s arguments show that {X € Zg("fl)/ F (xs)(X) = 0} is empty when n % 0 (mod4). Then (by (2)) G
and H have the same unlabellings. Q.e.d.

Any X € Z;("_W ? may be thought of as an upper triangular matrix X = [(Xi1<ijen € Mu(Zy) (with X;; = 0 for
l<j<i<n). Let

(3) An = {X € €M11(ZZ) :Xij = )(ji’ Xii = 0, Z l_[(_l)XU = 0}

i=1 j=1
One novelty brought by us (within the vertex switching reconstruction problem) is the explicit form of F in (2).
It implies that

Corollary 2. Let G,H € G, be two graphs on the vertices {xi,- - - ,x,} such that G(x;) ~ H(x;) for any 1 <i < n. If
ol D D@ =1y Y7 (¥

2€0rb(G) g€Orb(H)
for any X € A, then G ~ H.

Here Orb(G) is the orbit of G € §, with respect to the natural action on 4, of the group of permutations of order n!
and I is the isotropy group of G.

The paper is organized as follows. In Section 2 we recall the needed notions of graph theory, as they apply to
Hamming graphs. Section 3 continues the work in [4] and solves the problem

Au=8 in By(0), u=0, on aBy(0).

Section 4 is devoted to a generalization (cf. Theorem 2) of a result by R. P. Stanley, [17]. The linear algebra methods
introduced in [16] and [7] were the source of inspiration for both [4] and the present paper. The observation (cf. (2))
that when n = 0 (mod 4) (the case not covered by [17], cf. Corollary 1) it is true at least that x(x — xc) lies in the fibre
U~!'(Fgy) of the unlabelling operator U suggests that an application of the theory of Hilbert spaces with a reproducing
kernel (as developed by N. Aronszajn, [2], and S. Saitoh, [14]) may shed light on the vertex switching reconstruction
problem. Section 4.3 takes a step in this direction by showing that the general theory in [14] can indeed be applied to
organize (cf. Proposition 7) the range of U as a (finite dimensional) Hilbert space #x with a reproducing kernel. Then
(by a result in [14]) there is a unique element fgy € U~ (Fgy) of smallest norm (coinciding with |FGrll g, )- However
the role of fiy (in the reconstruction of G from the G(x;)’s) is unclear as yet.

Acknowledgements. The Authors are grateful to the anonymous referee whose comments led to the improvement
of the present paper.

2. Definitions and Basic Results

2.1 Graphs.

Let G = (V(G),E(G)) be a connected, finite graph, without multiple edges, where V(G) is the vertex set and
E(G) C [V(G)]? the edge set. Let D(G) be the space of all functions f : V(G) — R endowed with the inner product

) (f,9= ) fwew, f.geDG),

xeV(G)
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Let A C V(G). The average of f € D(G) over A is given by Ma(f) = (1/|A]) Y _yes f(X) where |A| denotes the
cardinality of the set A. The combinatorial Laplacian is

(%) (Af)x) = fx) — L Z f(y), feDG), xeV().
M%) \Exte

Here m(x) = |[N(x)| and N(x) = {y € V(G) : d(x,y) = 1} is the set of all neighbors of x. A function f € D(G) is
harmonic if Af = 0. Of course any such f satisfies the mean value property f(x) = My (f) for any x € V(G) and
many results in potential theory carry over to this discrete setting (cf. e.g. M. Kanai, [9], p. 231-234, P. M. Soardi,
[15]). We set H(G) = {f € D(G) : Af = 0}. The dimension by(G) = dimg H%(G) is the first Betti number of G.

A distribution on G is a linear map T : D(G) — R. Let D(G)* be the space of all distributions on G. If A C V(G)
then any function f : A — R defines a distribution (of function type) f € D(G)* given by

fo) =) f0e), ¢ e DG).

x€eA

If L: D(G) — D(G) is a linear map then LT is the distribution on G defined by (LT)(¢) = T(L*p) for any ¢ € D(G),
where L* is the adjoint of L i.e. (L*¢, ¥) = (¢, LY¥). We often write (T, ¢) = T(¢). The product of a function f € D(G)
and a distribution 7 is given by (fT, ¢) = T(f¢).

Let o(G) be the spectrum of A i.e. A € o(G) if Au = Au for some u # 0. The magnification of G is

|0X|
Vol(X)

where 0X = {{x,y} € E(G) : x € X and y ¢ X} and Vol(X) = )y m(x). The Cheeger estimate is that

a(G) C [1 =1 =G> 14++/1—-hG)*] C0,2],

cf. [1]. New Cheeger type estimates were obtained by H. Urakawa, [19]. See also [3]. Eigenvalue problems for the
combinatorial Laplacian occur in a natural way. For instance let

h(G) = inf{ X C VG, |X| < oo}

hZ
(6) iho,W = — — AW+ V(X)W
2m

be the combinatorial Schrodinger equation with the unknown function W : V(G) x Z, — C (the discrete wave
function) where 0,V (x,n) = WV(x,n+ 1) — W(x,n) for any x € V(G) and ne€ Z,. Also V:V(G) — R is a given
function (the discrete potential), m > 0 and h are constants (A= h/(2mw) and h is Planck’s constant), and
Zy =1{0,1,2,---}. The following result is then immediate:

Proposition 1. Let E > 0 be a constant and y : V(G) — R a solution to

hZ
) —— Ay+(V(x)+ E)y=0.
2m

Then the discrete wave function
Ei\"
Y(x,n) = C(l + ?> yx) (CeR)

is a solution to (6).

