
Information and Computation 179, 76–117 (2002)
doi:10.1006/inco.2002.2968

A Fully Abstract Model for the π -calculus

M. P. Fiore,∗,1 E. Moggi,†,2 and D. Sangiorgi‡,3

∗Computer Laboratory, University of Cambridge, United Kingdom; †DISI, Universita di Genova, Genoa, Italy;
and ‡INRIA, Sophia Antipolis, France

This paper provides both a fully abstract (domain-theoretic) model for the π -calculus and a universal
(set-theoretic) model for the finite π -calculus with respect to strong late bisimulation and congruence.
This is done by considering categorical models, defining a metalanguage for these models, and trans-
lating the π -calculus into the metalanguage. A technical novelty of our approach is an abstract proof
of full abstraction: The result on full abstraction for the finite π -calculus in the set-theoretic model is
axiomatically extended to the whole π -calculus with respect to the domain-theoretic interpretation. In
this proof, a central role is played by the description of nondeterminism as a free construction and by
the equational theory of the metalanguage. C© 2002 Elsevier Science (USA)

INTRODUCTION

The π -calculus [21] is a process algebra for communicating processes with a dynamically changing
topology. Processes (or agents) interact with each other by exchanging names. A name can be private
(i.e., local) to a process, which, however, may decide to export the name thus accepting sharing it
with other processes. Communication of private names is the main difference between π -calculus
and its predecessor CCS, and makes the calculus very expressive (see for instance the encodings of
data values [21, 22] and higher-order process calculi [28, 35]). Late bisimulation is the operational
equivalence on π -calculus processes analysed in [21]. It is preserved by all operators of the calculus
except for input. Late congruence is the induced congruence. Roughly, in late bisimulation free names
of processes are viewed as constants, whereas in late congruence they are viewed as free variables and
hence can be freely instantiated.

This paper substantiates the claim that “the π -calculus is CCS with local channels.” Indeed, we
construct a model for the π -calculus combining techniques used for modelling CCS and local variables
in light of an abstract approach to denotational semantics, notably powerdomains as free algebras, functor
categories, and a kind of monadic metalanguage. Powerdomains as free algebras were introduced in [16]
for modelling the bounded nondeterminism of a parallel imperative language. Functor categories were
used in [24] to model local variables in Algol-like languages. Monads were proposed as a tool for
structuring denotational semantics [10, 23].

Using monads we can exhibit the semantics for the π -calculus as a special case of a general
construction, which can be instantiated to get semantics for calculi ranging from pure CCS to value-
passing CCS to the polyadic π -calculus. This uniform treatment highlights the intrinsic differences
and similarities among these calculi. Here we will only present a model for the π -calculus. The model
captures essential properties of the role of names in the π -calculus, for instance, that the identity of
names does not affect the behaviour of a process and that equality and inequality conditions on names
may affect process bisimilarity.

We give a denotational semantics for the π -calculus by considering categorical models, defining a
metalanguage for these models, and translating the π -calculus into the metalanguage. The metalan-
guage is a simply typed λ-calculus with sums, operations for nondeterminism and dynamic allocation,
base types for names and agents, and recursion (over exponents of the type of agents). It has an in-
terpretation in a standard domain-theoretic model given by a functor category over Cpo (the category
of cpos—posets closed under lubs of ω-chains possibly without bottom element—and continuous

1 Supported by EPSRC Grant RR29300 and HCM ERBCHRXCT 92-0046.
2 Supported by ESPRIT BRA CLICS-II, HCM EXPRESS and SCIENCE ERBSC1*CT920795.
3 Supported by Working Group CONFER II.

76

0890-5401/02 $35.00
C© 2002 Elsevier Science (USA)
All rights reserved.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 77

functions) equipped with a powerdomain monad. This model is shown to provide a fully abstract
denotational semantics for the π -calculus with respect to strong late bisimulation (and congruence).

The metalanguage without recursion has an interpretation in a set-theoretic model given by a functor
category over Set (the category of sets and functions) equipped with the free-semilattice monad. This
model is in bijective correspondence with certain canonical normal forms of π -calculus processes and
provides a universal denotational semantics for the finite π -calculus with respect to late bisimulation
(and congruence).

An important aspect of the metalanguage is its associated equational theory which permits reasoning
about the denotational semantics. For example, to validate laws on π -calculus processes we first validate
analogous laws between terms of the metalanguage using its equational theory and then infer the original
laws by compositionality of the denotational interpretation. Also, the denotational semantics implicitly
defines a model of synchronisation trees for the π -calculus under late bisimulation (i.e., an abstract
notion of late transition system) and process-like operations on these, whose laws can be established
using the equational theory of the metalanguage.

A novelty of our approach is an abstract proof of full abstraction. The result on full abstraction for
canonical normal forms in the set-theoretic model is axiomatically extended to the whole calculus with
respect to the domain-theoretic interpretation. This is done by relating the free-semilattice monad and
the powerdomain monad by means of their universal properties and by exploiting the equational theory
of the metalanguage. As a technical benefit, an explicit description of the powerdomain is not needed
and we can work with cpos instead of bifinite domains.

In the π -calculus, it is possible to define bisimilarity equivalences in between late bisimilarity and
congruence, using distinctions [21]. These are conjunctions of inequalities between names which must be
respected in any use of the processes. Guided by the denotational model, we have generalised distinctions
to constraints: roughly decidable properties on finite tuples of names (a similar generalisation is studied,
operationally, by Boreale and De Nicola [7]). This extra generality pays off as, for example, for any pair
of processes there is an optimal constraint which expresses the necessary conditions on names under
which the processes are behaviourally equivalent. A full abstraction result for the notion of bisimulation
under a constraint (generalising the full abstraction result for late congruence) is also provided.

Related Work. In [17] and [13], Hennessy and Plotkin constructed term models for CCS-like lan-
guages (where actions are pure synchronisations). Later, Abramsky [1] gave a denotational semantics
for SCCS using a domain of synchronisation trees defined as the initial solution in SFP (the category
of bifinite domains and continuous functions) of a domain equation involving Plotkin’s powerdomain.
Further, he provided two full abstraction results: one for finite SCCS with respect to strong partial
bisimulation and another one for the whole SCCS with respect to the finitely observable part of strong
bisimulation. More recently, Aceto and Ingólfsdóttir [4], using the same domain of synchronisation
trees, have generalised Abramsky’s results to a class of CCS-like languages (those described in the
compact GSOS format). Outside the realm of domain theory, in [27], Rutten provides fully abstract se-
mantics with respect to strong bisimulation in a non-well-founded set (specified by a recursive equation)
for a different class of CCS-like languages (a subclass of those described in the tyft/txft format).

Independent from us, other researchers have been working on a denotational semantics for the
π -calculus. Stark has given a denotational semantics for π -calculus in a functor category over SFP [34].
His interpretation coincides with ours but, as he has not extracted a metalanguage from the model, his
constructions are concrete and do not identify the uniformities that our axiomatic approach highlights.
Hennessy [15] combines techniques similar to Stark’s with techniques for CCS-like languages with
value passing to define denotational models for π -calculus may and must testing and prove their full
abstraction. More recently, Cattani et al. [9] have given a denotational semantics for the π -calculus
within an indexed category of profunctors and have shown that their interpretation is fully abstract in
the sense that two processes are bisimilar if and only if their denotations are also with respect to the
model-theoretic notion of bisimulation obtained from open maps.

Organisation of the Paper. Section 1 recalls the syntax and operational semantics of the π -calculus.
Section 2 introduces the system Aπ of equational axioms and the ω-birule (all validated by late bisim-
ilarity). These provide methods for establishing equalities between processes and are essential for
structuring the proof of full-abstraction. Section 3 establishes the operational validity of the ω-birule

78 FIORE, MOGGI, AND SANGIORGI

for late bisimilarity. Section 4 defines the open and closed interpretation of the π -calculus in a functor
category CpoI via translation in a suitable metalanguage. Section 5 establishes the denotational validity
of the equational axioms in Aπ and the ω-birule. Section 6 proves full abstraction for finite processes,
from which one can easily derive full abstraction for the π -calculus, by exploiting the operational
and denotational validity of the axioms in Aπ and the ω-birule. Section 7 sketches how the denota-
tional semantics can be adjusted to handle bisimilary under constraint. Finally, Section 8 discusses
further applications and intrinsic limitations of the techniques used, and suggests directions for future
research.

1. π -CALCULUS

We review the syntax and operational semantics of the π -calculus. N is the countably infinite set of
all names, ranged over by a, b, c, d. The class Pr of processes is built from the operators of inaction,
sum, matching, mismatching, prefixing, restriction, parallel composition, and guarded replication; a
prefix can be an input, a free output, a bound output, or an silent prefix:

DEFINITION 1.1 (π -calculus, concrete syntax).

P := 0 | P + P | [a = b]P | [a �= b]P | α. P |
νa P | P | P | !α. P

α := a(b) | āb | ā(b) | τ

A process is finite when it uses only the operators in the first row.

Remark. It is possible to extend the above definition of finite processes to include the parallel
composition and restriction operators (which also preserve finite behaviours). However, this does not
add new process behaviours (see the laws of Section 2.3) and complicates some of our proofs.

A restriction νa P makes name a local to P . An input-prefixed process a(b). P waits for a name c
to be sent along a and then behaves like P{c/b}, where {c/b} is the substitution of b with c. An output-
prefixed process āb. P sends b along a and then continues like P . A bound output ā(b) represents the
output of a private name b at a; one can think of ā(b). P as an abbreviation for νb āb. P . The τ -prefixed
process τ . P is capable of evolving to P without interacting with the environment. Sum and parallel
composition are used, as in CCS, to express nondeterminism and to run two processes in parallel. A
matching [a = b]P means “if names a and b are equal then P ,” a mismatching [a �= b]P means “if
names a and b are not equal then P .” A replication !α. P represents a countably infinite number of
copies of α. P in parallel. Guarded replications enjoy simpler algebraic laws than plain replication !P .
The restriction to guarded replications does not affect expressiveness, since every plain replication can
be rewritten in terms of guarded replications, up to strong late congruence [29].

Terminology and Notation. We use V to range over finite lists of distinct names, which we indicate
as Pfin(N), and Pr V for the set of processes with free names in V . We write [a �∈ a0, . . . , an−1]P as
an abbreviation for [a �= a0] . . . [a �= an−1]P . For a finite list without repetitions I = i0, . . . , in−1,
we write

∑
i∈I Pi as an abbreviation for Pi0 + · · · + Pin−1 . We use the symbol ≡ for syntactic iden-

tity and ≡α for syntactic identity modulo alpha conversion. We assign parallel composition and sum
the lowest precedence among the operators. Moreover,

∑
i Pi + Q should be read (

∑
i Pi) + Q. In

a(b). P , νb P , and ā(b). P all free occurrences of name b in P are bound. Free names (fn) and bound
names (bn) of processes and prefixes, name substitution, and alpha conversion are defined as ex-
pected. In a statement, we say that a name is fresh to mean that it is different from any other name
which occurs in the statement or in objects of the statement such as processes and substitutions. If
α is an input or an output prefix a(b), āb, ā(b), then name a is the subject of α, written subj(α),
and {a, b} is the set of names of α, written names(α); prefix τ has no prefix and its set of names is
empty.

Table 1 shows the transition rules for the calculus. We have omitted the symmetric version of the
rules sum1, par1, com1, and close1. Process transitions are of the form P

α−→ P ′, and are therefore

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 79

TABLE 1

The Transition System for the π -Calculus

alpha
P ≡α P ′ P ′ α−→ P ′′

P
α−→ P ′′

pre α. P
α−→ P rep !α. P

α−→ P | !α. P if bn(α) �∈ fn(!α. P)

sum1
P

α−→ P ′

P + Q
α−→ P ′

par1
P

α−→ P ′

P | Q
α−→ P ′ | Q

if bn(α) �∈ fn(Q)

com1
P

a(b)−→ P ′ Q
āc−→ Q′

P | Q
τ−→ P ′{c/b} | Q′

close1
P

a(b)−→ P ′ Q
ā(b)−→ Q′

P | Q
τ−→ νb (P ′ | Q′)

open
P

āb−→ P ′

νb P
ā(b)−→ P ′

if a �≡ b res
P

α−→ P ′

νa P
α−→ νa P ′

a �∈ names(α)

mch
P

α−→ P ′

[a = a]P
α−→ P ′

mismch
P

α−→ P ′

[a �= b]P
α−→ P ′

if a �≡ b

of four kinds, corresponding to the four kinds of prefixes in the syntax. Input and output transitions
describe the interactions that P is willing to undertake with its environment, whereas τ transitions
represent an internal activity of P . We refer to [21, 28] for more discussion on the transition rules
(however in [21] alpha conversion is not part of the rules) as well as for examples of the expressiveness
of the language. The notion of behavioural equivalence proposed for the π -calculus in the original
paper [21] is late bisimulation:

DEFINITION 1.2 (Late bisimulation [21]). A relation R on processes is a late bisimulation if P R Q
implies

1. Whenever P
a(b)−→ P ′ and b �∈ fn(Q), then Q′ exists s.t. Q

a(b)−→ Q′ and for each name c,
P ′{c/b} R Q′{c/b}.

2. Whenever P
α−→ P ′ for α ≡ āb or α ≡ τ , then Q′ exists s.t. Q

α−→ Q′ and P ′ R Q′.

3. Whenever P
ā(b)−→ P ′ and b �∈ fn(Q), then Q′ exists s.t. Q

ā(b)−→ Q′ and P ′ R Q′.
4. The converse of (1)-(3), on the actions from Q.

Processes P and Q are late bisimilar, written P ∼ Q, if P R Q, for some late bisimulation R.

Late bisimilarity is preserved by all operators except input prefix. The induced congruence, called
late congruence, is denoted by ∼c and can be defined thus:

DEFINITION 1.3 (Late congruence [21]). Two processes P, Q are late congruent, written P ∼c Q, if
Pσ ∼ Qσ for all name substitutions σ .

In the semantics of Section 4, ∼ will correspond to the closed interpretation—where free names
of processes are treated as constants—and ∼c will correspond to the open interpretation—where free
names are treated as free variables.

2. AN ω-BIRULE AND SOME SYNTACTIC CONSTRUCTIONS

A crucial role in the proof of full abstraction of our denotational semantics is played by a system Aπ

of axioms and inference rules on π -calculus processes. It allows us to rewrite a process P ∈ Pr V into an
expanded form up to any level n, called Expn

V (P); this is a syntactic form where the operators of parallel
composition, restriction, and replication may only occur underneath n prefixes. If P is finite then, for
any n greater than the number of prefixes in P , process Expn

V (P) contains no parallel compositions,

80 FIORE, MOGGI, AND SANGIORGI

restrictions, or replications and can be thought of as a kind of finite synchronisation tree. We call such
completely expanded processes normal forms.

