Squiggle: An Experience in Model-Driven
Development of Real-World
Semantic Search Engines

Irene Celino, Emanuele Della Valle, Dario Cerizza, and Andrea Turati

CEFRIEL — Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
{celino,dellavalle,cerizza,turati}@cefriel.it

Abstract. Search engines are becoming such an easy way to find tex-
tual resources that we wish to use them also for multimedia content;
however, syntactic techniques, even if promising, are not up to the task:
future search engines must consider new approaches. In order to prove
that Semantic Web technologies provide real benefits to end users in
terms of an easier and more effective access to information, we designed
and developed Squiggle, a Semantic Web framework that eases the de-
ployment of semantic search engines. Following a model-driven approach
to application development, Squiggle makes ontologies part of the run-
ning code. We evaluate the advantages of Squiggle against traditional
approaches in real world deployments.

1 Introduction

Searching everything everywhere is becoming our habit when we need to find
something. We search Web pages in Web search engines, music using search en-
gines integrated in multimedia players, pictures in images organizer applications,
even personal stuff using desktop searches. However, finding what we need is of-
ten a hard job. Current search engine technology is very good in finding complete
Web pages published all over the world, but it lacks the desired precisio and
recallq] when searching for multimedia resources. For instance, searching “jaguar”
in an image search engine results in a mix of felines and cars, which are difficult
to tell apart. Moreover, current technology is unable to cope with results that
requires either to extract a part of a resource (e.g., a scene from a movie) or to
aggregate numerous resources (e.g., relevant but scattered information regarding
a person).

Furthermore, searching is an expensive activity. For instance, in a medium-
sized enterprise with 100 employees, each one of them would perform around 10
searches per day (some on the Web, some on their mailboxes, etc.), stopping,
successfully or not, in 1-2 minutes. This means that 20-30 hours a day are spent
in searching.

! Precision is the proportion of relevant data of all data retrieved.
2 Recall is the proportion of retrieved relevant data, out of all available relevant data.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 485-F90] 2007.
© Springer-Verlag Berlin Heidelberg 2007

486 I. Celino et al.

What we really need is a search engine able to find any kind of multimedia
resource with the required level of granularity; but, how can we achieve this
search engine of the future? We believe that Tim Berners-Lee was right when,
drawing the “Semantic Web Roadmap” [I], he said:

If an engine of the future combines a reasoning engine with a search
engine, it may be able to get the best of both worlds.

Keeping in mind Tim Berners-Lee claim, we conceived, implemented and de-
ployed Squiggle (http://squiggle.cefriel.it) an extensible semantic search
framework designed to add a conceptual flavour at indexing time and to exploit
as much as possible ontological elements to improve searching time.

2 Existing Approaches to Improve Search Engines

A standard “syntactic” search engine’s implementation is mainly based on three
phases [2]: (a) crawling time, the phase in which the resources are collected
in order to build a coherent (and more homogeneous) set; (b) indexing time,
the phase during which the crawled resources are parsed and indexed in some
particular data structures, optimized to quickly answer to queries; (c) searching
time, the run-time phase in which final users submit their queries in order to
retrieve meaningful results, possibly ranked and/or clustered.

When the resources to be indexed are multimedia files instead of Web pages,
the automatic process of their content becomes very difficult and the lack of links
makes crawling a tricky problem and Google PageRank algorithm useless. The
two ways out are the use of smart machines and smart data. By smart machine
we mean a bunch of techniques that includes text processing, audio processing
and image/video processing. Several search engines that exploit smart machines
are appearing (e.g., Retriever or Musipedia@). On the other side, smart data is
the base for search engines that exploits semantics at search time to increase both
recall and precision. L.e., Semantic Web standards offer the possibility of model-
ing the domain both at lexical and at knowledge level. Explicit representation of
semantics gives search engines the ability to disambiguate between homonyms
and expand the search to synonyms, pseudonyms and any other relation.

There are several examples of existing approaches that try to combine Seman-
tic Web technologies with smart machines in search engines. One of the most
interesting is represented by KIM [3], which includes a semantically enhanced
information extraction system, which provides automatic semantic annotation
with references to classes and instances in the ontology.

3 Our Steps Towards the “Search Engine of the Future”

In our opinion, what Tim Berners-Lee calls the “search engine of the future”
should have a structure similar to existing “syntactic” search engines, but should

3http://labs.systemone.at/retrievr| and http://www.musipedia.org/

http://squiggle.cefriel.it
http://labs.systemone.at/retrievr
http://www.musipedia.org/

Squiggle: An Experience in Model-Driven Development of Real-World 487

also be enriched with machine-processable semantics. In our vision, domain on-
tologies can be employed in empowering searching, indexing and also crawling.