Let us look for a solution of the form W(x,n) = y(x)u(n) where y : V(G) — R and u : V(G) — C. Substitution into
(6) and separation of variables lead to

. Oyl W Ay
ih =—— —+V(k)
u 2m 'y
hence there is a constant E > 0 such that
®) iho,u+ Eu(n) =0

and y(x) satisfies (7) (the Z,-independent Schrodinger equation). The Z. -part (8) is a recurrence relation yielding
u(n) = (1 4+ Ei/h)"u(0). Finally when V(x) = 0 the equation (7) becomes Ay = 1y (where 1 = 2mE/h2), thus leading
to an example of eigenvalue problem for the combinatorial Laplacian. A detailed study of the solutions to (6) is
relegated to a further paper.

2.2 Hamming graphs.

Let us specialize the discussion to the case of Hamming graphs, our main example through the present paper.
Let Gy be the Hamming graph of order 2V i.e. V(Gy) = le\’ and two vertices X, Y € V(Gy) are adjacentif H(X,Y) = 1.
Here Z, is the binary field and H(X, Y) is the Hamming distance between X and Y i.e. the number of coordinates where
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X and Y disagree. The Hamming ball of center Xy € V(Gy) and radius r > 0 is B,(Xp) = {X € V(Gy) : HXo,X) < 1}
and its boundary is 0B.(Xo) = {X € V(Gy) : HXo,X) =r}. Also we set B.(Xy) = B.(Xo) U 03B.(Xo). Then
V(Gy) = Bn(0). If {eq : 1 < a < N} is the canonical basis in Z’zv then 0B (Xy) = {Xo + €4 : 1| <o < N}. Note that
0B,(X) = ¢ unless r € {1,---,N}. Clearly in a Hamming graph m(X) = N, i.e. Gy is N-regular. The combinatorial
Laplacian on Gy may be written as

1 N
ApX) = (X0 = > @X +ea), X € V(Gy),
a=1

for any ¢ € D(Gy). Then H(Gy) = R (see Corollary 4). Given ¢ € D(Gy) we set
Dyp(X) = (X + e) — 9(X), X € V(Gy).

The (discrete) gradient of ¢ is the function Dy : V(Gy) — RY given by Dy = (D¢, --,Dy¢). By a result of E.
Barletta et al., [4]

1 N
Ap = —— D, .
¢ N; ¢

Note that

(D0, ) = (9, Do) = Y p(X)(Dat))(X)
X
= " eXY(X + e4) — Y(X)]
X
=Y @Y —e)Y(¥) = Y 9(X)Y(X) = (D, V)
Y X

because of —e, = e, in Z,. In particular the combinatorial Laplacian is self-adjoint i.e. A* = A. Also given T €
D(Gy)* the derivative D,T is the distribution given by (D,T)(¢) = T(D,¢) for any ¢ € D(Gy).

We end this section with a comment on discrete wave functions W(X, n) on a Hamming graph. It is a natural question
whether

9 Z |W(X, n)|2 = const.

XeV(Gy)

as a function of » when W satisfies
ih

(10) 9,V =— AW
2m

(the free combinatorial Schrodinger equation). We establish the following negative result:
Proposition 2. Any discrete wave function W(X, n) satisfying (9)—(10) is constant as a function of n.

We shall use the inner product

(11) (f,0= ), XX

XeV(Gy)
for any f, g : V(G) — C (coinciding with (4) on real valued functions). Then Proposition 2 follows from
Lemma 1. For any solution V(X, n) to (10)
(12) b Y NP = 18,90, nel,.

XeV(Gy)

Here ||f|| = (f, f)1/2. Indeed if (9) holds then the left-hand side of (12) vanishes hence 9,¥(X,n) = 0 i.e. ¥(X,n) =
WU(X,0) for any n € Z,. Q.e.d.
To prove Lemma 1 we compute

O Y WX, m)* =
X

(by adding and subtracting W(X,n)W(X,n + 1))
= Z{(B,,\ll)(x, WX, n+ 1) + U(X,n)(0,V)X,n)}
X

_ {(AWX, WX, n+ 1) — WX, n)(AW)(X, n)}
_%;< )X, WX, n + 1) — WX, n)(AD)(X, n)
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= % {(AV(,n), U(,n+ 1)) — (W, n), AW(-, n))}.

As A is a real operator its (C-linear) extension to C-valued functions is self-adjoint with respect to (11) as well. Thus
On XX: (WX, n)|* = %(A\I’(-,n), 9, W(-, n))

and (10) implies (12).

3. Fundamental Solutions

3.1 Discrete electrostatic fields.

Given g > 0 the potential of the (discrete) electrostatic field created by the point charge g at Xy € V(Gj3) is the
function U : V(G3) \ {Xo} — R given by

q
UX)=——, RX)=HXy,X), XeV(G Xo},
()R(X) X) (X0, X) € V(G3) \ {Xo}
and the (discrete) electrostatic field created by ¢ is
(13) E=-DU.

A priori the definition (13) lacks of rigor. Indeed given f:A C V(G3) — R the derivative D, f is only defined
when X + e, € A for any X € A. As in the classical theory of electrostatics the rigorous formulation is in terms of
distributions. The potential U defines a distribution U on G given by

Up)= ) UX)eX), ¢eDGy).

X#Xo
Then (13) may be correctly written as £ = —DU and E is an R"-valued distribution on Gj.
Let p € D(G3)* be a fixed distribution on Gj referred to as the density of electric charge and let us postulate that
(14) AU = —4mp.