The rules of Aπ give us a way to effectively compute functions Expn
V . With these functions, we can

define the following ω-birule, for a given relation “=” on π -calculus processes

∀n NilnV
(
Expn

V (P1)
) = NilnV

(
Expn

V (P2)
)

P1 = P2
P1, P2 ∈ Pr V (1)

where NilnV (P) is obtained from Expn
V (P) by replacing the subprocesses underneath n prefixes with

0 (therefore NilnV (Expn
V (P)) is a normal form, for all P ∈ Pr V). Birule (1) is powerful: comparing

a pair of possibly nonfinite processes w.r.t. “=” is converted into checking equality between a set of
pairs of normal forms (we recall that normal forms are finite processes). If relation “=” has appropriate
continuity properties, so to be “approximable,” and if the axioms and inference rules in Aπ are sound
for “=”, then also birule (1) is sound for “=”.

The full-abstraction proof of our π -calculus model can be thought of as divided into three parts:

1. operational validity of the ω-birule (1), where “=” is late bisimilarity;

2. denotational validity of the ω-birule (1), where “=” is the equality induced by the (close)
interpretation in the model;

3. full abstraction of the (closed) interpretation on normal forms.

Both parts (1) and (2) require proving the soundness of the rules of Aπ for the corresponding semantic
equality and the approximability of this equality. The operational and denotational ω-birules obtained
provide methods for establishing equalities between processes which, besides their technical use in
proving full abstraction, are of independent interest.

In the remainder of this section we define some syntactic constructions that will be useful for our
technical developments: some extra process operators to make system Aπ simpler (Section 2.1); some
special subsets of processes, including normal and canonical forms (Section 2.2); the system of axioms
and inference rules Aπ and some results for them (Section 2.3); some syntactic functions on processes,
including the above-mentioned functions Expn

V ; and the functions CNFV that map normal forms into
canonical normal forms (Section 2.4).

2.1. Other Process Operators

We define two extended class of processes, called Pr∗ and Pr⊥. The former has the extra operators
left merge and synchronization (written ‖ and ‖); following the ACP tradition [6], we introduce
these operators in order to have a finite set of axioms for parallel composition in system Aπ . Thus, the
grammar for Pr∗ is obtained from that for Pr in Definition 1.1 by adding the productions:

P := · · · | P ‖ P | P ‖ P .

Left merge and synchronisation allow us, intuitively, to decompose the behaviour of a parallel compo-
sition P | Q into the interactions between P and Q, and the remaining actions. Indeed, synchronisation
accounts for the behaviour of P | Q given by rules com1-2 and close1-2, whereas left merge
accounts for that given by par1-2. Their transition rules are

lm
P

α−→ P ′

P ‖ Q
α−→ P ′ | Q

if bn(α) �∈ fn(Q)

syn-com1
P

a(b)−→ P ′ Q
āc−→ Q′

P ‖ Q
τ−→ P ′{c/b} | Q′

syn-close1
P

a(b)−→ P ′ Q
ā(b)−→ Q′

P ‖ Q
τ−→ νb (P ′ | Q′)

plus the symmetric version of syn-com1 and syn-close1. The definitions of late bisimulation and
congruence on Pr∗ remain as for Pr .

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 81

Class Pr⊥ has the extra operator bottom (written ⊥); this should be thought of as the undefined
processes; it will be used as the syntactic counterpart of the “bottom” of the semantic domain. The
grammar for Pr⊥ is obtained from that for Pr in Definition 1.1 by adding the production:

P := · · · | ⊥.

The constant ⊥ has no transitions.

2.2. Special Subsets of Processes

We define, inductively on n, the sets of processes EX n
V , E⊥X n

V , NFn
V , and N⊥Fn

V ; and, from these,
the sets NFV and N⊥FV . The first four sets (those with an index n) can be defined from the grammar
below, for different instantiations of the basic sets 〈BV | V ∈ Pfin(N)〉. In the grammar for Xn

V , it is
assumed that a and b are names in V and that c �∈ V :

X0
V ∈ BV

Xn+1
V := Xn+1

V + Xn+1
V

∣∣ 0
∣∣ āb. Xn

V

∣∣ ā(c). Xn
V ∪{c}

∣∣
τ . Xn

V

∣∣∣∣∣ a(c).

(∑
a∈V

[c = a]Xn
V + [c �∈ V]Xn

V ∪{c}

)
.

(2)

DEFINITION 2.1 (EX n
V , E⊥X n

V , NFn
V , N⊥Fn

V , NFV , N⊥FV). For all n ∈ ω and V ∈Pfin(N), we
define:

• EX n
V is the set of processes generated by symbol Xn

V of grammar (2) when BV = Pr V .

• E⊥X n
V is the set of processes generated by symbol Xn

V of grammar (2) when BV = Pr V
⊥.

• NFn
V is the set of processes generated by symbol Xn

V of grammar (2) when BV = {0}.
• N⊥Fn

V is the set of processes generated by symbol Xn
V of grammar (2) when BV = {⊥}.

For all V ∈ Pfin(N), we also define:

• NFV
def= ⋃

n NFn
V .

• N⊥FV
def= ⋃

n N⊥Fn
V .

Set EX n
V (resp. E⊥X n

V) collects the processes of Pr V (resp. Pr V
⊥) which are expanded up to level

n; i.e., their first n consecutive actions are explicit. NFn
V collects the processes which can perform n

consecutive actions at most and which are completed expanded. NFV is the set of finite and completed-
expanded processes, the V -normal forms. N⊥Fn

V and N⊥FV are similar, but ⊥ can appear too, at the
maximal depth.

We also define the set of canonical normal forms; these are processes in normal form that are unique
for their equivalence class for late bisimilarity. The canonical forms are very special processes, simpler
and easier to manipulate than ordinary ones.

DEFINITION 2.2 (CNFV). CNFV , called the canonical V -normal forms, is the set of canonical
representatives of the equivalence classes obtained by quotienting NFV by ∼. Formally, CNFV is
defined from the grammar for NFV by imposing a canonical choice for bound names and requiring
that, in any term of the form

∑
i Pi , processes Pi are ordered lexicographically and are not duplicated

(i.e., Pi ≡ Pj implies i = j).

The uniqueness of canonical normal forms is expressed by the following proposition:

PROPOSITION 2.1. For P, Q ∈ CNFV , we have: P ∼ Q iff P ≡ Q.

82 FIORE, MOGGI, AND SANGIORGI

We have these containments, for all n and V :

N⊥Fn
V ⊂ E⊥X n

V ⊂ Pr V
⊥

∪ ∪
CNFV ⊂ NFV ⊂ EX n

V ⊂ Pr V

2.3. The System Aπ

We introduce the system of axioms and inference rules Aπ ; the axioms are given in Table 2, the
inference rules in Table 3. In Aπ , the axioms for sum, restriction, and conditionals are those used
in [21] or [25] for axiomatising π -calculus late bisimilarity and include the semilattice axioms for
nil and sum, and some distributivity and cancellation axioms for restriction. There is one axiom for

TABLE 2

The Axioms of Aπ

Alpha-conv.
A If P and Q alpha-convertible then P = Q

Summation
S1 P + 0 = P

S2 P + Q = Q + P

S3 P + (Q + R) = (P + Q) + R

S4 P + P = P

Restriction
R1 νa (P + Q) = νa P + νa Q

R2 if a �∈ names(α) then νa α. P = α.νa P

R3 if a ≡ subj(α) then νa α. P = 0

R4 if not a ≡ b then νa b̄a. P = b̄(a). P

R5 νa 0 = 0

Conditionals
C1 [a = a]P = P

C2 if not a ≡ b then [a = b]P = 0

C3 [a �= a]P = 0

C4 if not a ≡ b then [a �= b]P = P

Replication
Rep if bn(α) �∈ fn(α. P) then !α. P = α. (P | !α. P)

Parallel
Par P | Q = P ‖ Q + Q ‖ P + P ‖ Q

Left Merge
LM1 0 ‖ R = 0

LM2 (P + Q) ‖ R = P ‖ R + Q ‖ R

LM3 if bn(α) �∈ fn(Q) then (α. P) ‖ Q = α. (P | Q)

Synchronisation
Syn1 0 ‖ P = 0

Syn2 P ‖ Q = Q ‖ P

Syn3 (P + Q) ‖ R = P ‖ R + Q ‖ R

Syn4 a(c). P ‖ b̄d . Q = [a = b]τ . (P{d/c} | Q)

Syn5 a(c). P ‖ b̄(c). Q = [a = b]τ .νc (P | Q)

Syn6 τ . P ‖ α. Q = 0

Syn7 a(c). P ‖ b(c). Q = 0

Syn8 if both α and β are output, then α. P ‖ β. Q = 0

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 83

TABLE 3

The Inference Rules of Aπ

Equivalence

Ref P = P

Symm
P = Q

Q = P

Trans
P = Q Q = R

P = R

Congruence

Con1
P = Q

āb. P = ab. Q

Con2
P = Q

ā(b). P = ā(b). Q

Con3
∀ i ∈ n. P{ai /b} = Q{ai /b} P = Q

a(b). P = a(b). Q
fn(a(b). P, a(b). Q) = {a1, . . . , an}

Con4
P = Q

τ . P = τ . Q

Con5
P = Q

P + R = Q + R

Con6
P = Q

νa P = νa Q

Con7
P = Q

P ‖ R = Q ‖ R

Con8
P = Q

P ‖ R = Q ‖ R

each form of replication in order to push replication inwards, like !āb. P = āb. (P | !āb. P). Finally,
there are 12 axioms for parallel composition, left merge, and synchronisation; they allow us to see
the possible derivatives of the parallel composition of two processes whose outermost operator is
nil, summation, or prefixing. The inference rules are those for equivalence and the congruence rules
for prefixing, sum, restriction, left merge, and synchronisation; the inference rule for input has
multiple premises and uses substitution because late bisimulation is not preserved by input prefix.
(We do not need the congruence rules for the other operators; these will actually be inferred from the
model.)

We write Aπ |= P = Q if P = Q can be inferred from the axioms and rules in Aπ . We will use also
a subset Sπ of these rules, which suffices to transform normal forms into canonical normal forms. We
first show that the rules in Aπ allow us to expand a process up to any level.

LEMMA 2.1. Let P ∈ Pr V . Then for all n there is Q ∈ EX n
V s.t. Aπ |= P = Q.

Proof. By induction on n. For n = 0 there is nothing to prove. For n > 0 we proceed by induction
on the structure of P . It is convenient to assume that the outermost operator of P may also be left-merge
or synchronisation.

Case 1. P ≡ 0.

0 ∈ EX n
V , for all n and V .

Case 2. P ≡ P1 + P2.

Use the structural induction and the inference rule Con5.

84 FIORE, MOGGI, AND SANGIORGI

Case 3. P ≡ āb. P ′, or P ≡ ā(b). P ′, or P ≡ τ . P ′.

Use induction on n and the inference rules Con1,Con2,Con4.

Case 4. P ≡ a(b). P ′.

By alpha conversion, we can assume b �∈ V . By the induction on n, there are processes Qb ∈ EX n−1
V ∪{b}

and, for all c ∈ V , Qc ∈ EX n−1
V s.t.

Aπ |= P ′ = Qb Aπ |= P ′{c/b} = Qc. (3)

Let Q
def= ∑

c∈V [b = c]Qc + [b �∈ V]Qb. Using the axioms for conditionals C1-C4 and (3), we can
infer

Aπ |= P ′{c/b} = Q{c/b}, for all c ∈ V (4)

Aπ |= P ′ = Q. (5)

Hence from Con3 we can derive

Aπ |= a(b). P ′ = a(b). Q

which concludes the case, since a(b). Q ∈ EX n
V .

Case 5. P ≡ [a = b]P ′ or P ≡ [a �= b]P ′.

Use axiomsC1–C4 to eliminate the outermost conditional and then (possibly) the structural induction
on P ′.

Case 6. P ≡ νa P ′.

By alpha conversion, we can assume a �∈ V . By structural induction, there is Q ∈ EX n
V ∪{a} s.t.

Q ≡
∑
i∈I

αi . Qi

and Aπ |= P ′ = Q. Hence, by Con6, also Aπ |= νa P ′ =νa Q. Now, if I = ∅, then, by R5, Aπ |=
νa Q = 0 and we are done. If I �= ∅, then using R1–R4 and assuming by alpha conversion that bn(αi)
is fresh, we can derive

Aπ |= νa Q =
∑
i∈I

Ri ,

where, for all i , process Ri is defined as follows:

• Ri
def= 0 if subj(αi) ≡ a,

• Ri
def= b̄(a). Qi if αi ≡ b̄a and b �= a,

• Ri
def= αi .νa Qi otherwise.

If Ri is 0, then it is already in EX n
V . If Ri is a prefixed process, then it can be transformed into a process

in EX n
V proceeding as in Cases 3 and 4 above.

Case 7. P ≡ !α. P ′.

By alpha conversion, we can assume that the bound name of α, if it exists, is fresh. From axiom Rep
we have

Aπ |= !α. P ′ = α. (P | !α. P ′)

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 85

and then α. (P | !α. P ′) can then be dealt with in the same way as the prefixed processes of Cases 3
and 4.

Case 8. P ≡ P1 ‖ P2.

By the structural induction on P1, there is a process of the form
∑

i∈I αi . Ri s.t.

Aπ |= P1 =
∑
i∈I

αi . Ri .

Hence, by rule Con7,

Aπ |= P1 ‖ P2 =
(∑

i∈I

αi . Ri

)
‖ P2.

If I = ∅, then we can use LM1 to conclude the proof. Otherwise, by repeatedly applying LM2, we have

Aπ |=
(∑

i∈I

αi . Ri

)
‖ P2 =

∑
i∈I

((αi . Ri) ‖ P2)

and then, using transitivity, LM3 and alpha conversion,

Aπ |= P1 ‖ P2 =
∑
i∈I

αi . (Ri | P2).

Finally, each αi . (Ri | P2) can be rewritten into a process in EX n
V proceeding as in Cases 3 and 4.

Case 9. P ≡ P1 ‖ P2.

By the structural induction, there are processes Q1, Q2 ∈ EX n
V with

Q1 ≡
∑
i∈I

αi . Q′
i and Q2 ≡

∑
j∈J

β j . Q′′
j

s.t. Aπ |= P1 = Q1 and Aπ |= P2 = Q2. Hence, using Syn2 and Con8, Aπ |= P1 ‖ P2 = Q1 ‖ Q2.
Now, if either I or J are empty then, by Syn1 and Syn2, we get Aπ |= Q1 ‖ Q2 = 0 and we are done.
Otherwise, by repeatedly applying Syn2 and Syn3, we infer

Aπ |= P =
∑
i∈I

∑
j∈J

(αi . Q′
i ‖ β j . Q′′

j).

Each term αi . Q′
i ‖ β j . Q′′

j can be rewritten into a process of the form τ . R or 0 using axioms
Syn4–Syn8 and C1–C4. The prefixed processes can be rewritten into a process in EX n

V proceed-
ing as in Cases 3 and 4.

Case 10. P ≡ P1 | P2.