At crawling time, a previous knowledge about the domain can assist the col-
lecting of resources, because this “know-how” can drive the crawler to focus on
relevant information even if links are not explicit. At indexing time, the input in-
formation can be analyzed by means of smart machines and tagged with respect
to its meaning before it is processed by the indexer tool. In this way, the tool is
able to index both the syntactic content of an input document and its attached
semantics. At searching time, domain ontologies can be employed to customize
search engine applications and to improve the user experience in terms of value
added and effectiveness of the search. The tool can help the user in refining his
query both by clarifying the matter of his search and by suggesting possible
expansions of his query to related subjects. The result is that the user can find
more easily what he was looking for.

We conceived Squiggle, keeping in mind Tim Berners-Lee claim and the above
analysis. Squiggle is an extensible framework designed to add a conceptual layer
to indexing process and to exploit as much as possible ontological elements to
improve searching time, leaving to each domain-dependent instantiation of the
framework the choice of using ontologies also at crawling time.

4 Conceptual Architecture of the Squiggle Framework

As a result of our analysis and design, Squiggle is:

— a semantic search-engine, i.e. a semantic web application with searching
functionalities; and

— a semantic-search engine, i.e. a search engine that is able to deal with the
“meaning” of the searched information.

While the latter objective concerns the semantics of the data and can be achieved
through an opportune modeling of knowledge, the former purpose is strictly
related to the model-driven development of a semantic web application.

Squiggle is indeed a semantic application, since its design heavily grounds on a
common model, provided by SKOS [4], which permeates all its structure; Squiggle
assumes SKOS as its application model and, therefore, is naturally able to exploit
SKOS’ semantics. Moreover, being SKOS a horizontal ontology (therefore not
bound to any specific subject), Squiggle is completely domain-independent and
can thus serve as a framework to build domain-specific search applications. In
essence, Squiggle is not a search engine itself, but it allows users to customize
their own engine on the basis of a particular domain knowledge.

Squiggle is designed to provide both syntactic and semantic indexing and
searching primitives, seamlessly combining the speed of syntactic search tools
with improved recall and precision, based on the ability to assign alternative
designations and wordings in multiple languages to their meaning. Among the
constituents of Squiggle, Sesame [5] is used as the semantic engine that queries
the knowledge base, whereas the syntactic search engine Lucene [0] is used to

488 I. Celino et al.

quickly perform text searches. Therefore the described architecture lends itself
well both to overcome the limitations of purely syntactic approaches and to
improve the performance of semantic engines.

Technically speaking, Squiggle’s innovation consists in its Conceptual Index-
ing and Semantic Search capabilities. The Conceptual Indexing consists of a
semantic annotation process, during which the input information is scanned
and analyzed in order to identify and extract the concepts that characterize
it (Squiggle expects resources to be annotated with keywords and it searches in
the domain ontology for concepts whose SKOS labels match those keywords),
and of an indexing process, during which these concepts are stored in an index
for subsequent search and retrieval. On the other hand, the Semantic Search
analyzes user’ queries and tries to identify the ontological elements that can
be related to the request, “suggesting” to the user the potential meanings of
his query; the user is therefore presented with both the results of the syntac-
tic search and the available meanings extracted from the query, which can help
him to refine his request, “disambiguating” among its the possible acceptations.
Moreover, when a user query is re-conducted to a specific meaning, Squiggle also
seeks other concepts that could be of interest for the user; this is possible because
Squiggle Semantic Search can navigate across the graph of interconnected ele-
ments of the domain ontology, following “semantic paths” denoted by relations
and attributes.

5 Squiggle Real-World Deployments

In order to prove the feasibility of our approach, we briefly present some test
beds. We successfully developed some search engines on top of the Squiggle
framework, in different application fields.

Squiggle Ski — CEFRIEL, as Official Supplier of the XX Olympic Winter
Games for Applied Academic Research, caught the opportunity to demonstrate
Squiggle in the context of CEFRIEL’s activities related to Torino 2006d. Our
aim in deploying Squiggle Ski, a service available on CEFRIEL’s portal, was to
help the international public of Torino 2006 in finding images of the athletes
involved in the alpine skiing races.