Then (13)—(14) are combinatorial analogs to the fundamental equations of electrostatics (cf. e.g. [10], p. 197).
In particular (14) is the (combinatorial) Poisson equation. Can one solve (14) (say in D(G3)*)? The classical solution
(in continuous mathematics) is written as a convolution among the fundamental solution for the Laplace operator and
the given density p. As we shall shortly see, on a Hamming graph there are several discrete analogs to the notion of a
fundamental solution, none of which is entirely satisfactory. We close this section by showing that

Proposition 3. Let U : V(Gy) \ {Xo} — R be the function g~iven~by UX) = 1/H(Xo, X) for any X # X, and let U be
the distribution (of function type) determined by U. Then AU = f where
—1/N, X=X,
(2N — 1)/(2N), X € 51(Xp)
fX) =1 (N-2)RX)>—-N
(RX)* = DRX) ~
(N —=2)/IN(N — D], X € Sy(Xo)

X € By(Xo) \ Bi(Xo)

for any X € V(Gy) where S,(Xy) = 9B,(Xp).
Proof. For any ¢ € D(Gy)

y - 1 N
AU =UAg) === > UK Y (D))
X#Xo a=1

N
= > UX)p(X) - % YUY oX + ea).

X#X[) X;éXo a=1

Note that
Lemma 2. For each a € {1,---,N}
RX +e) =RX)+£1, XeAf,

where AT = {X € V(Gy) : Xo = Xoo} and A, = V(Gy) \ AL. Also Xy + e, € A, and Xo + eg € A} for any B#a. In
particular i) UQ’:l(A; \ {Xo + e4)) = V(Gn) \ Bi(Xo) and ii) U AT = By(Xo).

a=1



168 ABATANGELO and DRAGOMIR

Proof.
UN_1 (A7 \ (X0 + ea}) = (UaAy) \ 8B1(Xo)
= (V(Gw) \ {Xo}) \ 8B1(Xo)

and (i) is proved. Moreover codewords with at least one coordinate coinciding with a coordinate of X, are at Hamming
distance < N — 1 from X thus proving (ii).

Let us go back to the proof of Proposition 3. We have

N
YUY oKX +e)= . Y U —e)p(Y)

X#Xo a=1 a Y#Xo+ey

@(Y) @(Y)
"2 2 Fmoit XX wni

o YeA; \{Xo+eq o YeAd
. Z o(X) i o(X)
xeby Oy X0 T 1 iy RO+

hence

AT() = — — p(xX) + ! Y e
D=yt T v

(N —2)RX)* — N
XeBy(Xo)\B) (Xo) (R(X)* — DR(X)
N-2
o, 2 O

€8x (Xo)

+ o(X)

3.2 Fundamental solutions.

Let G=XUJX,EUJE) be a finite graph-with-boundary ie. 1) E C E(X,X), 2) JE C E(X,0X), and 3)
{x e V(G) : m(x) = 1} C 3X, cf. [11]. Here for any A C V(G) and B C V(G) we denote by E(A, B) the set of all
edges e = xy € E(G) such that x € A and y € B. Let O € V(G) be a fixed vertex. A discrete analog to the Dirac
distribution (concentrated at O) is 8¢ : V(G) — R given by
1,

0. x#£0 x € V(G).

So(x) = {

Then a fundamental solution for A is a solution u to the problem
{ Au=38p inX,
u=20 on 0X.

Following the ideas in [4] we shall solve (15) on Gy which is a graph-with-boundary Sy(0) = {1y} where
Iy=({1,---,1) e ZZZV. We may state the following:

5)

Theorem 1. There is a unique solution & to

(16) { Au =35 in By(0),
u=~0 on dBy(0),

given by

i

g0 = Xy (LHED (- )
2 Y#£0 N — Yo (=D
for any X € V(Gy). Here § = 4.
Here X - Y = Zgzl XYy € Zy. The convolution product on D(Gy) is given by

(fx)X)= > [fX—=Y)gY), XeV(Gy),

YeV(Gy)
for any f, g € D(Gy). To give an example let v € ijv and let us consider E,(X) = (—1)"*. Then
(Evf) * (Evg) = Ex(f *8), [,8€ D(Gn).

As another example let a € Z; and f,(X) = (— 1)’“X2 (the binary analog of a Gaussian distribution). Here X2=X-X.
Let us set Ag = {X € V(Gy) : X - X = 0} (the null cone in lev). Clearly Ag ={X € Z’zv : M(X) € 2Z}. Here for any
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Y e ZZZV we set M(Y) = [{e € {1,---,N}: Y, #0}| (the weight of ¥ as a codeword). Also we consider A| = {X €
V(Gy) : X - X = 1} (so that Ay = V(Gy) \ A1). We have (as 2a = 0 in Z;)

(fa* )X) =Y fulX = V)fp(Y)
Y

= f,(0) D (=1 = fa(X)<|A0| +> (—1)“”)
Y

YGA]
or

fox fo = (Dol + (=D 1AL D .
As an elementary byproduct we may state
Proposition 4. |Ag| = |A| =2V,

This is an immediate consequence of the fact that A( is a subgroup of Z12v of index 2. However, it may also
be derived by using the previously introduced techniques. Indeed, as the convolution product is commutative
(Aol = IA1D(fi — fo) = 0 hence the conclusion follows (otherwise f1(X) = 1, a contradiction for X € A).

A simple application of Theorem 1 is

Corollary 3. Let g € D(Gy) and u = g * &. Then
Au(X) = g(X) — g(X — 1y)
for any X € V(Gy).

To prove Theorem 1 we need to recall the discrete Fourier transform ¥ : D(Gy) — D(Gy) given by

(FHX) =FX) = > (DY), X e V(Gy).

YeV(Gy)

See [7] and [17]. Among its properties the discrete Fourier transform is invertible and # ! = 27V . Also F(f x g) =
f g for any f, g € D(Gy), cf. e.g. Lemma 2 in [4], p. 15.