Using rule Par, we have

Aπ |= P = P1 ‖ P2 + P2 ‖ P1 + P1 ‖ P2.

Terms P1 ‖ P2, P2 ‖ P1, and P1 ‖ P2 can be rewritten into terms in EX n
V proceeding as in Cases 7 and

8 above. The results can then be combined into a process in EX n
V using the rules for sum.

LEMMA 2.2. For a pair of processes a(b). P, a(b). Q, and a family of processes {Pc, Qc}c indexed
by a finite set of names V, such that

• fn(a(b). P, a(b). Q) ⊆ V,

• b �∈ V, and

• b �∈ fn(Pc, Qc), for all c ∈ V,

86 FIORE, MOGGI, AND SANGIORGI

the inference rule

DerInp
∀c ∈ V . Pc = Qc P = Q

a(b).
(∑

c∈V [b = c]Pc + [b �∈ V]P
)

= a(b).
(∑

c∈V [b = c]Qc + [b �∈ V]Q
)

is derivable in Aπ .

System Sπ collects the axioms for alpha conversion and the monoidal and idempotence laws for sum
and rules for equivalence and congruence.

DEFINITION 2.3. Sπ is the following set of axioms and rules:

Sπ
def= {A,S1–S4,Ref,Symm,Trans,Con1,Con2,Con4,Con5,DerInp}.

2.4. Syntactic Functions

For all n and V , we define the syntactic functions Expn
V , NilnV , BotnV , and CNFV .

Function Expn
V : Pr V → EX n

V is s.t. for all P ∈ Pr V ,

Aπ |= P = Expn
V (P). (6)

Lemma 2.1 ensures that such a function exists, and its proof shows us a way of computing it. By
definition of Expn

V , every interpretation of processes which validates the axioms and rules in Aπ will
also validate the equation P = Expn

V (P).
Function NilnV : E⊥X n

V → N⊥Fn
V replaces each subcomponent of a process P ∈ E⊥X n

V which is
underneath n prefixes with the process 0. The function is defined inductively on n and, for n > 0,
inductively on the structure of P:

Nil0V (P)
def= 0

Niln+1
V (⊥)

def= ⊥
Niln+1

V (0)
def= 0

Niln+1
V (P + Q)

def= Niln+1
V (P) + Niln+1

V (Q)
(7)

Niln+1
V (τ . P)

def= τ . NilnV (P)

Niln+1
V (āb. P)

def= āb. NilnV (P)

Niln+1
V (ā(b). P)

def= ā(b). NilnV ∪{b}(P)

Niln+1
V

(
a(b).

(∑
c∈V

[b = c]P + [b �∈ V]Q

))
def= a(b).

(∑
c∈V

[b = c]NilnV (P) + [b �∈ V]NilnV ∪{b}(Q)

)
.

Function BotnV : E⊥X n
V → N⊥Fn

V is defined like NilnV except for the base case, which is given by
Bot0V (P) = ⊥.

Function CNFV : NFV → CNFV takes a V -normal form and returns its canonical V -normal form.

LEMMA 2.3. Fn
V (Gn+m

V (P)) ≡ Fn
V (P), when P ∈ E⊥X n+m

V and F, G ∈ {Nil, Bot} and n, m ≥ 0.

Proof. By induction on n, using the fact that E⊥X n+m
V ⊆ E⊥X n

V .

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 87

3. OPERATIONAL VALIDITY OF THE ω-BIRULE

The main result in this section is the operational version of the ω-birule (1), that is

∀n NilnV
(
Expn

V (P1)
) ∼ NilnV

(
Expn

V (P2)
)

P1 ∼ P2
P1, P2 ∈ Pr V . (8)

We shall also prove a syntactic characterisation of ∼ on finite process, expressed by the following birule

CNFV
(
Expn1

V (P1)
) ≡ CNFV

(
Expn2

V (P2)
)

P1 ∼ P2
P1, P2 ∈ Pr V and finite, (9)

where ni (i = 1, 2) are any integers greater than the number of prefixes in Pi . This birule will be useful
in the proofs of full abstraction of our models on normal forms.

Note that (8) and (9) imply the birule:

∀n CNFV
(
NilnV

(
Expn

V (P1)
)) ≡ CNFV

(
NilnV

(
Expn

V (P2)
))

P1 ∼ P2
P1, P2 ∈ Pr V .

To prove (8) and (9) (in Section 3.3), we shall first prove the soundness of the process transformations
represented by functions Expn

V and CNFV (Section 3.1) and the approximability of late bisimilarity
(Section 3.2).

3.1. Operational Validity of Functions Expn
V and CNFV

System Aπ is sound for ∼. (It cannot be complete, since ∼ is not even semidecidable [32].)

PROPOSITION 3.1. For P, Q ∈ Pr V , if Aπ |= P = Q, then P ∼ Q.

Proof. Each axiom and inference rule in Aπ can be proved sound for ∼ by exhibiting appropriate
bisimulation relations. Each case is simple (several of these cases are proved in [21] and [25]).

COROLLARY 3.1 (Operational validity of Expn
V). For P ∈ Pr V , we have that P ∼ Expn

V (P).

Proof. From the definition of function Expn
V and Proposition 3.1.

System Sπ is sound and complete for ∼ over NFV .

LEMMA 3.1. If P, Q ∈ NFV , then P ∼ Q iff Sπ |= P = Q.

Proof. The implication from right to left holds because of the axioms and rules in Sπ are sound
for ∼.

For the implication from left to right one proceeds by induction on the maximal depth of P and
Q, where the depth of a process is its maximal level of nesting of prefixes. If the depth is 0, then
Sπ |= P = Q can be derived from the rules for sum. Suppose the depth is greater than 0. Then, garbage-
collecting 0 processes, P and Q are of the form

∑
i∈I αi . Pi and

∑
j∈J β j . Q j , respectively. One shows

that for all i there is j s.t. Sπ |= αi . Pi = β j . Q j , and the converse, inverting the roles of i and j . Then
the thesis follows using the axioms for sum.

LEMMA 3.2. If P ∈ NFV , then Sπ |= P = CNFV (P).

Proof. From the definition of canonical normal forms and Lemma 3.1.

COROLLARY 3.2 (Operational validity of function CNFV). For P ∈ NFV , it holds that P ∼
CNFV (P).

Proof. Follows from Lemma 3.2 and Proposition 3.1, since each rule in Sπ either is in Aπ or is
derivable in Aπ .

88 FIORE, MOGGI, AND SANGIORGI

3.2. Approximability of Late Bisimulation

LEMMA 3.3. Let P ∈ Pr and z a fresh name. If P
a(b)−→ P ′ (resp. P

ā(b)−→ P ′), then also P
a(z)−→ P ′′

(resp. P
ā(z)−→ P ′′) with P ′′ ≡α P ′{z/b}.

Notation. If S is a set of processes, then {S}≡α
is the quotient of S w.r.t. ≡α (alpha conversion).

LEMMA 3.4. Let P ∈ Pr . Then for all α, the set

{
P ′ s.t. P

α−→ P ′}
≡α

is finite.

Proof. By structural induction. If α is a visible action, then the thesis is easy. The interesting case
for α ≡ τ is parallel composition. Thus, suppose P ≡ P1 | P2. By the inductive hypothesis, up to alpha
conversion, the set of the processes R s.t. P1 | P2

τ→ R is derived with an inference proof in which the
last rule applied is par1 (or its symmetric version) is finite. We have to prove that the same holds for
those transitions P1 | P2

τ→ R whose inference proof uses close1,com1 (or their symmetric versions)
in the last step. We only look at close1, since the other cases are similar.

For a name u, let Su be the set of processes R s.t. P1 | P2
τ→ R that can be inferred with a proof

whose last step is of the form

P1
a(u)−→ P ′

1 P2
ā(u)−→ P ′

2

P1 | P2
τ−→ R

def= νu (P ′
1 | P ′

2)

for some P ′
1, P ′

2 and a.
Now, if z is a fixed fresh name, then, by the assertion of this lemma on visible actions, the sets

{
P ′

1 s.t. P1
a(z)−→ P ′

1

}
≡α{

P ′
2 s.t. P2

a(z)−→ P ′
2

}
≡α

are finite. Therefore the set Sz must be finite too.
We now show that for any other name w and set Sw, each process R′ ∈ Sw is alpha convertible to a

process in Sz . This would conclude the case of rule close1 and the proof of this lemma. The last step
in the inference proof for P1 | P2

τ−→ R′ is of the form:

P1
a(w)−→ P ′′

1 P2
a(w)−→ P ′′

2

P1 | P2
τ−→ R′ def= νw (P ′′

1 | P ′′
2)

.

By Lemma 3.3, we also have

P1
a(z)−→ P ′

1 P2
ā(z)−→ P ′

2

P1 | P2
τ−→ νz (P ′

1 | P ′
2)

with P ′
i ≡α P ′′

i {z/w}, i = 1, 2. Moreover, νz (P ′
1 | P ′

2) ∈ Sz and

νz (P ′
1 | P ′

2) ≡α νw (P ′
1{w/z} | P ′

2{w/z}) ≡α R′.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 89

DEFINITION 3.1 (Approximations for ∼). We define ∼n⊆ Pr × Pr by induction on n:

• ∼0
def= Pr × Pr .

• For n > 0, P ∼n Q if:

1. Whenever P
a(b)−→ P ′ and b �∈ fn(Q), then Q′ exists s.t. Q

a(b)−→ Q′ and for each name c,
P ′{c/b} ∼n−1 Q′{c/b}.

2. Whenever P
α−→ P ′ for α ≡ āb or α ≡ τ , then Q′ exists s.t. Q

α−→ Q′ and P ′ ∼n−1 Q′.

3. Whenever P
ā(b)−→ P ′ and b �∈ fn(Q), then Q′ exists s.t. Q

ā(b)−→ Q′ and P ′ ∼n−1 Q′.

4. The converse of (1)-(3), on the actions from Q.

DEFINITION 3.2. We set P ∼ω Q if, for all n, P ∼n Q.

LEMMA 3.5. For all n, it holds that ∼ ⊆ ∼n.

LEMMA 3.6. If P ∼n Q for infinitely many n, then P ∼ω Q.

PROPOSITION 3.2. Relations ∼ω and ∼ coincide.

Proof. The inclusion ∼ ⊆ ∼ω is given by Lemma 3.5. For the opposite inclusion, we use Lemma 3.6
and show that

R def= {(P, Q) s.t. P ∼n Q for infinitely many n}

is a late bisimulation. Suppose that P R Q and P
α−→ P ′ with bn(α) �∈ fn(Q). We show that Q can

match this action. We only consider the case when α is an input, for the other cases are simpler.
By Lemma 3.4, up to alpha conversion there are only a finite number of processes Q1, . . . , Qm

s.t. Q
α−→ Qi . Moreover, by definition of ∼n, if P ∼n Q and n > 0, then there is Qi , 1 ≤ i ≤ m, s.t. if

b ≡ bn(α), then

for all c, P ′{c/b} ∼n−1 Qi {c/b}. (10)

Since P ∼n Q for infinitely many n and {Q1, . . . , Qm} is finite, there must be at least a Qi s.t. (10)

holds for infinitely many n. Using this Qi , process Q can match the action P
α−→ P ′.

3.3. The Core of the Proofs

LEMMA 3.7. For P, Q ∈ NFn
V , it holds that P ∼n Q iff P ∼ Q.

LEMMA 3.8. For P ∈ EX n
V , it holds that NilnV (P) ∼n P.

PROPOSITION 3.3. For all P, Q ∈ Pr V , it holds that:

P ∼n Q iff NilnV
(
Expn

V (P)
) ∼ NilnV

(
Expn

V (Q)
)
.

Proof. By Corollary 3.1 and the inclusion ∼ ⊆ ∼n, we have P ∼n Expn
V (P) and Q ∼n Expn

V (Q).
Hence,

P ∼n Q iff Expn
V (P) ∼n Expn

V (Q).

Using Lemmas 3.7 and 3.8 and similar reasoning,

Expn
V (P) ∼n Expn

V (Q) iff NilnV
(
Expn

V (P)
) ∼ NilnV

(
Expn

V (Q)
)
.

PROPOSITION 3.4. For all P, Q ∈ NFV , it holds that P ∼ Q iff CNFV (P) ≡ CNFV (Q).

Proof. Follows from Corollary 3.2 and Proposition 2.1.

90 FIORE, MOGGI, AND SANGIORGI

THEOREM 3.1 (Operational validity of the ω-birule). Birule (8) is valid, for all V.

Proof. If P, Q ∈ Pr V , we have:

P ∼ Q iff∀n P ∼n Q, by Proposition 3.2
iff∀n NilnV

(
Expn

V (P)
) ∼ NilnV

(
Expn

V (Q)
)
, by Proposition 3.3.

LEMMA 3.9. Suppose that P ∈ Pr V is finite and that n is greater than the number of prefixes in the
definition of P. Then Expn

V (P) ∈ NFV .

Proof. By definition of Expn
V , it holds that Aπ |= P = Expn

V (P) and that Expn
V (P) ∈ EX n

V . Process
P can perform n − 1 consecutive actions at most. Since P ∼ Expn

V (P) (Corollary 3.1), Expn
V (P) can

also perform n − 1 consecutive actions at most. Therefore, the depth of Expn
V (P) is n − 1 at most. By

definitions of EX n
V and NFn

V (Definition 2.1), any process in EX n
V whose depth is less than n is in

NFn
V ; hence it is also in NFV .

LEMMA 3.10. Suppose that P ∈ Pr V is finite and that n is greater than the number of prefixes in
the definition of P. Then Aπ |= P = CNFV (Expn

V (P)).

Proof. The application CNFV (Expn
V (P)) makes sense because, by Lemma 3.9, Expn

V (P) ∈ NFV ,
and NFV is the domain of function CNF.

By definition of Expn
V , it holds that Aπ |= P = Expn

V (P). Since Expn
V (P) ∈ NFV , by Lemma 3.2

Aπ |= Expn
V (P) = CNFV

(
Expn

V (P)
)
.

The thesis of the lemma then follows by transitivity.

Lemma 3.10 allows us to strengthen Proposition 3.4, about normal forms, to finite processes:

THEOREM 3.2 (Syntactic characterisation of ∼ on finite process). Birule (9) is valid, for all V.

Proof. As in the assertion of the previous lemma, the application CNFV (Expni
V (P)) makes sense

because, by Lemma 3.9, Expni
V (P) ∈ NFV .

By Lemma 3.10 and Corollary 3.1, P1 ∼ P2 iff CNFV (Expn1
V (P1)) ∼ CNFV (Expn2

V (P2)). Since
canonical normal forms are unique (Proposition 2.1), the latter is true iff CNFV (Expn1

V (P1)) ≡
CNFV (Niln2

V (P2)).

4. DENOTATIONAL SEMANTICS

We introduce a semantic universe and equip it with constructors for modelling nondeterminism and
dynamic allocation, and objects of names and agents. These model-theoretic considerations suggest a
metalanguage which is presented next. By translation into the metalanguage, we give open and closed
interpretations of the π -calculus respectively corresponding to late congruence and bisimulation.