Squiggle Ski is on-line at http://squiggle.cefriel.it/ski; during Torino
2006 event, it was visited by almost one thousand visitors searching for the
various athletes that won a medal in the alpine-skiing races. When you open the
home page, you are presented with an ordinary search box. If you try searching
for “Herminator abfahrt” (being “Herminator” a nickname for Hermann Maier
and “abfahrt” the German for downbhill), you receive a plain syntactic search, and
in a box on the right Squiggle Ski asks if you mean the athlete “Hermann Maier”
and the discipline “downhill”. If you eventually follow Squiggle Ski suggestions,
all the images of Hermann Maier in a downhill race are retrieved, disregarding

* See also http://www.cefriel.it/press/olimpiadi2006.html

http://squiggle.cefriel.it/ski
http://www.cefriel.it/press/olimpiadi2006.html

Squiggle: An Experience in Model-Driven Development of Real-World 489

the language used in the initial query; an explanation box shows how Squiggle
Ski expanded the query to achieve the result.

Squiggle Music — Squiggle Music is an instantiation of Squiggle framework
in the music field. We noticed that both very diffuse media-players and pop-
ular sites for buying music fail to retrieve tracks when alternative wordings
or translations are used (e.g. searching “rhcp” does not always retrieve the
list of all Red Hot Chili Peppers tracks in the repository). Squiggle Music
indexes audio files (mainly mp3 files) enriching them with information about
authors, song titles and music genres. Squiggle Music is publicly available at
http://squiggle.cefriel.it/music. Combining the smart data from Mu-
sicBrainz and MusicMoAd with a smart machine like QuickNameIE that makes
use of audio fingerprints, we built an automatic semantic annotator that acts as
a domain-dependent plug-in of Squiggle framework during the Conceptual Indezx-
ing phase. This annotator is therefore able to add to each file all its metadata
(artist, song title, etc.).

From the final user’s point of view, besides the usual “suggestion” of meanings,
Squiggle Music is able to perform a query expansion and to present the user with
other results that could be of his interest. Squiggle Music can suggest related
artists when searching for a performer, songs by the same artist when looking
for a song, broader and narrower styles when asking for a music genre.

6 Conclusions

In this paper, we presented Squiggle, a Semantic Web framework that eases the
deployment of semantic search engines in specific applications. We enlightened
how the employment of Semantic Web technologies to the development of search
engines provides real benefits to end users, enabling an easier and more effec-
tive access to information; a semantic search engine, in facts, improves current
syntactic engines in terms of both precision and recall, thanks to an explicit
characterization of the domain at lexical and conceptual level. Semantic Web
technologies show their whole potentialities in the expansion of queries to in-
clude related meanings: a semantic search engine built on Squiggle appears to
be more usable, in that users are supported with semantic “suggestions”, as our
test-beds demonstrate at a glance.

Moreover, we designed Squiggle foreseeing possible extensions to the frame-
work: for example, the adoption of smart machines allows the exploitation of
their media-dependent capabilities and, in the meantime, the generation and
aggregation of smart data.

Finally, we admit that a semantic search engine developed with Squiggle is
strongly domain-dependent and cannot compete with general-purpose search
engines; however, we definitely believe that such an approach provides better
results, because a focused tool better meets specialized needs, helping you in
finding what you're really looking for.
®http://www.musicbrainz.org/| and http://www.musicmoz.org/

S http://phonascus.sourceforge.net/

http://squiggle.cefriel.it/music
http://www.musicbrainz.org/
http://www.musicmoz.org/
http://phonascus.sourceforge.net/

490 I. Celino et al.

References

1. Berners-Lee, T.: Semantic Web Road map (1998), Available on the web at
http://wuw.w3.org/Designlssues/Semantic.html

2. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30, 107-117 (1998)

3. Kiryakov, A., Popov, B., Terziev, 1., Manov, D., Ognyanoff, D.: Semantic Annota-
tion, Indexing, and Retrieval. Elsevier’s Journal of Web Semantics 2(1) (2005)

4. Miles, A., Brickley, D.: SKOS Core Guide, W3C Working Draft (November 2, 2005),
http://www.w3.org/TR/swbp-skos-core-guide

5. Kampman, A., van Harmelen, F., Broekstra, J.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Horrocks, 1., Hendler, J. (eds.) ISWC
2002. LNCS, vol. 2342, Springer, Heidelberg (2002)

6. Gospodnetic, O., Hatcher, E.: Lucene in action. Manning Publications (2004)

http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/TR/swbp-skos-core-guide

	Introduction
	Existing Approaches to Improve Search Engines
	Our Steps Towards the ``Search Engine of the Future''
	Conceptual Architecture of the Squiggle Framework
	Squiggle Real-World Deployments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