Proof of Theorem 1. Let u be a solution to the problem (16). Then Au(ly) =c where we set ¢ =
—(1/N) Zg:l u(ly + e,) € R. Consequently Au = f where

. X_{(S(X), XeBy© o
(17 J&X) = e XeaByo ~°€ (GN).

Then

FO = 0o+ 3 (=D¥sr) = 1+ (= 1)¥ e
YeBy(0)

for any X € V(Gy). By a result in [4] (cf. Lemma 3, p. 17)
1,
18 FAf)=—
(18) (Af) N af
where a(X) = N — Zgzl(—l)xa. By applying the Fourier transform to Au = f
1 N X1
N aX)aX) =1+ (D¢

hence for X = 0 it follows that ¢ = —1. Thus f(X) =1—(=D*W 3o that

NIZCEDT

a(x) = aX) 7 0.

A X =0,

where A = 4(0). Applying the inverse Fourier transform
u(X) =2""Y (=¥ ay)
Y

- 1= (=nrt
=2MA4+N) (D) ———

y;) a(y)

hence for X = 1y
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1 DR
1=N (=D
izo al)

Q.e.d.

Proof of Corollary 3. We compute h = A(g * &). Applying the Fourier transform (by (18))
.1 1 N R
h=—a¥F &) =—ag&=¢gF(AE) =3

yFex&=—1a8E=35(AE)=4f

where f is given by (17) with ¢ = —1. Applying F~!
hX) = (g% HX) =Y gX = Y)f(¥) = gX) — g(X — Ly).
Y

Q.e.d.
With the same methods we reobtain the following result (well known to hold for any connected regular graph)
Corollary 4. Bo(Gy) = 1.

Proof. Let u € H(Gy). Applying the Fourier transform to Au = 0 gives (1/N)aii =0 i.e. #(X) = 0 for any X #0.
Then applying the inverse Fourier transform gives u(X) = 2-V(0) for any X € V(Gy). Q.e.d.

There is yet another combinatorial analog to the notion of fundamental solution, suggested by the form of
the fundamental solution to the Laplacian on R3 namely 1/r where r(X) = X - X for any X € V(Gy) \ Ao, 1.e. r = xa,.
We may state the following:

Proposition 5. Let H : V(Gy) — R be given by
H(X) = { Lo Xeho v v,
-1, XeA
Then A(1/r) = —H in distributional sense. Moreover given g € D(Gy) if u = (1/r)x g then Au= —H % g.
Proof. For any ¢ € D(Gy)
N
INGIOEDY Arfg) => {<p<X> - %Zl o(X + eq)

XeA XeA

and since X + ¢, € A; if and only if X € Ay (providing another proof of Corollary 4)
N

DY X te)=) Y e)=NY ¢X)
1

XeA| a= a X+4eyeA XeAy

hence A(1/r) = —H.

The convolution product on the second statement of Proposition 5 is in distributional sense. Precisely, we introduce
the following notions. The tensor product of the distributions T € D(Gy)* and S € D(Gy) is given by

(T®S)g) = (T, X — SpX,)), ¢e€DCyim)
The convolution product of the distributions 7, S on Gy is given by
(T*S)) = (T®S.¢%). ¢ DGy
where ¢®(X,Y) = ¢(X + Y). For distributions of function type the two notions of convolution product coincide i.e.
Frg=frg
for any f, g € D(Gy). Indeed
(Fx2o)=F®8¢% = Y [fXFP X,-)

XeV(Gy)
=Y fOOMNeX +Y) =) fX)(Z — X)p(Z)
XY Xz
= ([ *Dp(Z) = (f* 8. 9).
Z

Q.e.d.
We shall also need the Fourier transform on distributions & : D(Gy)* — D(Gy)* given by

(F(T), ¢) =T(p) =T(@), ¢ € DGy).
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Again for distributions of function type

(Fre) ==Y fOOX)
XeV(Gy)
= Xxjfoo ;<—1>X'Y<p<¥) = Xyﬁﬂmm = (F().¢)
ie. F(f) = F(f) for any f € D(Gy).
Lemma 3. For any T € D(Gy)*
19) F(D,T)=a,T, 1<a<N,
where ay(X) = (—1)% — 1. In particular F(AT) = (1/N)aT. Moreover
(20) FTxf=fT

for any f € D(Gy).
Proof. To prove (19)

(F(DoT), ) = (DoT, @) = T(Do).
On the other hand (by Lemma 3 in [4], p. 17)

F (Do) = aa F () = 2V aup

hence
21) Dyp = F(aqp).
Finally (by (21))

(F(DT), 0) = (T, F(awp)) = (T, aup) = (a,T. ).

In particular
F(AT) Ly F(D,T) 12 T
= — — o = — — aa =
N N &

a=1

1 .
—aT.
N
To prove (20)

(F(Txf),0) =(TxF,9) =(T®F,¢%) = (T, 9)
where

Y =F@r X, D= Y NP X.Y)

YeV(Gy)

=Y fNPX +Y) =Y (=D f(1)p(2)
Y Y.z

=Y (=)"%02) Y (=D f() =Y (= 02)f(2)
VA Y VA

ie. Y= 3’-’(<pf). Hence
(FT* o) = (T.F@ ) =(F.0f)=(T.q).
Q.e.d.
At this point we may prove the second statement in Proposition 5. Let us set 7 = A((1/r) * g). Then (by (20))

=gF A1/ =—gFH) = —-FH*E)
i.e. T is the distribution determined by the function —H % g. Q.e.d.