4.1. The Semantic Universe

The denotation of a process is given relative to the names which are free (or visible) in it. Thus, our
model is a type A of agents which varies over stages; intuitively, the number of free names available
for interaction. That is, type A consists of the following data: for every natural number n a type A(n) of
“processes with at most n free names” and for every injective substitution ι : n ↪→ m of n names into m
names a mapping A(n)

A(ι)−→ A(m) which allows us to view every process with n free names as a process
with m free names. Of course, these mappings cannot be arbitrary: we expect that A(idn) = idA(n) as
the substitution idn : n ↪→ n produces no renaming; while for injective substitutions ι : i ↪→ j and
κ : j ↪→ k we expect that the mapping A(i)

A(κι)−→ A(j) induced by κι decomposes as the mappings
A(i)

A(ι)−→ A(j)
A(κ)−→ A(k) induced by ι and κ . All this amounts to saying that A is a functor from a

category I (of injective maps between finite cardinals) to a category C (of meanings).

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 91

Henceforth we will take the viewpoint that A is a type in the functor category CI whose objects are
functors from I to C and whose arrows are natural transformations between such functors. (Recall that
a natural transformation ϕ : X → Y between functors X, Y : I → C is given by a family {ϕn : X (n) →
Y (n)}n∈|I| of morphisms in C such that for all injective maps ι : n ↪→ m, Y (ι)◦ϕn = ϕm ◦X (ι).) A process
with no free names will have a denotation as a global element of A (i.e., a natural transformation 1

.→ A)
or, equivalently, as an element of A(0) because, by Yoneda, every p : A is uniquely determined by
p0 : A(0) as pn = A(0 ↪→ n)(p0) : A(n). Thus, the naturality condition imposes a uniform interpretation
at all stages. To interpret arbitrary processes we will introduce a type N of names and assign to a process
with n free names a denotation as a natural transformation N n .→ A. As before the naturality condition
imposes a uniform interpretation which, for example, will account for the irrelevance of the identity of
names.

It is possible to axiomatise the structure needed from our category C of meanings in order to support
the denotational semantics, in particular C must be a Cpo-enriched bicartesian closed category (Cpo-
biCCC). We will not give an explicit axiomatisation of C; rather we will only be concerned with two
categories C of meanings, viz. Cpo and Set. In CpoI we will obtain a domain-theoretic model for the
whole π -calculus, while in SetI we will obtain a set-theoretic model for the finite processes.

4.2. Nondeterminism

We introduce the power type constructor P for modelling nondeterminism. It has associated op-
erations valX : X ⇒ P X and letX,Y : (X ⇒ PY) × P X ⇒ PY (roughly, let(f, p) is “

⋃{ f (x) | x ∈
p}”) subject to the laws for a commutative monad (see (12) below) and operations 0X : P X and
∪X : P X × P X ⇒ P X making (P X, 0X , ∪X) into a semilattice (see (13) below). Moreover, the opera-
tions for nondeterminism “commute” with let (see (14) below).

In general these power types arise as free constructions by considering left adjoints to forgetful
functors from a category of nondeterministic computations to a category of values (see [5, 16]). Two
such constructions that will be used later are:

• The free-semilattice monad. Let S be a Cpo-cartesian category, and let SL(S) be the Cpo-
category of semilattices in S and homomorphisms. The free-semilattice monad on S is the Cpo-monad
induced by the Cpo-adjunction SL(S)

✛
⊥✲ S whenever it exists. When S = Set the free-semilattice

monad is the finite powerset functor equipped with the singleton and the big union.

• Abramsky’s powerdomain monad. Let D be a Cpo-cartesian category. We define the cate-
gory ND(D) of nondeterministic computations over D as the Cpo-category with objects (D, ⊥, 0, ∪),
where ⊥ : D is the least element of D and (D, 0, ∪) is a semilattice in D; arrows are strict semilattice
homomorphisms.

Abramsky’s Powerdomain monad on D is the Cpo-monad on D induced by the Cpo-adjunction
ND(D)

✛
⊥✲ D whenever it exists.

When D= Cpo Abramsky’s powerdomain monad exists (see [3, 16]).
Below we will be concerned with commutative monads for nondeterminism arising as above over

functor categories. The following observation incorporates them in our setting:

PROPOSITION 4.1. If C admits Abramsky’s powerdomain monad (resp. the free-semilattice monad)
then so does the functor category CW for every small category W and it is given pointwise. That is,
writing P and PW for the monad on C and CW respectively, we have PW (X)(w) = P(X (w)).

4.3. Dynamic Allocation

We introduce the type constructor δ for modelling dynamic allocation of names. It has associated
operations δX,Y : (X ⇒ Y) ⇒ δX ⇒ δY , upX : X ⇒ δX , and swapX : δ2 X ⇒ δ2 X , which are the
internal version of categorical structure on CI (made explicit below) induced by I.

Intuitively δX stands for the type X when one new name is available. With this in mind,

• upX,n is the canonical coercion mapping an element of X at stage n to the same element at
stage n + 1;

92 FIORE, MOGGI, AND SANGIORGI

• swapX,n is an involution mapping an element of X at stage n + 2 to the element of the same
type where the last two names in n + 2 have been swapped.

To explain how such a structure is obtained, we consider an alternative characterisation of the category
I of finite cardinals n = {0, . . . , n − 1} and injective maps:

I is the strict monoidal category (I, 0, +) freely generated from one object 1 and morphisms up :
0 → 1 and swap : 2 → 2 (here 2 = 1 + 1) such that

swap ◦ swap = id2 : 2 → 2

(up + id1) ◦ up = (id1 + up) ◦ up : 0 → 2

swap ◦ (up + id1) = (id1 + up) : 1 → 2

(11)

The functor δ : CI → CI , and the natural transformations up : δ0 .→ δ and swap : δ2 .→ δ2 are defined
in terms of the generating data (1, up, swap) for I

• (δX)(n)
def= X (n + 1)

• upX,n
def= X (n + up) : X (n) → X (n + 1)

• swapX,n
def= X (n + swap) : X (n + 2) → X (n + 2)

and inherit the equational properties of up and swap (see (15) below). Moreover, δ, up, and swap
preserve anything defined pointwise (e.g., see (18) below), such as limits and colimits and Abramsky’s
powerdomain monad with its associated structure (⊥, 0, and ∪).

The functor δ has a tensorial strength upX×idδY : X×δY → δ(X×Y) —here we use that δ(X ×
Y) = δ(X) × δ(Y)—which, as usual in the presence of exponentials, allows us to internalise the action
of δ on morphisms as a map δX,Y : (X ⇒ Y) ⇒ δX ⇒ δY obeying functorial laws (see (16) below).

4.4. Names and Agents

In CI we define the objects N of names and A of agents with their associated operations.

Names

The type of names N is defined as the inclusion of I into the biCCC C; i.e., N (n)
def= n (on the

r.h.s. n is the coproduct in C of n copies of the terminal object). The type N admits a decidable equality
eq : N × N ⇒ 2 (here 2 = 1 + 1) and satisfies the following properties which are used for interpreting
the π -calculus:

• There is a global element new : δN (viz. newn
def= n) making N

upN−→ δN
new←− 1 into a coproduct

diagram in CI (see (21) below). Thus we can do case analysis on δN .

• swapN swaps δ new and δ upN new (see (22) below).

We will also use the following proposition stating that an element of N ⇒ X at stage n is determined
by n elements of X at stage n together with an element of δX at stage n.

PROPOSITION 4.2. For any biCCC K, the exponential Eval : (N⇒X) × N → X in KI exists and is
given by

• (N ⇒ X)(n) = X (n)n × X (n + 1);

• for an inclusion ι = (n ⊆ n + 1), (N ⇒ X)(ι) is the composite

X (n)n×X (n + 1) ✲ X (n + 1)n+1 × X (n + 2)

❅
❅

❅
❅

X (ι)n×〈id, X (ι + 1)〉
❘ �

�
�

�

∼=
✒

X (n + 1)n×X (n + 1)×X (n + 2)

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 93

for an iso ι : n ∼= n, (N ⇒ X)(ι) is

X (n)n×X (n + 1)
X (ι)ι×X (ι+1)−−−−−−→ X (n)n×X (n + 1),

and the above determine the action of N ⇒ X on morphisms because every morphism in I is a
composite of inclusions followed by an iso;

• for n ∈ | I |, Evaln is the composite

X (n)n × X (n + 1) × n
π1×id−−→ X (n)n × n

eval−→ X (n).

Moreover, the exponential transpose of τ : Y × N → X is λτ : Y → N ⇒ X given by

(λτ)n =
(

Y (n)
〈λ(τn),τn+1◦〈Y (ιn),κn〉〉−−−−−−−−−−→ X (n)n × X (n + 1)

)
,

where ιn is the inclusion (n ⊆ n + 1) and κn is the constantly n map Y (n) → n + 1.

Remark. Note that the natural transformation N ⇒ X
.→ δX interpreting the judgement f : N ⇒

X ! δ f new : δX is, at stage n, the (n + 1)-projection map πn+1 : X (n)n × X (n + 1) → X (n + 1).

Agents

The type of agents A is defined as µX . P(H X) where

• H X
def= N × (N⇒X)+ N × N × X + N ×δX + X ; each summand respectively giving meaning

to inputs, free outputs, bound outputs, and internal actions of processes; and

• in the set-theoretic interpretation P is the free-semilattice monad on SetI , whilst in the domain-
theoretic interpretation it is Abramsky’s powerdomain monad on CpoI . Here one can apply the standard
techniques for solving recursive domain equations —see [33] and [11, Chap. 7].

By Propositions 4.1 and 4.2, and results on the solution of domain equations, we can give a concrete
description of A on objects as the initial solution to the following system of equations in C (where P
below is the appropriate power monad on C) with n ∈ | I |

Xn = P
(
n×Xn

n×Xn+1 + n × n × Xn + n×Xn+1 + Xn
)
.

4.5. A Metalanguage

We introduce a metalanguage (i.e., a type theory with an associated equational theory) which is an
internal language for the part of CI we are interested in. This will allow us to perform constructions and
definitions in CI and prove properties (e.g., about the equality of certain morphisms) without the need
to look at explicit descriptions.

The core of the metalanguage is a simply typed λ-calculus (1, ×, ⇒) with sums (+), type construc-
tors for nondeterminism (P) and dynamic allocation of names (δ), and base types for names (N) and
agents (A). In addition, in the domain-theoretic interpretation, we have operators for recursion over
exponents of the type of agents (see (23) below).

Notation. In expressions of the metalanguage we adopt the following conventions: e is an expression,
x, y, z are variables, f, g, h are variables of functional type, and p, q are variables of computational
type.

• The simple types are 1 and, for X and Y types, X × Y , X ⇒ Y , and X + Y . We use a standard
notation for their constructors and destructors except for case e of in1(x) => e1 or in2(y) => e2 which,
to improve readability, we write as [λx :A.e1

λy:B.e2
]e.

94 FIORE, MOGGI, AND SANGIORGI

For convenience, for types X, Y , and Z , we will consistently assume the following type equalities

1 ⇒ X = X ; X ⇒ 1 = 1;

(X � Y) � Z = X � (Y � Z), for � ∈ {×, +},

where for either type in the last equality we write X � Y � Z .

• For X a type, we have a power type P X . Its associated operations are

valX : X ⇒ P X 0X : P X
letX,Y : (X ⇒ PY) × P X ⇒ PY ∪X : P X × P X ⇒ P X

and are subject to the following laws:

P a commutative monad [23]:

(a) let(f, val(x)) = f (x)

(b) let(λx . val(x), p) = p

(c) let(λx . let(λy. h(x, y), q), p) = let(λy. let(λx . h(x, y), p), q)

(12)

(P X, 0X , ∪X) a semilattice:

0 ∪ p = p = p ∪ 0 (p1 ∪ p2) ∪ p3 = p1 ∪ (p2 ∪ p3)

p ∪ q = q ∪ p p ∪ p = p
(13)

λx . let(f, x) a semilattice homomorphism:

(a) let(f, 0) = 0

(b) let(f, ∪(p, q)) = ∪ (let(f, p), let(f, q)).
(14)

In the domain-theoretic interpretation we also have the operation ⊥X : P X such that

λx . let(f, x) strict:

let(f, ⊥) = ⊥.

• For a type X , we have the dynamic-allocation type δX . Its associated operations are

upX : X ⇒ δX, swapX : δ2 X ⇒ δ2 X, δX,Y : (X ⇒ Y) ⇒ δX ⇒ δY

and are subject to the following laws

Inherited properties from swap and up (see (11) above):

(a) swapX ◦ swapX = idδ2 X

(b) δ(upX) ◦ upX = upδX ◦ upX

(c) swapX ◦ δ(upX) = upδX

(15)

δ a functor:

(a) δX,X (idX) = idδX

(b) (δY,Z g) ◦ (δX,Y f) = δX,Z (g ◦ f)
(16)

swap a natural transformation:

(δ2
X,Y f) ◦ swapX = swapY ◦ (δ2

X,Y f), (17)

where in the last equation δ2
X,Y stands for δδX,δY ◦ δX,Y .

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 95

In addition, we have the following type equalities

δ preserves the unit, products, sums, and power types:
δ1 = 1 δ(X × Y) = δ(X) × δ(Y)

δP X = PδX δ(X + Y) = δ(X) + δ(Y)

accompanied by preservation laws among which the following will be needed later:

δ preserves products, sums, and semilattice structure:

(a) δ 〈 f, g〉 = 〈δ f, δ g〉 (b) δ π
X,Y
i = π

δX,δY
i (i = 1, 2)

(c) δ inX,Y
i = inδX,δY

i (i = 1, 2) (d) δ [f, g] = [δ f, δ g]

(e) δ0X = 0δX (f) δ ∪P X = ∪δP X

(18)

swapX×Y (x, y) = (swapX x, swapY y) (19)

and

δ1,X = upX . (20)

• We have a type of names N equipped with a decidable equality eq : N ×N ⇒ 2 (here 2 = 1+1)
subject to the usual laws.

The dynamic-allocation type over N satisfies the equality

δ(N) = N + 1 (21)

with injections upN : N ⇒ δN and new : δN (i.e., such that inN ,1
1 = upN and inN ,1

2 = new).
A crucial law of swap is:

swap swaps δ new and δ upN new:

swapN (δ new) = δ upN new

swapN (δ upN new) = δ new
(22)

• We have a type of agents A = PHA where H X
def= N × (N⇒X) + N × N × X + N × δX + X .

We introduce some auxiliary notation (related to a suitable monad transformer—see [10]) which
simplifies the description of the denotational semantics:

• S : H A ⇒ A is given by S(x) = val(x); here we use that A = PHA.

We write Si (i = 1, 4) for the i th component of S, so that S = [S1, S2, S3, S4].