4. The Vertex-Switching Reconstruction Problem
4.1 On a result by R. P. Stanley.

Let G, be the set of all graphs on the vertices {xi, - - -, x,}. There is a natural action of the permutation group o, (of
order n!) on §,. Indeed let o € 0, and G € §,. We define a graph o - G on {x,-- -, x,} by indicating its edge set i.e.
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E(c-G)={0-e:e € EG)}

where 0 - e = {X,(;), Xo(;)} for any edge e = {x;,x;} of G. Let L*(§,) be the linear space of all functions F : §, — R.
Note that the characteristic functions {xg) : G € §,,} form a basis in L*(§,) over the reals. The action of o, on §,
induces an action of o, on L*(4,,) given by

(0-F)G)=F(©'-G), Ge§, oeca,.
Then
(22) 0 X(G) = X{(o-G)-

Of course the relation (22) (followed by R-linear extension) could be taken as the definition of the action of o, on §,,.
We shall need the unlabelling operator U : L*(§,) — L*(§,) given by

U(F) = Z o-F, FelLX4,).

o€o,
Also U(xyqy) is called the unlabelling of the graph G € §,. The scope of this section is to establish the following:
Theorem 2. Let G,H € §, such that G(x;) ~ H(x;) (a graph isomorphism) for any 1 <i < n. Then
(23) Uxm) = Ulxie) + Fon

where Foy © $,, — R is given by

FGH(g) — 27”("171)/2 Z (_I)X-k(g) Z[(_I)X-k(a'~H) _ (_1)X~k(0‘~G)]

£5()=0 <o
forany g € §,. Here S = k(I') C Zg/("fl)/z and T is the set of all claws K, ,_ on the vertices {xy,- -, X,}.

The explicit expression of Fgy in (23) is new and Theorem 2 may be considered as a generalization of R. P.
Stanley’s result (Corollary 1 in the Introduction).

To prove Theorem 2 we need some preparation (based on the ideas in [17]). The Stanley morphism is the map
given by

®:L2(G,) > LXG,). Pua) = Zl X(G)-
for any G € §, (followed by R-linear extension). The bijection k : §, — V(Gy) (N = n(n — 1)/2) defined in the
Introduction induces the R-linear isomorphism
ke : L*(4,) — D(Gy), kJ(F)=Fok™, Fel*4,.
Next let
Ei={eecfe, - ,eny}:x;€e}, 1<i<n,

i.e. E; consists of all edges in K" which are incident with the vertex x;. Now let G; € §, be the graph on {x;,- - -, x,}
whose edge set is E(G;) = E;

Gi =k '(xg(er), -, xe(en)).
Here xg, is thought of as Z,-valued. Then G; is a claw K, = K'x K" on {x1,+--,x,}. As in Theorem 2 we set
I'={Gi,--+,Gu} C G,
We need the following:
Lemma 4. Let S=k(I') C ZIZV. Then the diagram

L*(9n) —2— L*(gn)

k:*l lk*

D(Gy) —25 D(Gy)

is commutative.

So the Stanley morphism is, up to an isomorphism, the Radon transform (see Appendix A) based on translates
of S C ZIZV (the set of all codewords corresponding to all possible claws in K").
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Proof of Lemma 4. For any ¢ € ZY

(ke @ F)(Q) = (PF)(k™'¢) = @ ( Y F(G) xm> k~'¢)

Geg,
that is

n

(24) ke ®F)Q) = Y F(G)Y_ Xauwmk ™0

Ge§, i=1
On the other hand
Rsk F)(©) = Y (keF)@) = Y _(kF)(z+ )

E5%c P
= an:(k*F)(k(Gi) +9)

that is :

(25) (Rs k. F)(Q) = ; F(G) Zl X6 (k' (K(G) + 0)).

We adopt the notations
Ge=k'(©) €4y G, =k '(k(G)+0) € G,
i.e. G; is the graph on {x{, - - -, x,} corresponding to the codewords ¢ and Gé is obtained from G; by deleting all edges in
common with G, and by inserting all edges of G, initially not in G;. Then
E(G}) = E(G))AE(Gy)

(symmetric difference). By (24)—(25) the diagram in Lemma 4 is commutative if only if

Y F(G)Y {x61(G) = xi6en(Go)} = 0.

Geg, i=1

This follows by observing that G = Gé if and only if G(x;) = G,. For instance let us check the sufficiency. The
hypothesis is equivalent to

XEGG) (€a) =8us 1 <a <N,
while the conclusion reads
e (€w) = xg(ea) + 8oy 1 <a <N.
This may be checked as follows

XE (o) + Lo = xE(eq) + XEGx))(€x)
1+ xeGry(ea), Xi € eq

XEGG)) (€a)s X ¢ eq
1, x; €e, and e, € Ng(e;)

0, x;€eyand ey ¢ Ng(x:)
1, x;¢ e, and e, € E(G)
0, x;¢ ey and ey ¢ E(G)

= XEG)(€a)-

Q.e.d.
Proof of Theorem 2. By (iii) in Lemma 7 in Appendix B

(@U)(x(6)) = (UP)(xi6)) = Z Uxieny) = (by (1) in Lemma 7)
i=1

Uiy = (UP) (xmy) = (PU)(xmy)
=1

so that
(26) U(ximy) — Ulxgy) € Ker(P).

Then U(xmy) = U(xigy) + F for some F € Ker($) which we need to compute. Let us apply k, to this identity.
Yet k.F € Ker(Rs), S = k(I') (by Lemma 4) and then (by the Diaconis-Graham lemma, see Appendix A)
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kUxm) = ke U(xiay) + 277 Z AxEx
Xs(X)=0

for some Ax € R. Applying the Fourier transform we get (by (36))

27) F (ke U(ximy)) = F ki U(xiay)) + Z AxX(x)-
Xs(X)=0

On the other hand
FhUa)X) = > (=D k. Ulxio))(@)

¢eV(Gy)
=Y (=D"UGep" 0 =Y (=Y (0 i)k '0)
e e o€,
i.e.
(28) Fl U)X = > (=D > X06(Go).
teV(Gy) o€o,

Let us apply (27) to a zero X of ys and use (28). We obtain
Ay = (=Y [Xem(Go) = X106y (Go)]
s o

hence
Ulximy) = Ulxiey) +
+270 3 Y DY [Xom(Go) = X106y (Go)] Ex o k.

Xs(X)=0 ¢
Assume that G # H. Finally for any g € §,
F(g) = 2N Z Z Z(—l)X'(Hk(g))[X{a.H}(G;) - X{a-G}(Gc)]

XsX)=0 o ¢

S Sy ] 1 gioag

XsX)=0 o ¢ 0, otherwise
=27V Z Z[(—l)x'“‘(“'m“‘(g” — (ke GrkE],
#s0=0 o

Q.e.d.
At this point we may prove Corollary 2. To this end we compute ||FGH||Zz(g )= deg, Fer(g)®. Let

fOO =Y A — (D)X € V(G-

oo,

If {Xi,---,X,,} is an enumeration of the zeros of F(xs) then

2
[ > (—I)X'Yf(X)] =D fX)T 2D (=DFFT ) £(X))
i=1

Xs(X)=0 i<j

so that (as i < j implies X; + X; #0 and then Y, (—1)*)Y = ()

2
1FGull® =22NZ[ > (—I)X"‘(g)f(X)}

8€4, LAs(X)=0
2SS o
YeV(Gy) xs(X)=0
i.e.
1Forliag,=2"" Y fX?
Rs(X)=0
hence Fgy = 0 if and only if f = 0 on Z(js). Finally
f =1yl Y (DO il Yy (—1)F
4€Orb(H) 4€0rb(G)
and one may use the description of Z(Xs) at the end of Appendix A.
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4.2 The vertex-switching spectral reconstruction problem.

As two isomorphic graphs have the same spectrum a natural weakening of R. P. Stanley’s problem is the following
vertex-switching spectral reconstruction problem. Let n > 4 and let §,(A) be the set of all graphs on the vertices
{x1,---,x,} such that for any G € §,(A) the degree of each vertex x of G satisfies 2 < mg(x) < n — 1. Given G,H €
G,(A) let us assume that o(G(x)) = o(H(x)) for any x € V. Then is it true that 0(G) = o(H)? As well as in the case
of the vertex-switching reconstruction up to graph isomorphisms the problem is easily seen to possess no solution
for n = 4. Indeed

o(K*) = {0}, o(C* =1{0,2,4},

while the graphs got by switching at some vertex have the spectrum of a claw o(K;3) = {0, 1,4}. The combinatorial
Laplacians of G and G(x;) are related by

Proposition 6. For any G € §,(A) and for any vertex x # x; one has

1
i 7 MO0 A7) = Qif ). x € Nex)
(Agepx) = '
o 1 MO0 A0+ 0 f ). NG,
A N n—1 A ' m(x;) A .
(AGp)xi) = p———— (A f)(xi) — p———— (Af)(xd),

where Q;f(x) = f(x) — f(x;) for any f : {x1,---,x,} = R and Ak is the combinatorial Laplacian of the complete
graph on {Xl, e ,xn}-

The proof of Proposition 6 follows from
N\ {x;}, xeNx)
No)(x) = X7 Xi,
N Ufx},  x ¢ N(x),
Ney(e) = {X1, - X1, Xig 150+ Xa} \ N ().
The problem of relating o(G(x;)) to o(G) is however open.

4.3 On the range of the unlabelling operator.

Let E be a nonempty set and F(E) the space of all real valued functions on E. Let # € ¥ (E) be a Hilbert space with
the inner product (, ). A reproducing kernel for F€ (cf. e.g. N. Aronszajn, [2]) is a function K : E x E — R such that

F(Q) = (F’K(’ 6])),;(’, q S E3
for any F € #. Given a function h : E — # let us consider the linear map
L:H— F(E), LF)(p)=EFh(p)y FeiH, pekE.

S. Saitoh, [12], devised a method for organizing the range of L as a Hilbert space with a reproducing kernel. Precisely
one may set

(29) K(p,q) = (h(¢),h(p))g, p.q€E,

and then (by Theorem 2.1 in [14], p. 51) the range R(L) admits a natural structure of a Hilbert space such that the
induced norm is

I£llzzy = inf{[IFlly : F € LN}, f € RA),

and K(p, q) given by (29) is a reproducing kernel for R(L). Although L is not invertible in general (its fibers are in
general non empty) one may identify an element of minimal norm in each fibre L~( f) (cf. Theorem 2.2 in [14], p. 52)
so as to produce useful generalized inversion formulas (cf. e.g. [13] and [6] for applications to analysis).

Let us endow L*(4,) with the inner product

(F.F))pg, = Y _ FGF(G), F.F e€L*§,).
G<5,

The general theory recalled above applies to E = §, and the (finite dimensional) Hilbert space # = L*(§,,) as follows.
Leth: g, — L*(4,) be given by

h(G) = |Ig| xom@G), G € G,-
Here Ic ={o €0,:0-G = G}. Let G € §,. For each H € Orb(G) we set
Ag(H):={oc€o0,:0-G=H]}.
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As H = 7 - G for some t € g, it follows that
AgH)={o€o,: 1 'oels) =1l
Then for any F € L*(§,,)
UF)G) =) Flo' G = > |Ac(H)| F(H)

o€co, HeOrb(G)
=llgl Y, FH)= ) FUDhGH) = (F.h(G)g,).
HeOrb(G) Heg,

Then Theorems 2.1 and 2.2 in [14], p. 51-52, do apply to L = U and we may state the following:

Proposition 7. The range of the unlabelling operator U : L*(§,) — L*(4,,) is a (finitely dimensional) Hilbert space
Hyx with the reproducing kernel

K(G, H) = |I| |I4| |Orb(G) N Orb(H)|, G.H € §,,.