• C : (H A⇒A)×A ⇒ A is given by C(f, p) = let(f, p); here we use that A = PHA.

We write CC : (H A × H A ⇒ A) × A × A ⇒ A for C iterated twice; that is, CC(h, p1, p2) =
C(λx . C(λy. h(x, y), p2), p1).

S and C inherit the properties of val and let (see (12)–(14) above).

• In the domain-theoretic interpretation we have a fixed-point operator

fixX⇒A : ((X ⇒ A) ⇒ X ⇒ A) ⇒ X ⇒ A (23)

satisfying the usual fixed-point property.
As a notational convention, for f : X ⇒ A, x : X ! e[f, x] : A, we write F(x) = e[F, x] for F =

fix(λ f . λx . e[f, x]).

We conclude the section with some sample derivations in the metalanguage.

96 FIORE, MOGGI, AND SANGIORGI

EXAMPLE 4.1.

• Using (16b) and (18a) we may derive the following equation: for a : X , fi : X ⇒ Yi (i = 1, 2),
g : Y1 × Y2 ⇒ Z ,

δ(λx : X . g(f1x, f2x)) a = δg(δ f1 a, δ f2 a). (24)

• To illustrate the use of the metalanguage we provide a derivation of the following: for h :
N × N ⇒ X ,

swapX (δ(λx : N . δ(λy : N . h(x, y)) new) new)

= δ(λy : N . δ(λx : N . h(x, y)) new) new. (25)

1. For u : U and d : δV ,

δV,U (λy : V . u)d

= δV,U ((λx : 1. u) ◦ (λy : V . ∗))d

= δ1,U (λx : 1. u) (δV,1(λy : V . ∗)d), by (16b)

= δ1,U (λx : 1. u) ∗, using δ1 = 1 and X ⇒ 1 = 1

= upU u, using 1 ⇒ X = X and (20). (26)

2. For h : N × N ⇒ X and x : N ,

δ(λy : N . h(x, y)) new

= δ(λy : N . h((λz : N . x) y), (λz : N . z) y) new

= δh(δ(λz : N . x) new, δ idN new), by (24)

= δh(upN x, new), by (26) and (16a). (27)

3. For h : N × N ⇒ X ,

δ(λx : N . δ(λy : N . h(x, y)) new) new

= δ(λx : N . δ h(upN x, new)) new, by (27)

= δ(δh) (δ upN new, δ(λz : N . new) new), by (24)

= δ2 h(δ upN new, δ new), by (26). (28)

4. For h : N × N ⇒ X ,

swapX (δ(λx : N . δ(λy : N . h(x, y)) new) new)

= swapX (δ2 h(δ upN new, δ new)), by (28)

= δ2h(swapN×N (δ upN new, δ new)), by (17)

= δ2h(swapN (δ upN new), swapN (δ new)), by (19)

= δ2h(δ new, δ upN new), by (22) and (15a)

= δ(λy : N . δ(λx : N . h(x, y)) new) new,

where the last equality follows from calculations analogous to those leading to (28).

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 97

• By (12c) we have:

CC(K , p1, p2) = CC(K ◦ 〈π2, π1〉, p2, p1). (29)

4.6. Interpretation

We give the interpretation of the term constructors for an abstract syntax of the π -calculus (cf.
Definition 1.1). The interpretation is defined by translation into the metalanguage of the previous
section as follows:

nil : A deadlock
sum : A, A → A nondeterministic choice

are given by the semilattice structure of PHA.

M : N , N , A → A matching
MM : N , N , A → A mismatching

are defined by case analysis using the decidable equality on the type of names.

in : N , (N ⇒ A) → A input
out : N , N , A → A output
bout : N , (N ⇒ A) → A bound output
tau : A → A internal action

correspond, except for bout, to components of the operation S : H A ⇒ A; that is [in, out, S3, tau] =
S. Bounded output is given by bout(a, f) = S3(a, δ f new)—see Proposition 4.2 and the remark
after it.

res : (N ⇒ A) → A local name

is given by res(f) = R(δ f new) where the operation R : δA ⇒ A, maps, at stage n, a process with
n + 1 free names to one with n free names by restricting on the last allocated name. The definition of
R, given in Table 4, relies on the type equalities

δA = P(δN×δ(N⇒A) + δN×δN×δA + δN×δ2 A + δA) and δN = N + 1

and inspects whether each action capability involves the last allocated name (i.e., the new one) or not:

TABLE 4

R : δA ⇒ A

R(p)
def= let







λa : δN , f : δ(N ⇒ A).

[
λa′ : N . S1(a′, λb : N . R(δ (λ f ′ : N ⇒ A. f ′b) f))
λt : 1. 0

]
a

λa : δN , b : δN , p′ : δA.


 λa′ : N .

[
λb′ : N . S2(a′, b′, R p′),
λt : 1. S3(a′, p′)

]
b

λt : 1. 0


 a

λa : δN , p′ : δ2 A.

[
λa′ : N . S3(a′, δ R (swapA p′))
λt : 1. 0

]
a

λp′ : δA. S4(R p′)




, p




98 FIORE, MOGGI, AND SANGIORGI

• In the case of an input at a: if a is new, then we cancel the input capability; otherwise we allow
the input and restrict on the continuation.

• In the case of a free output at a of b: if a is new, then we cancel the output capability; if a is
not new but b is, then we make the free output into a bound output; if neither a nor b are new, then we
allow the output and restrict on the continuation.

• In the case of a bound output at a: if a is new, then we cancel the output capability; otherwise
we allow the output and restrict on the second to last allocated name (not on the last allocated one as
this is the one being allocated by the bound output).

• In case of an internal action: we allow the action and restrict on the continuation.

Note that the definition of res in terms of R mimics that of bout in terms of S3.

par : A, A → A parallel composition
lm : A, A → A left merge
syn : A, A → A synchronisation

are defined by mutual recursion as follows:

par(p, q) = sum(lm(p, q), lm(q, p), syn(p, q), syn(q, p)).

lm(p, q) = C







λa : N , f : N ⇒ A. in(a, λb : N . par(f b, q))

λa : N , b : N , p′ : A. out(a, b, par(p′, q))

λa : N , p′ : δA. S3(a, δ par (p′, up q))

λp′ : A. tau(par(p′, q))


 , p


.

When two processes try to communicate there are 16 possibilities to consider, since each process may
perform four possible actions. This explains the case analysis in the definition

syn(p1, p2) = CC(K , p1, p2),

where the cases covered by K : (H A × H A) ⇒ A are summarised in the symmetric Table 5 in which
com : N × N × A× A ⇒ A and close : N × N ×δA×δA ⇒ A are defined as com(x, y, p, q) = M(x, y,

tau(par(p, q))) and close(x, y, p′, q ′) = M(x, y, tau(R(δ par (p′, q ′)))).

!in : N , (N ⇒ A) → A replicated input
!out : N , N , A → A replicated output
!bout : N , (N ⇒ A) → A replicated bound output
!tau : A → A replicated internal action

are defined by recursion (but not mutual recursion) as follows:

!in(a, f) = in(a, λb : N . par(f b, !in(a, f))).

!out(a, b, p) = out(a, b, par(p, !out(a, b, p))).

!bout(a, f) = bout(a, λb : N . par(f b, !bout(a, f))).

!tau(p) = tau(par(p, !tau(p))).

Open Interpretation. Given the interpretation translation of the above term constructors it is straight-
forward to extend it to names and well-formed processes following the paradigm of categorical logic [20].

TABLE 5

K : (H A × H A) ⇒ A




x2 : N , f2 : N ⇒ A x2 : N , y2 : N , q2 : A x2 : N , q ′
2 : δA q2 : A

x1 : N , f1 : N ⇒ A nil com(x1, x2, f1(y2), q2) close(x1, x2, (δ f1 new), q ′
2) nil

x1 : N , y1 : N , q1 : A com(x2, x1, f2(y1), q1) nil nil nil

x1 : N , q ′
1 : δA close(x2, x1, (δ f2 new), q ′

1) nil nil nil

q1 : A nil nil nil nil




A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 99

For a name a ∈ V , O[[V ! a]] is the obvious projection N |V | .→ N in CI . For a process P ∈ Pr V ,
O[[V ! P]] is a morphism N |V | .→ A in CI defined by induction on the structure of P (see Section A.1).
For example,

O[[V ! P1 | P2]]
def= par ◦ 〈O[[V ! P1]],O[[V ! P2]]〉

and

O[[V ! a(b). P]]
def= in ◦ 〈O[[V ! a]], λ O[[V, b ! P]]〉.

Closed Interpretation. Bisimulation cannot correspond to the above interpretation, because the oper-
ational semantics considers free names of a process semantically different. In the denotational semantics
this requirement can be captured smoothly by exploiting the functor category structure and adopting
a closed interpretation such that for V with | V | = n, C[[V ! a]] ∈ N (n) = n and C[[V ! P]] ∈ A(n).
Then the closed interpretation is defined in terms of the open interpretation: C[[V !]]

def= O[[V !]]n

(0, . . . , n − 1).

It follows that the close interpretation is compositional on all constructs but input; the clause for input
cannot be purely compositional because late bisimulation is not preserved by this operator.

LEMMA 4.1.

1. C[[V ! āb. P]] = out|V |(C[[V ! a]], C[[V ! b]], C[[V ! P]]).

2. C[[V ! ā(b). P]] = (S3)|V |(C[[V ! a]], C[[V, b ! P]]).

3. For V ≡ a0, . . . , an−1, C[[V ! a(b). P]] = inn(C[[V ! a]], 〈C[[V ! P{ai/b}]]〉i∈n, C[[V, b !
P]]).

4. C[[V ! τ . P]] = tau|V |(C[[V ! P]]).

5. C[[V ! 0]] = nil|V |.
6. C[[V ! P + Q]] = sum|V |(C[[V ! P]], C[[V ! Q]]).

7. C[[V ! P | Q]] = par|V |(C[[V ! P]], C[[V ! Q]]).

8. C[[V ! νa . P]] = R|V |(C[[V, a ! P]]).

9. C[[V ! P ‖ Q]] = lm|V |(C[[V ! P]], C[[V ! Q]]).

10. C[[V ! P ‖ Q]] = syn|V |(C[[V ! P]], C[[V ! Q]]).

11. C[[V ! [a = b]P]] = M|V |(C[[V ! a]], C[[V ! b]], C[[V ! P]]).

12. O[[V ! [a �= b]P]] = MM|V |(C[[V ! a]], C[[V ! b]], C[[V ! P]]).

Proof. See Section A.2.

The induced semantics is preserved by renaming (see Lemma A.1); that is, for b �∈ V, W ,

C[[V, a, W ! P]] = C[[V, b, W ! P{b/a}]]. (30)

5. DENOTATIONAL VALIDITY

We take a first step in relating the operational and the denotational semantics of the π -calculus. In
particular, we show that the closed interpretation validates the equations of the systemAπ (Theorem 5.1)
and the ω-birule (1) (Theorem 5.2). These results will be important for establishing the full abstraction
of the denotational semantics.

5.1. Denotational Validity of the Equations of the System Aπ

We show that the closed interpretation of the π -calculus validates both the axioms and the inference
rules of Aπ . Roughly, we proceed as follows:

100 FIORE, MOGGI, AND SANGIORGI

1. We translate the axioms into the metalanguage and establish their validity using the equational
theory of the metalanguage; and

2. We establish the validity of the inference rules from the quasi-compositionality (Lemma 4.1)
of the closed interpretation.

LEMMA 5.1. In the domain-theoretic interpretation the denotational semantics validates the following
equalities (which are semantic counterparts of the axioms in Table 2 except for axioms C2 and C4):

Summation p, q, r : A

S1 sum(p, nil) = p
S2 sum(p, q) = sum(q, p)
S3 sum(p, sum(q, r)) = sum(sum(p, q), r)
S4 sum(p, p) = p

Restriction a, b : N f, g : N ⇒ A h : N × N ⇒ A

R1 res(λx : N . sum(f x, gx)) = sum(res f, res g)
R2-in res(λx : N . in(a, λy : N . h(x, y))) = in(a, λy : N . res(λx : N . h(x, y)))
R2-out res(λx : N . out(a, b, f x)) = out(a, b, res f)
R2-bout res(λx : N . bout(a, λy : N . h(x, y))) = bout(a, λy : N . res(λx : N . h(x, y)))
R2-tau res(λx : N . tau(f x)) = tau(res f)
R3-in res(λx : N . in(x, hx)) = nil
R3-out res(λx : N . out(x, y, f x)) = nil
R3-bout res(λx : N . bout(x, λy : N . h(x, y))) = nil
R4 res(λx : N . out(a, x, f x)) = bout(a, f)
R5 res(λx : N . nil) = nil

Conditionals a, b : N p : A

C1 M(a, a, p) = p
C3 MM(a, a, p) = nil

Replication a, b : N p : A f : N ⇒ A

Rep-in !in(a, f) = in(a, λx : N . par(f x, !in(a, f)))
Rep-out !out(a, b, p) = out(a, b, par(p, !out(a, b, p)))
Rep-bout !bout(a, f) = bout(a, λx : N . par(f x, !bout(a, f)))
Rep-tau !tau(p) = tau(par(p, !tau p))

Parallel p, q : A

Par par(p, q) = sum(sum(lm(p, q), lm(q, p)), syn(p, q))

Left Merge a, b : N p, q, r : A f : N ⇒ A

LM1 lm(nil, p) = nil
LM2 lm(sum(p, q), r) = sum(lm(p, r), lm(q, r))
LM3-in lm(in(a, f), p) = in(a, λx : N . par(f x, p))
LM3-out lm(out(a, b, p), q) = out(a, b, par(p, q))
LM3-bout lm(bout(a, f), p) = bout(a, λx : N . par(f x, p))
LM3-tau lm(tau p, q) = tau(par(p, q))

Synchronisation a, b, c, d : N p, q, r : A f, g : N ⇒ A

Syn1 syn(nil, p) = nil
Syn2 syn(p, q) = syn(q, p)
Syn3 syn(sum(p, q), r) = sum(syn(p, r), syn(q, r))
Syn4 syn(in(a, f), out(b, c, q)) = M(a, b, tau(par(f c, q)))
Syn5 syn(in(a, f), bout(b, g)) = M(a, b, tau(res(λx : N . par(f x, gx))))
Syn6 syn(tau p, q) = nil
Syn7 syn(in(a, f), in(b, g)) = nil
Syn8-out/out syn(out(a, b, p), out(c, d, q)) = nil
Syn8-out/bout syn(out(a, b, p), bout(c, f)) = nil
Syn8-bout/bout syn(bout(a, f), bout(b, g)) = nil

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 101

Remark. Notice how in translating the laws into the metalanguage π -bindings become λ-bindings,
whilst substitutions become applications.

Proof. We only consider the interesting cases:

(R1) res(λx . sum(f x, gx))

= R(δ (λx . ∪PHA(f x, gx)) new), by definition of R

= R(δ ∪PHA (δ f new, δ g new)), by (24)

= R(∪PδH A(δ f new, δ g new)), by (18f)

= ∪PHA(R(δ f new), R(δ g new)), by (16b)

= sum(res f, res g).