{(G;Oum)x() 10 € gnn/an}

Proof. The inner product in Hx = R(U) is given by
(fsf e = PF,PF )2, f.f € Hx,
where F € U™!(f) and F' € U~!(f'). Also P:L*§,) — L*(,) © Ker(U) is the natural projection. The definition
doesn’t depend upon the choice of elements in the fibres of U over f and f’. The reproducing kernel is
K(G,H) = (h(H),h(G))12g,)

= ll6| 141 Y Xor(c)(©) Xorn(8) = |lc| 14| |0rb(G) N Orb(H)|
8€Gn

Moreover

is a basis in Hg.

with the obvious consequence
Corollary 5. If K(G,H) > 0 then G ~ H.

Proposition 8. Let Gy,---,G, € §, be a fixed choice of graphs on the vertices {xi,---,x,} such that the quotient
space of G, by o, is
§,/0on = {Orb(Gy), - - -, Orb(Gy)}.
Then the system of functions
{Xie) — XiG,) 1 § € Ob(G) \ {Gu}, 1 =a =¥}
is a basis in Ker(U) over R while

X{g} : l1<a<?
8€0rb(G,)

is a basis in L2(9,n) © Ker(U) over R. In particular dimg Ker(U) = 2""=D/2 _ ¢,
Proof. The kernel of U consists of all F € L*(4,,) such that

Z F(H) =0

HeOrb(G)

for any G € §,,. As {x(o) : & € $,) is an orthonormal basis in Lz(gn) forany F =)

0= Y D dxaE= )

HeOrb(G) ge§, HeOrb(G)

$€5,, /ng{g} € Ker(U) (/18 (S] R)

hence A = = > _peomG(c) An- Then
¢

F=Y" 3" dxw=Y, Y. g —xc,)

a=1 geOrb(G,) a  geOrb(Ga)\{Ga}

and the first statement in Proposition 8 is proved. In particular
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14
dimg Ker(U) = Zn —t=2V—y¢,
a=1

177

where n, = |Orb(G,)| and N = n(n — 1)/2. Next for any F € L2(9,n) © Ker(U) and any H € Orb(G,) \ {G,}, 1 <a <¢

0= (F. xuu — X{G[,})Lz(gn)

= Z Z /lg(X{g}aX{H} - X{G"})Lz(gn) =y — g,
b geOrb(Gy)

hence Ay = Ag, for any H € Orb(G,) \ {G,} which proves the second statement in Proposition 8.

Corollary 6. The projection P : Lz(gn) — L2(gn) o Ker(U) is given by

1
, 1<a<yi,
2—n, Z Xig) zax=
g€0rb(G,)

(30) Pxc,y =

while for any H € 4, \ {G1,-- -, G}

i na([.[) — 1

(€29) Pxm Xig)

NaH) 4O (Gun)
where a(H) € {1, .-, £} is the unique index such that H € Orb(G ).
Proof. Let H € §,. Let us look for 4,, 1, € R such that

Xm=y_. > g —xc)+ D Ha D X

a  geOrb(Gy)\{Ga} a 8€0rb(G,)

We distinguish two cases as I) H = G, for some 1 <b <forlIl) H € §,\ {G1,---,G¢}. In the first case

(32) Ma= Y Ay a€{l--, 00\ (b},
8€0rb(Ga)\{Ga}

(33) w=1+ > A,
g€0rb(Gy)\{Gp}

(34) Hat+ g =0, geOrb(Gy)\{G,}, 1 <ac=xt.
Then (32) and (34) yield (2 — n )i, = 0 hence u, = 0 for any a # b due to the following:

Lemma 5. Letn > 2. For any 1 < a < { either n, = 1 or n, > 3.

Proof. Clearly Orb(K") = {K"} and Orb(K") = {K"}. If n =2 then §, = {F, K?} hence n, =1 for a € {1,2}. Let
n>3 and Ge€§,\ (K",K"}. If |E(G)| =1 then |[E(K")\ E(G)| > 2. Let then E(G) = {e} and let us consider
e,¢’ € EKK")\ E(G), ¢ #¢". As n >3 there exist t; € 0, \ {1}, i € {1,2}, such that 7, -e=¢ and 1,-e=¢". It

follows that |Orb(G)| > 3. A similar argument may be given when |E(G)| > 2.