(R2-in) res(λx . in(a, λy. h(x, y)))

= R(δ (λx . S1(a, λy. h(x, y))) new), by definition of R

= R[δS1(δ a, δ(λx . λy. h(x, y)) new)], by (24)

= S1(a, λb. R(δ(λ f ′. f ′b) (δ(λx . λy. h(x, y)) new))), by definition of R,
(12a), and (18c)

= S1(a, λb. R(δ(λx . h(x, b)) new)), by (16b)

= in(a, λb. res(λx . h(x, b))).

(R2-bout) res(λx . bout(a, λy. h(x, y)))

= R(δ (λx . bout(a, λy. h(x, y))) new), by def. of R

= R[δ(λx . S3(a, δ(λy. h(x, y)) new)) new], by def. of bout

= R[δS3(δ a, δ (λx . δ (λy. h(x, y)) new) new)], by (24)

= S3(a, δ R (swap(δ (λx . δ (λy. h(x, y)) new) new))), by def. of R,
(12a), and (18c)

= S3(a, δ R (δ(λy. δ (λx . h(x, y)) new) new)), by (25)

= S3(a, δ (λy. R(δ (λx . h(x, y)) new)) new), by (24)

= S3(a, δ (λy. res(λx . h(x, y))) new), by def. of R

= bout(a, λy. res(λx . h(x, y))), by def. of bout

(LM3-bout) lm(bout(a, f), p)

= lm(S3(a, δ f new), p), by definition of bout

= S3(a, δ par (δ f new, up p)), by definition of lm

= S3(a, δ par (δ f new, δ p)), by (20)

= S3(a, δ (λx . par(f x, p)) new), by (24)

= bout(a, λx . (f x, p)), by definition of bout

(Syn2) syn(p, q) = CC(K , (p, q)), by definition of syn

= CC(K ◦ 〈π2, π1〉, (q, p)), because K = K ◦ 〈π2, π1〉
= CC(K , (q, p)), by (29)

= syn(q, p), by definition of syn

(Syn5) syn(in(a, f), bout(b, g))

= syn(S1(a, f), S3(b, δ g new)), by definition of in and bout
= close(a, b, δ f new, δ g new), by definition of syn

= M(a, b, tau(R(δ par (δ f new, δ g new)))), by definition of close

= M(a, b, tau(R(δ(λx . par(f x, gx)) new))), by (24)

= M(a, b, tau(res(λx . par(f x, gx)))), by definition of res

102 FIORE, MOGGI, AND SANGIORGI

COROLLARY 5.1. In the domain-theoretic interpretation, for every V ! P and V ! Q such that
P = Q is an axiom of Aπ (see Table 2), we have that C[[V ! P]] = C[[V ! Q]].

Proof. We only consider the axioms C2 and C4; the validity of the rest of the axioms follows from
Lemma 5.1. using Lemma A.1.

(C2/C4) For n ≥ 1, let V ≡ a0, . . . , an−1 and let 0 ≤ i, j ≤ n − 1.
We have that

O[[V ! [ai = a j]P]] = M ◦ 〈O[[V ! ai]],O[[V ! a j]],O[[V ! P]]〉

= λv.

[
λt : 1.O[[V ! P]]

λt : 1. nil

]
(eq(πiv, π jv)).

Then, for 0 ≤ kl ≤ n − 1 (0 ≤ l ≤ n − 1) we have that

O[[V ! [ai = a j]P]]n(k0, . . . , kn−1) =
{O[[V ! P]]n(k0, . . . , kn−1), if ki = k j .

niln, if ki �= k j .

Thus,

C[[V ! [ai = a j]P]] =
{C[[V ! P]], if i = j .

C[[V ! 0]], if i �= j .

Finally, we can establish the denotational validity of the equations of the system Aπ .

THEOREM 5.1. In the domain-theoretic interpretation, for V ! P and V ! Q, if Aπ |= P = Q then
C[[V ! P]] = C[[V ! Q]].

Proof. Because the closed interpretation, in addition to validating the axioms of Aπ (see
Corollary 5.1), validates the inference rules of Aπ (see Table 3); essentially as a consequence of
Lemma 4.1 using (30).

From the definition of Expn
V (see (6) in Section 2.4) it follows that the closed domain-theoretic

interpretation of a process equals that of its expansions.

COROLLARY 5.2. In the domain-theoretic interpretation, for P ∈ Pr V , we have that C[[V !
P]] = C[[V ! Expn

V (P)]] for all n.

5.2. Denotational Validity of the ω-birule

We show that the closed domain-theoretic interpretation validates the ω-birule (1).

We start by considering the iterator � : (A ⇒ A) ⇒ A ⇒ A defined, up to the equality A = PHA,
as λh. P(Hh) where

PX,Y
def= λ f . λp. let(val ◦ f, p) : (X ⇒ Y) ⇒ P X ⇒ PY

is the internalisation of the action of P on morphisms. It follows, by the initiality property of A
def=

µX . PHX , that � has a unique fixed-point, viz. idA.
Next we introduce semantic counterparts of the syntactic functions NilnV and BotnV of Section 2.4;

by abuse of notation they will be denoted in the same way. The semantic functions Niln : A ⇒ A and
Botn : A ⇒ A are respectively defined by iterating � n times at λp : A. 0 and λp : A. ⊥. Formally, we

set Nil0
def= λp. 0; Bot0

def= λp. ⊥; and, for f ∈ {Nil, Bot}, f n+1 def= �(f n).

It follows by induction, using (12) and (14), that the semantic functions mimic the syntactic ones.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 103

LEMMA 5.2. Let f, g ∈ {Nil, Bot}.
1. For P ∈ E⊥X n

V , f n
|V |(C[[V ! P]]) = C[[V ! f n

V (P)]].

2. For p ∈ Al , f n
l (gn+m

l (p)) = f n
l (p).

COROLLARY 5.3. Let P, Q ∈ E⊥X n
V . For all n,

C
[[

V ! NilnV (P)
]] = C

[[
V ! NilnV (Q)

]]
iff BotnV (C[[V ! P]]) = BotnV (C[[V ! Q]]).

Proof. For the left to right direction we have that by hypothesis and by Lemma 5.2 (5.2),

NilnV (C[[V ! P]]) = NilnV (C[[V ! Q]]). (31)

Then,

BotnV (C[[V ! P]]) = BotnV
(
NilnV (C[[V ! P]])

)
, by Lemma 5.2 (5.2)

= BotnV
(
NilnV (C[[V ! Q]])

)
, using (31)

= BotnV (C[[V ! Q]]), by Lemma 5.2 (5.2).

The right to left direction is proved by a symmetric argument.

We can finally establish the validity of the ω-birule in the close domain-theoretic interpretation.

THEOREM 5.2 (Denotational validity of the ω-birule). For P, Q ∈ Pr V , the following are equivalent:

1. C[[V ! NilnV (Expn
V (P))]] = C[[V ! NilnV (Expn

V (Q))]], for all n.

2. C[[V ! P]] = C[[V ! Q]].

Proof. We have the following sequence of equivalences

∀n. C
[[

V ! NilnV (Expn
V (P))

]] = C
[[

V ! NilnV (Expn
V (Q))

]]
iff ∀n. BotnV

(
C
[[

V ! Expn
V (P)

]]) = BotnV
(
C
[[

V ! Expn
V (Q)

]])
, by Corollary 5.3

iff ∀n. BotnV (C[[V ! P]]) = BotnV (C[[V ! Q]]), by Corollary 5.2

iff C[[V ! P]] = C[[V ! Q]],

where the last equivalence follows from computational induction because idA = fixA⇒A(�) = ∨
〈�n(λp : A. ⊥)〉n = ∨〈Botn〉n .

6. FULL ABSTRACTION

In this section we will prove the following full abstraction result.

THEOREM 6.1 (Full abstraction for the domain-theoretic interpretation). In the domain-theoretic
interpretation, P ∼ Q iff C[[V ! P]] = C[[V ! Q]] whenever P, Q ∈ Pr V .

Since the ω-birule P = Q ⇔ (∀n. PV,n = QV,n) whenever P, Q ∈Pr V (where PV,n is the process
NilnV (Expn

V (P)) ∈ NFn
V) is admissible for strong late bisimulation (see Section 3) and for the equiva-

lence induced by the close domain-theoretic interpretation (see Section 5.1), it suffices to prove

THEOREM 6.2 (Finite full abstraction for the domain-theoretic interpretation). In the domain-theoretic
interpretation, P ∼ Q iff C[[V ! P]] = C[[V ! Q]] whenever P, Q ∈ Pr V are finite.

To interpret finite agents there is no need for recursion (in the metalanguage), so one can define also a
set-theoretic interpretation, which uses the free-semilattice monad instead of Abramsky’s powerdomain
monad. The key technical result of this section is the existence of an injective homomorphism from the
set-theoretic to the domain-theoretic interpretation. From this we have

104 FIORE, MOGGI, AND SANGIORGI

THEOREM 6.3 (Equivalence on finite processes). C[[V ! P]] = C[[V ! Q]] holds in the set-theoretic
interpretation iff it holds in the domain-theoretic interpretation, whenever P, Q ∈ Pr V are finite.

Therefore Theorem 6.1 follows from a much simpler full-abstraction result, namely

THEOREM 6.4 (Finite full abstraction for the set-theoretic interpretation). In the set-theoretic
interpretation, P ∼ Q iff C[[V ! P]] = C[[V ! Q]] whenever P, Q ∈ Pr V are finite.

For the set-theoretic interpretation one can establish a stronger result:

THEOREM 6.5 (Universality of the set-theoretic interpretation). If A0 ∈ SetI is the object of agents
in the set-theoretic interpretation, then C[[V !]] establishes a bijective correspondence CNFV

∼=
A0(|V |).

The rest of this section is organized as follows: we define canonical interpretations of finite processes
and establish some basic facts; then we prove Theorem 6.3; finally we prove Theorems 6.4 and 6.5.

In Appendix B we recall some definitions regarding functors and monads used in the rest of this
section.

6.1. Canonical Interpretations of Finite Processes

In Section 4 we interpret processes in the category CpoI (via translation into a metalanguage) using the
object A

def= µX .P(H X), where P is Abramsky’s powerdomain monad and H is a suitable endofunctor
on CpoI . To interpret finite processes there is no need of recursion (in the metalanguage); thus we can
replace P with the free-semilattice monad M (in the interpretation of the metalanguage) and use the
object A0

def= µX . M(H X). A key difference between A and A0 is that A has a least element (P(X)
always has one), while A0 is a flat object; i.e., the cpo A0(n) is flat for every n ∈ I.

What follows identifies sufficient properties on a category C for defining canonical interpretations
(of finite processes) in CI and gives ways for relating them. In particular, the interpretations of finite
processes in the objects A and A0 of CpoI are canonical, and one can define a canonical interpretation of
finite processes in SetI by analogy with that in A0. We prove that there is an homomorphism h : A0 → A
from the set-theoretic interpretation in A0 to the domain-theoretic interpretation in A; therefore two
finite processes are identified in A, if they are identified in A0.

DEFINITION 6.1 (OK category). We say that a category C is OK iff it is a biCCC with small limits
and free semilattices. We say that a functor � : C1 → C2 (between OK categories) is OK iff it is full
and faithful, and it has a right adjoint U and a left adjoint c preserving finite products.

PROPOSITION 6.1. Set and Cpo are OK. The functor � : Set → Cpo, mapping X to the flat cpo
(X, =X), is OK.

Proof. Set is obviously OK. Cpo is OK, in particular for the existence of free-semilattices; see [3].
The functor � is clearly full and faithful. � has a right adjoint U : Cpo → Set, mapping a cpo to its
underlying set, and a left adjoint c : Cpo → Set, mapping a cpo to the set of its connected components.
It is easy to show that c preserves finite products.

PROPOSITION 6.2. If � : C1 → C2 is OK, then it preserves limits, colimits, exponentials, and free-
semilattices. Moreover, C1 is an exponential ideal of C2.

Proof. Limits and colimits are preserved because � has left and right adjoints. C1 (as a full sub-
category of C2) is an exponential ideal; i.e., Y X ∈ C1 whenever Y ∈ C1 and X ∈ C2. More precisely,
(�Y)X is canonically isomorphic to �(Y c(X)), because the left adjoint c preserves finite products.
Exponentials are preserved because C1 is an exponential ideal and c(�X) is canonically isomorphic
to X (as � is full and faithful). Let SL(Ci) be the category of semilattices in Ci , Fi : SL(Ci) → Ci the
forgetful functor, and Mi # Fi the adjunction establishing that Ci has free-semilattices. The adjunction
� # U lifts to semilattices, because � and U preserve finite products. Now consider the following

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 105

adjunctions

SL(C1)
✛M1

⊥
F1

✲ C1

SL(C2)

�

❄

U

✻

F2−→$✛
M2

C2

U

✻

! �

❄

Since the inner square commutes (up to isomorphism), so does the outer square. This means that
�(M1 X) = M2(�X); i.e., � preserves free-semilattices.

PROPOSITION 6.3. For any small category W
• the category CW is OK, if C is;

• the functor �W is OK, if � : C1 → C2 is.

Proof. The structure which makes CW OK is defined pointwise, except for exponentials, which are
defined in terms of small limits and exponentials in C. The left and right adjoints of �W are UW and
cW , and they inherit the necessary properties from �, U, and c.

The notion of algebra for an endofunctor or a monad is well known (see Appendix B). We consider
the more general case of objects with two (or more) algebra structures.

DEFINITION 6.2. Given F and G monads or endofunctors on a category C, we say that a = (aF , aG)
is an (F, G)-algebra iff aF : F A → A is an F-algebra and aG : G A → A is a G-algebra. Moreover,
we say that h : A → B is an (F, G)-homomorphism from a to b iff h is both an F-homomorphism and
a G-homomorphism. We write C(F,G) for the category of (F, G)-algebras.

PROPOSITION 6.4.

1. If M is a monad and H an endofunctor on C, then every initial M H-algebra A
def= µX .M(H X)

(if it exists) is an initial (M, H)-algebra as follows

H A
ηM

H A−→ M(H A) ∼= A
µM

H A←− M2(H A) ∼= M A.

2. If T is a monad and λ : M
.→ T a monad morphism, then any X ∼= T (H X) is an (M, H)-

algebra as follows

H X
ηT

H X−→ T (H X) ∼= X
µT

H X←− T 2(H X) ∼= T X
λX←− M X .

Proof. (1) Let b = (bM : M B → B, bH : H B → B) be an (M, H)-algebra. B is also an M H -

algebra with bM H def= bM ◦ M(bH) : M(H B) → B. The unique M H -homomorphism h : A → B is
also an (M, H)-homomorphism, because

H A
ηM

H A✲ M(H A)
∼ ✲ A ✛ ∼

M(H A) ✛µ
M
H A M2(H A)

∼ ✲ M A

H B

Hh

❄

ηM
H B

✲ M(H B)

M(Hh)

❄

bM H
✲ B

h

❄
✛

bM H
M(H B)

M(Hh)

❄
✛
µM

H B

M2(H B)

M(Hh)

❄

MbM H
✲ M B

Mh

❄

commute and the following equations hold (as bM is an M-algebra)

106 FIORE, MOGGI, AND SANGIORGI

• bM H ◦ ηM
H B = bM ◦ M(bH) ◦ ηM

H B = bM ◦ ηB ◦ bH = bH ,

• bM H ◦ µM
H B = bM ◦ M(bH) ◦ µM

H B = bM ◦ µB ◦ M2(bH) = bM ◦ M(bM) ◦ M2(bH) =
bM ◦ M(bM H).

Moreover h is the unique (M, H)-homomorphism, because any (M, H)-homomorphism k : A → B is
also an M H -homomorphism (and therefore equal to h)

M(H A)
MηM

H A✲ M2(H A) ∼= M A
µM

H A✲ M(H A) ∼= A

M(H B)

M(Hk)

❄ MbH
✲ M B

Mk

❄ bM
✲ B

k

❄

THEOREM 6.6. If C is OK, then any (M, H)-algebra a on A in CI induces a canonical interpretation
C[[V ! P]]a ∈ A(|V |) for any finite P ∈ Pr V , where

• M is the free-semilattice monad on CI ;

• H is the endofunctor on CI s.t. H X = N × (N ⇒ X) + N × N × X + N × δX + X ;

• N is the object of CI s.t. N (n) = n, i.e., the coproduct of n copies of 1;

• δ is the endofunctor on CI s.t. (δX)(n) = X (n + 1).

Proof. We have to interpret the term constructors for finite processes (see Section 4.6).

• Since aM is an M-algebra, A has a semilattice structure, which provides the interpretation of
nil : A and sum : A, A → A;

• N has a decidable equality, so one can interpret (using also the semilattice structure on A)
M : N , N , A → A and MM : N , N , A → A;

• Finally using the H -algebra structure aH (and the morphism λ f : N ⇒ X . δ f new : (N ⇒ X) →
δX for X = A) one can interpret in : N , (N ⇒ A) → A, out : N , N , A → A, bout : N , (N ⇒ A) → A,

and tau : A → A. �

THEOREM 6.7. If C is OK, M and H are the endofunctors on CI considered in Theorem 6.6, and
h : a1 → a2 is an (M, H)-homomorphism, then

h|V |
(
C[[V ! P]]a1

) = C[[V ! P]]a2

for any finite P ∈ Pr V .

Proof. It is immediate from the interpretation of term constructors that h commutes with them; i.e.,
h ◦ op1 = op2 ◦ O(h) where opi : O(Ai) → Ai is the interpretation in Ai of the term constructor
op : O(A) → A. This property is inherited by the interpretation of derived term constructors, in particular
by the (open) interpretation of finite processes.

THEOREM 6.8. If � : C1 → C2 is OK, Mi and Hi are the endofunctors on CI
i considered in

Theorem 6.6, and a is an (M1, H1)-algebra on A, then

• a is also an (M2, H2)-algebra in CI
2 , by considering CI

1 as a full subcategory of CI
2 via the

embedding �I ;

• C[[V ! P]]1 = C[[V ! P]]2 ∈ A(| V |) for any finite P ∈ Pr V , where C[[V ! P]]i is the
canonical interpretation in CI

i induced by the (Mi , Hi)-algebra a.

Proof. Since �I is OK, it preserves the categorical structure for defining canonical interpretations.
In particular, �I commutes with M and H , and so it preserves (M, H)-algebras.

The following corollaries relate the set-theoretic and domain-theoretic interpretation.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 107

LEMMA 6.1. If � : C1 → C2 has a right adjoint U and the diagram

C1
� ✲ C2

C1

F1

❄

�
✲ C2

F2

❄

commutes, then � maps initial F1-algebras to initial F2-algebras.

Proof. Given an initial F1-algebra a : F1 A → A, we sketch the proof of initiality for the F2-algebra
�a : F2(�A) = �(F1 A) → �A. Namely, for any b : F2 B → B we define the unique F2-homomorphism
f : �A → B using the adjunction � # U :

• the F2-algebra b induces an F1-algebra b′ : F1(U B) → U B defined as the composite

F1(U B)
ηF1(U B)−−→ U (�(F1(U B))) = U (F2(�(U B)))

U (F2εB)−−−→ U (F2 B)
Ub−→ U B,

where η and ε are the unit and counit of the adjunction � # U ;

• by initiality of a one has an F1-homomorphism f ′ : A → U B from a to b′;
• by the natural isomorphism C1(A, U B)

.∼= C2(�A, B) one gets f : �A → B.

One finally checks that f has the required properties.

COROLLARY 6.1. The canonical interpretations in the initial M H-algebras in SetI and CpoI coin-
cide.

Proof. By Theorem 6.8 the (M, H)-algebra on the initial M H -algebra A0
def= µX . M(H X) in SetI

is also an (M, H)-algebra in CpoI that induces the same interpretation of finite processes. But �I

commutes with M and H ; therefore by Lemma 6.1, �I maps A0 to the initial M H -algebra in
CpoI .

COROLLARY 6.2. The domain-theoretic interpretation in A
def= µX . P(H X) of CpoI (see Section 4.6)

is canonical. Furthermore, it is related to the canonical interpretation in A0
def= µX . M(H X) by an

(M, H)-homomorphism h : A0 → A.

Proof. The domain-theoretic interpretation of finite processes in A is canonical because it coincides
with the canonical interpretation induced by the (M, H)-algebra on A given by Proposition 6.4 by taking
T = P and λX as the (unique) semilattice homomorphism M X → P X induced by ηP

X : X → P X . This
is proved by showing that the interpretation of the term constructors for finite processes (see Section 4.6)
coincide. Existence (and uniqueness) of h : A0 → A follows immediately from Proposition 6.4.

6.2. Injectivity and Equivalence

To prove that the canonical interpretations in A0 and A induce the same equivalence on finite processes,
we show that the (M, H)-homomorphism h : A0 → A of Corollary 6.2 is injective. In what follows C
is OK, and L is a monad on C s.t. the unit ηL is monic and the following equations (expressed in the
metalanguage) hold

• letL x1, x2 ⇐ c1, c2 in f (x1, x2) = letL x2, x1 ⇐ c2, c1 in f (x1, x2),

• letL x1, x2 ⇐ c, c in f (x1, x2) = letL x ⇐ c in f (x, x).

Moreover, we assume that the free-semilattice monad M and the monad P exist and are s.t. the category
CP of P-algebras is isomorphic to the category C(L ,M) of (L , M)-algebras.

108 FIORE, MOGGI, AND SANGIORGI

Remark. The intended interpretation for L is the lifting monad on Cpo. In this case P is Abramsky’s
powerdomain. The equations for L say that changing the order of computation and recomputing are
irrelevant. By definition of P , every P-algebra structure induces an M-algebra structure on the same
object of C, and P-homomorphisms are also M-homomorphisms. This amounts to having a monad
morphism λ : M

.→ P .

Notation. If T is a monad, we write ηT and µT for its unit and multiplication; moreover, when X
and Y have a given T -algebra structure (which is clear from the context) we write f : X →T Y to mean
that f is a T -homomorphism.

DEFINITION 6.3. Given an operation op : Xn → X , its extension op′ : (L X)n → L X to L X is given

by op′(c̄)
�= let x̄ ⇐ c̄ in [op(x̄)].

LEMMA 6.2. An M-algebra structure on X induces a P-algebra structure on L X. Moreover, if
f : X →M Y then L f : L X →P LY , and ηL

X : X →P L X and µL
X : L2 X →P L X.

Proof. An M-algebra structure on X means that we have a semilattice (X, 0, ∪). L X has a free
L-algebra structure (namely µL

X); therefore to define a P-algebra structure on L X it suffices to have a
semilattice. By the definition of extension and the equational properties of L , it is immediate to see that
(L X, 0′, ∪′) is a semilattice and the three morphisms are homomorphisms.

THEOREM 6.9. Let H be an endofunctor on C and σ : H L
.→ L H a distributive law. If the initial

algebras A
def= µX . P(H X) and A0

def= µX . M(H X) exist, then the unique (M, H)-homomorphism h :
A0 → A of Proposition 6.4 is monic.

Proof. We define a map p : A → L A0 and prove that p ◦ h = ηL
A0

. Then h is monic, because ηL
X is

monic (by assumption). In what follows

• λ : M
.→ P is the monad morphism from M to P;

• aH
0 : H A0 → A0 is the H -algebra structure on A0;

• aM
0 : M A0 → A0 is the (free) M-algebra structure on A0;

• a P
0 : P(L A0) → L A0 is the P-algebra structure on L A0 induced by aM

0 as given in Lemma 6.2.

Recall that h : A0 → A is the unique M H -homomorphism s.t. the diagram

M(H A0)
∼ ✲ A0

M(H A)

M(Hh)

❄ λH A✲ P(H A)
∼ ✲ A

h

❄

commutes, and let p : A → L A0 be the unique P H -homomorphism s.t. the diagram

P(H A)
∼ ✲ A

P(H (L A0))

P(H p)

❄ PσA0✲ P(L(H A0))
P(LaH

0)✲ P(L A0)
a P

0 ✲ L A0

p

❄

commutes.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 109

The composite p◦h is the unique M H -homomorphism e : A0 → L A0 making the following diagram
commute:

M(H A0)
∼ ✲ A0

M(H (L A0))

M(He)

❄ λH (L A0)✲ P(H (L A0))
PσA0✲ P(L(H A0))

P(LaH
0)✲ P(L A0)

a P
0 ✲ L A0

e

❄

and we prove that p ◦ h = ηL
A0

by establishing the commutativity of

M(H A0)
∼ ✲ A0

M(H (L A0))

M(HηL
A0

)

❄ λH (L A0)✲ P(H (L A0))
PσA0✲ P(L(H A0))

P(LaH
0)✲ P(L A0)

a P
0 ✲ L A0

ηL
A0

❄

which follows from the commutativity of the diagram below

M(H A0) ======== M(H A0)
MaH

0 ✲ M A0
aM

0 ✲ A0

(1) (2)

M(H (L A0))

M(HηL
A0

)

❄ MσA0✲ M(L(H A0))

M(ηL
H A0

)

❄ M(LaH
0)✲ M(L A0)

MηL
A0

❄
(3)

(4) (4′)

P(H (L A0))

λH (L A0)

❄

PσA0

✲ P(L(H A0))

λL(H A0)

❄

P(LaH
0)
✲ P(L A0)

λL A0

❄

a P
0

✲ L A0

ηL
A0

❄

where (1) commutes by a property of σ , viz. σX ◦ HηL
X = ηL

H X ; (2) commutes by naturality of ηL ;
(3) commutes because ηL

X : X →M L X (see Lemma 6.2); and (4) and (4′) commute by naturality
of λ.

To finally prove Theorem 6.3, we want to apply Theorem 6.9 when H is the endofunctor on CI

considered in Theorem 6.6 and the monads are the pointwise extensions to CI of the monads M, P,

and L on C, whose existence is assumed at the beginning of Section 6.2. (Note that these pointwise
extensions inherit the properties stated at the beginning of Section 6.2 for the original monads.) Thus,
we need to provide a distributive law

H LI .→ LI H,

where H X = N×(N ⇒ X) + N × N × X + N × δX + X and (LI X)(n) = (L X)(n). This can be done
using the following distributive laws:

• κ
ηLI

N
: KN LI .→ LI KN , where KN (X) = N and (κ

ηLI
N

)X = ηLI
N .

• id : δLI .→ LIδ, noting that (δ(LI X))(n) = L(X (n + 1)) = (LI (δX))(n).
• σX : (N ⇒ LI X)

.→ LI (N ⇒ X) defined, using Proposition 4.2, at stage n as the mapping

110 FIORE, MOGGI, AND SANGIORGI

(L(Xn))n×L(X (n + 1)) → L((Xn)n×X (n + 1))

c̄ &→ let x̄ ⇐ c̄ in [x̄].

• id : Id LI .→ LI Id,

together with the constructions on distributive laws given below:

• If σ1 : H1LI .→ LI H1 and σ2 : H2LI .→ LI H2 are distributive laws then so is the composite

(H1 × H2)LI = H1LI × H2LI σ1×σ2−−→ LI H1 × LI H2
�−→ LI (H1 × H2),

where �(c1, c2) = let 〈x1, x2〉 ⇐ 〈c1, c2〉 in [〈x1, x2〉].
• If σ1 : H1LI .→ LI H1 and σ2 : H2LI .→ LI H2 are distributive laws then so is the composite

(H1 + H2)LI = H1LI + H2LI σ1+σ2−−→ LI H1 + LI H2
[LI'1,LI'2]−−−−−−→ LI (H1 + H2).

6.3. Finite Full Abstraction and Universality

By Proposition 3.4, P ∼ Q iff CNFV (P) ≡ CNFV (Q) whenever P, Q ∈ Pr V are finite. Moreover,
in the closed set-theoretic interpretation we have that C[[V ! P]] = C[[V ! CNFV (P)]] whenever
P ∈ Pr V is finite. In fact:

• The axioms Aπ are valid in the close domain-theoretic interpretation (see Section 5).

• C[[V ! P]] = C[[V ! CNFV (P)]] in the close domain-theoretic interpretation whenever P ∈
Pr V is finite, because P = CNFV (P) is derivable from Aπ (see Lemma 3.2).

• C[[V ! P]] = C[[V ! CNFV (P)]] in the close set-theoretic interpretation whenever P ∈ Pr V

is finite, because of Theorem 6.3.

By the observations above Theorem 6.4 follows from Theorem 6.5. Finally, the bijective correspondence
between CNFV and A0(|V |) is proved by observing that

CNFV =
⋃
n∈ω

CNFn
V A0(|V |) =

⋃
n∈ω

An
0(|V |)

and the inductive definitions of CNFn
V and An

0(|V |) are the same:

• the set CNFn
V of canonical normal forms of depth less than n and names in V is defined

by induction on n as follows CNF0
V

def= ∅, CNFn+1
V

def= Pfin(pCN Fn
V), and the set pCN Fn

V of prefixed
canonical normal forms is given by the grammar

pCN Fn
V := a(c).

(∑
a∈V

[c = a]CNFn
V + [c �∈ V]CNFn

V ∪{c}

) ∣∣∣∣∣
āb. CNFn

V

∣∣ ā(c). CNFn
V ∪{c}

∣∣ τ . CNFn
V

where n ∈ ω, a, b ∈ V and c is the first name not in V .