Then (33)—(34) imply A, = O for any g € Orb(G,) \ {G,}, a#b, and u, = 1/(2 — ny) yielding (30). Similarly in the

second case

Ha = Z /lg’ 1 =a= z’
8€0rb(Ga)\{G,}

ta+ g =0, geO0rb(Gy)\{Ga}, acil, -, 3\ {aH)},

Mary + g =1, g € Orb(Gan) \ {Gan}
hence HaH) = (I’la(H) — 1)/na(H) yleldlng (31) Qed

At this point we may complete the proof of Proposition 7. Let f, = U(}_,com(c,) Xigt)- By the second statement in
Proposition 8 it follows that {f, : | <a < £} is a basis of #Hg over R. On the other hand each f, may be explicitly

computed as

L )= " Y xgle - H)

g€0rb(G,) o€o,

= Z IAg(H)I=( Z |1g|>X0rb<Gﬂ>-

g€0rb(G,) g€0rb(G,)
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Appendix A: The Diaconis-Graham Lemma

The Radon transform based on translates of a set S € V(Gy) is the map

Rs : D(Gy) — D(Gw),  (Rsf)(X) = Z f),

YeX+S

where X + S ={X+Z :Z € §}. P. Diaconis & R. L. Graham have studied (cf. [7]) the Radon transform on Z'ZV and
proved an inversion formula for RE,(O) (respectively for Rg,)) when N is even (respectively odd). The Fourier and
Radon transforms are related as shown by the following:

Lemma 6 ([7], p. 325-326). Let S € V(Gy) be a nonempty subset. Then {27NEx : 35(X) = 0} is a basis of Ker(Rs)
hence

dimg Ker(Rs) = [{X € V(Gn) : xs(X) = 0}].
In particular the Radon transform Ry is injective if and only if }s# 0 everywhere in V(Gy).

For any f € D(Gy)
(frx)X) = Y xs(NfX—7Y)

YeV(Gy)
=Y fX-v= Y f2
YeS§ ZeX+S

i.e. f* xs = Rgf. Taking Fourier transforms
(35) FRsf) =F %s.
Let us compute the Fourier transform of E;

EzX) = Y (~)ExY)

YeV(Gy)
=) (DY = {ZN X=2z,
Y 0 X#7Z,
as X # 0 implies ZYGV(GN)(—DX'Y = 0 (cf. [4], p. 15-16). We may conclude that
(36) FQVE) = xa-

Proof of Lemma 6. Given f € D(Gy) we let Z(f) = f‘l(O) be the set of all zeros of f. Let us observe that the system
(FQNEy) : #5(Z) = 0} C D(Gy) is free over R. Indeed let us consider a null linear combination

0= Y FQVEy
ZeZ(Rs)
with 4z € R. Then (by (36)) 0 = ZZeZ()m Az xizy(X) = Ax for any X € Z(}s). Yet F is an isometry of D(Gy) into
itself hence the system {27VEy : X € Z(}s)} C D(Gy) is free as well.

To end the proof of Lemma 6 we ought to show that {27VEx : X € Z(Xs)} is also a system of generators in Ker(Ry).
Let X € Z(Xs). Then (by (35)-(36))

F(RsEx) = Ex s =2V xixy #s = 0

hence 27VEy € Ker(Rs). Finally let us show that any f € Ker(Ry) may be written as the linear combination
2N ZXEZ()?S)f(X)EX‘ Indeed (by (35)) 0 = F(Rsf) = f xs implies that f = 0 on V(Gy) \ Z(Xs) hence

( > f<X>Ex><Y)= > feo=n*T

XeZ(}s) Xe€Z(Rs)

= Y DYoo - Y (DYoo =2Yf()

XeV(Gy) V(GN\Z(Rs)
as F =2VF71. Qed.

By a result in [17] the zero set Z(j}xr)) consists (up to the bijection k) of all the graphs g on {xi,- - -,x,} such that
Y (=1)" = 0, where m; is the degree of x; as a vertex of g. Indeed (following the arguments in [17])

n

(F Xrry)(§) = Z (=5 = Z(_l)c-k(Gi)

zek() i=1
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and

N N
CKG) =) taxeled) = Y xuGy€)XE(C) = Y xEle)
a=1 a=1

eeB(Gy)

{ 1, x;€e
Bl 0 Xife
the degree of x; as a vertex of G,;. To describe the components of X e Zg("_])/ > we may use the index set

{G,):1<i<j=<n} If {x,x}} € E(K") (i <)) then {x;,x;} € E(Gx) if and only if X;; = 1 € Z,. Let [X;;] € M,(Z,)
be the n x n symmetric matrix obtained from X such that X;; = 0, 1 < i < n. Then the degree of the vertex x; in Gy is

= mg,(x;),

n

mey (x;) = Zt Xj), 1<i=<n,
=)

where ¢ : Z, — R is the natural injection, so that Z(}s) may be identified with the set A, given by (3) in the
Introduction.

Appendix B: Stanley’s Lemma

The scope of this appendix is to gather a few results spread through [17] as the following:

Lemma 7 (R. P. Stanley, [17]).

i) The unlabellings of two graphs on {xi,---,x,} coincide if and only if the two graphs are isomorphic i.e. given
G,H € §, one has U(xgy) = U(xymy) if and only if G~ H.

ii) For any graph G € §,, any permutation o € 0,, and any index 1 <i <n

(0 G)(x;) = 0 Gxs-1().
iti) The Stanley morphism ® and the unlabelling operator U commute i.e. ® o U = U o .

Proof. Clearly the unlabellings of two isomorphic graphs coincide. Conversely, let us assume that G and H have the
same unlabellings and let us apply the identity U(x(cy) = U(xyn)) (an equality of functions on §,) to H. We obtain

Z Xig)(o™' - H) = Z Xy (o~ - H)

oeoy, o€,
or
(37) Ho€on:H=0- -G} =|lul=1

where Iy is the isotropy group of H with respect to the action of o, on §, (of course |Iy| > 1 as Iy contains at least the
identical permutation). Statement (i) is proved. The proof of (ii) is immediate. To prove (iii) we conduct the calculation

(@U)(xio) = ) P xe)) = (by (22))

ocao,
n
= Z D(Xio.6) = Z Z Xie-G)xpy = (by (i1) in Lemma 7)
oEq, oeo, i=1
n n
= 2D Kot = D D Xigen = UP)xia)-
oeo, i=1 oeco, i=1

Q.e.d.
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