• the set An
0(| V |) is the object (M H)n(0) of SetI at stage |V |, or equivalently it can be defined

by induction on n as follows: A0
0(v)

def= ∅ and

An+1
0 (v)

def= P
(
v×(

An
0(v)

)v×An
0(v + 1) + v×v×An

0(v) + v×An
0(v + 1) + An

0(v)
)
,

where n, v ∈ ω.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 111

7. BISIMILARITY UNDER A CONSTRAINT

Distinctions, finite symmetric and irreflexive binary relation on names [21], allow us to forbid certain
identifications of names. They are useful in the π -calculus because in it ports, variables, and constants
are not distinguished—they are all just names. Distinctions express permanent inequalities on names;
thus (a, b) being in a distinction means that a must be kept separate from b. If D is a distinction then
P ∼D Q means that P and Q are bisimilar under all substitutions which respect D.

In this section we show that the theory of the previous sections can be easily generalised to handle
distinctions. Actually, we shall be more general and consider any decidable property on a finite list V of
distinct names, which we call constraints on V or, simply, constraints when V is clear from the context.
Formally, a constraint on V , say φ, is a subset of N V (the functions from the underlying set of V to
N) closed under injective substitutions (i.e., such that for every injective substitution ι, if s ∈ φ then
ιs ∈ φ). We use φ to range over constraints and call N V the maximal constraint. If φ is a constraint on
V and σ a substitution, then σ respects φ if σ � V ∈ φ.

DEFINITION 7.1 (Bisimulation under a constraint). Let φ be a constraint on V . For P, Q ∈ Pr V , we
set P ∼φ Q (read “P bisimilar to Q under the constraint φ”) if Pσ ∼ Qσ for all substitutions σ that
respect φ.

Constraints are more expressive than distinctions, in that they allow us to express more refined forms
of process bisimilarities. For instance, using some obvious logical connectives for a concise description
of constraints, P ∼[a �=b]∨[a �=c] Q says that P and Q are equivalent under all substitutions which keep
a different from b or c, and P ∼[a=b]∨[a=c] Q says that P and Q are equivalent under all substitutions
which make a equal to b or c. Late congruence is, by definition, the same as bisimilarity under the
maximal constraint, whereas late bisimilarity can be proved to coincide with bisimilarity under the
constraint made of all injective substitutions. All processes are bisimilar under the empty constraint.

The set of constraints (on a fixed list of names) ordered by inclusion is a complete boolean algebra.
Every pair of processes P, Q ∈ Pr V has an optimal constraint �(P,Q)

def= ⋃{φ | P ∼φ Q} such that
P ∼φ Q iff φ ⊆ �(P,Q). In other words, the optimal constraint collects the necessary conditions on
names for the equality between two processes to hold. It may be that �(P,Q) is the false constraint
(e.g., for P

def= τ . 0 and Q
def= āb. 0) in which case no choice of names can make P and Q bisimilar.

The notion of constraint was suggested by the model as for any V we have a bijective correspondence
between “constraints on V ” and “natural transformations N | V | → 2′′. For V ≡ a0, . . . , an−1, a con-
straintφ and a natural transformation f are in the bijective correspondence whenever fm(i0, . . . , in−1)=tt
(0 ≤ i j < m) iff [a j &→ i j]0≤ j<n ∈ φ where we write i for the i th name in N . It is then immediate to
define an interpretation under a constraint. By pullback, we objectify constraints φ as �

def= χ (φ)−1(tt)
where χ (φ) is the natural transformation corresponding to φ; and, by restriction, we define

Oφ[[V !]]
def=

(
� ⊆ N |V | O[[V !]]−−−−→ A

)
. (32)

When φ is the maximal constraint, (32) specialises to the open interpretation, whilst when φ is the
constraint consisting of all injective substitutions (32) is essentially the closed interpretation.

Full abstraction for bisimilarity under constraint follows as a corollary of full abstraction for late
bisimilarity (Theorem 6.1).

COROLLARY 7.1 (Full abstraction of the domain-theoretic interpretation under constraints). Let φ be
a constraint on V . In the domain-theoretic interpretation, for P, Q ∈ Pr V , P ∼φ Q iff Oφ[[V !
P]] =Oφ[[V ! Q]].

Similarly to what has been done for the closed semantics (Lemma 4.1), the interpretation under
constraints can be proved to be compositional. The congruence properties of the associated notion of
bisimilarity follow.

112 FIORE, MOGGI, AND SANGIORGI

8. CONCLUSIONS

The denotational model is superior to the operational approach in revealing a few basic properties of ∼
and ∼c. A good example is the invariance of ∼ under injective substitutions, which is a straightforward
consequence of (30)—the operational proof, although not difficult is rather tedious. Other examples
are the congruence properties of ∼ and ∼c (e.g., that ∼c is preserved by all operators and that ∼ is
preserved by all operators but input), which follow directly from the definitions of O[[]] and C[[]].

The denotational model is also interesting for proving basic laws of the operators of π -calculus, like
associativity of parallel composition and the extrusion law for restriction “νa (P | Q) ∼c P |νa Q if
a �∈ fn(P)”. The operational proofs of these laws in [21] require some ingenuity (e.g., the “bisimilarity
up to bisimilarity and up to restriction” technique). For an idea of how these proofs may be carried over
in the denotational model, see the validation of laws in Section 5.1.

Guarded Replication. In our π -calculus syntax the plain replication !P has been replaced by a
guarded replication !α. P . This simplification is justified by the laws of π -calculus strong bisimilar-
ity [29] and allows us to avoid the issue of divergence. For instance, with plain replication a denotational
semantics would validate !0 = ⊥, whilst bisimulation validates !0 = 0.

Matching and Mismatching. For describing the canonical forms induced by our model and hence
to obtain the universality Theorem 6.5 we need both matching and mismatching—operators whose
theoretical and pragmatic relevance for π -calculus is often debated. The importance of these constructs
for equational reasoning has already been expressed in [25].

The Metalanguage. We have factored the denotational semantics for the π -calculus through a
metalanguage suggested by model-theoretic considerations.

The metalanguage can easily cope with operators not in the π -calculus syntax, for instance, inter-
rupt operators like those in LOTOS [8], which are not definable in the π -calculus—even up to weak
bisimulation.

An interesting direction of research is to turn the metalanguage into a typed higher order process
calculus, with an operational semantics and notion of bisimulation conservatively extending those of
the π -calculus.

The translation of the π -calculus in the metalanguage uses a type of agents A = P(H A), where P is
Abramsky’s powerdomain monad and H is an endofunctor corresponding to the action capabilities. It
is conceivable to replace P with some other monad and H with some other endofunctor. This flexibility
allows us to accommodate smoothly other languages, e.g.,

• to deal with global variables one should replace P with the monad T X
def= P(X × S)S , where

S is an object of states;

• to deal with the π I-calculus [31] (a symmetric subcalculus of π -calculus where the free-output
construct is forbidden and hence only private names can be exchanged), one should use the endofunctor
H X

def= N × δX + N × δX + X . This gives a fully abstract model for π I-bisimilarity; the proof mimics
the one outlined in Section 6.

In particular, by changing H we can define a denotational semantics in CpoI for languages ranging
from pure CCS to Higher-Order π -calculus (HOπ) [28], along the lines outlined for the π -calculus.

Also the proof of full abstraction is fairly reusable. It copes with the polyadic π -calculus (where
several names can be sent at once) and value-passing CCS (with binary sums and guarded recursion),
provided the set of values is finite; but it cannot cope with HOπ and CCS with infinite-value passing.

We have obtained full abstraction with respect to a simple minded domain-theoretic model (in com-
parison to other categories proposed for Algol-like languages). The main problem to get full abstraction
results for domain-theoretic models is not local names and mobility, but higher order! In fact, sim-
ple domain-theoretic models cannot achieve full abstraction for PCF nor for the λν-calculus (a CBV
λ-calculus whose base types are bool and unit ref, see [26]). Therefore, to get full abstraction results
for higher-order calculi with static binding, like Plain CHOCS [35] and HOπ , one should consider
more refined models (probably based on game semantics [2, 18]). Thomsen [35], Hennessy [14], and
Jeffrey [19] have given denotational models for higher-order process calculi with dynamic binding on

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 113

names. But their constructions cannot account for calculi based on static binding such as the π -calculus,
Plain CHOCS, and HOπ .

Bisimilarity under a Constraint. We have seen that the set of bisimilarities under constraints has
a rich structure—that of a complete boolean algebra—and that any pair of processes has an optimal
constraint for bisimilarity. It might be interesting to explore this structure in more detail and see whether
on nontrivial subsets of π -calculus the optimal constraint of two processes can be computed efficiently.

Limits of Our Approach. Our semantics for π -calculus is a special case of a uniform approach to
give semantics to a variety of calculi. However, this approach deals only with strong late bisimulation,
which from a denotational point of view appears to be the simplest equivalence to handle (amongst
those proposed for the π -calculus). We do not know how to capture denotationally other equivalences:

• Weak bisimulation—where internal actions are partially ignored—is a more useful form of
behavioural equivalence. Here the problem is not specific to the π -calculus semantics as there is no
established domain-theoretic model for weak bisimulation even in pure CCS. (Work in this direction in
the context of open maps can be found in [12].)

• Early and open bisimulations [21, 30] differ from the late one because of different requirements
on name instantiations. Early bisimulation, which is coarser than late bisimilarity, inverts the order
of the existential and universal quantifiers in the input clause (see [9] for an indication of how this
can be captured using constructions on presheaf models). Open bisimilarity, which is finer than late
bisimilarity and congruence, takes the open-semantic perspective into the definition of bisimulation.
The only constraints on equalities among names are those imposed by name extrusion and are recorded
as a distinction in the bisimilarity clauses. Finding a satisfactory domain equation for open bisimulation
seems to be difficult, but the treatment of constraints in Section 7 might provide some hints.

APPENDIX A

Denotational Interpretations

A.1. Open Interpretation

We give a complete definition of the open interpretation hinted at in Section 4.6.

The open interpretation of a name a ∈ V and a process P ∈ Pr V , respectively denoted O[[V ! a]] :
N |V | .→ N and O[[V ! P]] : N |V | .→ A, is defined as follows.

• O[[a1, . . . , an ! ai]]
def= πi(1 ≤ i ≤ n).

• O[[V ! a(b). P]]
def= in ◦ 〈O[[V ! a]], λ O[[V, b ! P]]〉.

• O[[V ! āb. P]]
def= out ◦ 〈O[[V ! a]],O[[V ! b]],O[[V ! P]]〉.

• O[[V ! ā(b). P]]
def= bout ◦ 〈O[[V ! a]], λ O[[V, b ! P]]〉.

• O[[V ! τ . P]]
def= tau ◦ O[[V ! P]].

• O[[V ! 0]]
def= λv. nil.

• O[[V ! P + Q]]
def= sum ◦ 〈O[[V ! P]],O[[V ! Q]]〉.

• O[[V ! P | Q]]
def= par ◦ 〈O[[V ! P]],O[[V ! Q]]〉.

• O[[V ! P ‖Q]]
def= lm ◦ 〈O[[V ! P]],O[[V ! Q]]〉.

• O[[V ! P ‖ Q]]
def= syn ◦ 〈O[[V ! P]],O[[V ! Q]]〉.

• O[[V ! νa P]]
def= res ◦ λ O[[V, a ! P]].

• O[[V ! [a = b]P]]
def= M ◦ 〈O[[V ! a]],O[[V ! b]],O[[V ! P]]〉.

• O[[V ! [a �= b]P]]
def= MM ◦ 〈O[[V ! a]],O[[V ! b]],O[[V ! P]]〉.

114 FIORE, MOGGI, AND SANGIORGI

• O[[V ! ! a(b). P]]
def= !in ◦ 〈O[[V ! a]], λ O[[V, b ! P]]〉.

• O[[V ! ! āb. P]]
def= !out ◦ 〈O[[V ! a]],O[[V ! b]],O[[V ! P]]〉.

• O[[V ! ! ā(b). P]]
def= !bout ◦ 〈O[[V ! a]], λ O[[V, b ! P]]〉.

• O[[V ! ! τ . P]]
def= !tau ◦ O[[V ! P]].

As a standard lemma we have:

LEMMA A.1.

1. (Alpha-conversion) Let V ! P and V ! Q. For P and Q alpha-convertible,

O[[V ! P]] = O[[V ! Q]].

2. (Permutation) Let V, a, b, W ! P. Then,

O[[V, a, b, W ! P]] = O[[V, b, a, W ! P]] ◦ 〈
π1, . . . , π|V |, π|V |+2, π|V |+1π|V |+3, . . . , π|V |+| W |+2

〉
.

3. (Contraction) Let V, W ! P. For a �∈ V, W,

O[[V, a, W ! P]] = O[[V, W ! P]] ◦ 〈
π1, . . . , π| V |, π|V |+2, . . . , π|V |+|W |+1

〉
.

4. (Substitution) Let V, a, W ! P. For b ∈ V, W,

O[[V, W ! P{b/a}]] = O[[V, a, W ! P]] ◦ 〈
π1, . . . , π|V |,O[[V, W ! b]], π|V |+1, . . . , π|V |+|W |

〉
.

COROLLARY A.1 (Invariance under injective substitutions). Let V, a, W ! P. For b �∈ V, W,

O[[V, a, W ! P]] = O[[V, b, W ! P{b/a}]].

A.2. Quasi-compositionality of the Closed Interpretation

This section is devoted to proving Lemma 4.1. We start by proving the following:

PROPOSITION A.1. For V ≡ a0, . . . , an−1 we have:

1. (λ O[[V, b ! P]])n(0, . . . , n − 1) = (〈C[[V ! P{ai/b}]]〉i∈n, C[[V, b ! P]]).

2. δn ((λ O[[V, b ! P]])n (0, . . . , n − 1)) newn = C[[V, b ! P]].

Proof. We write)n for (0, . . . , n − 1).

(1) First observe that

(λ O[[V, b ! P]])n)n = (λ(O[[V, b ! P]]n))n,O[[V, b ! P]]n+1()n, n)), by Proposition 4.2

= (λ (O[[V, b ! P]]n))n, C[[V, b ! P]]).

Moreover, since for 1 ≤ i ≤ n,

C[[V ! P{ai/b}]] = O[[V ! P{ai/b}]]n)n = O[[V, b ! P]]n()n,O[[V ! ai]]n)n)

= O[[V, b ! P]]n()n, i)

it follows that

λ(O[[V, b ! P]]n))n i = C[[V ! P{ai/b}]]

and we are done.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 115

(2) Since

• δn : (N ⇒ X)(n) → (δN ⇒ δX)(n) is given by

X (n)n × X (n + 1)
X (ιn)n×〈X (ιn+1),id〉✲ X (n + 1)n × X (n + 2) × X (n + 1),

where ιn denotes the inclusion n ⊆ n + 1, and,

• for h : δN ⇒ X , we have hn : X (n)n × X (n + 1) × X (n) and

hn(newn) = Evaln(hn, n) = π3(hn) : X (n),

it follows that

δn ((λ O[[V, b ! P]])n)n) newn = π3 (δn ((λ O[[V, b ! P]])n)n))

= π2 ((λ O[[V, b ! P]])n)n)

= C[[V, b ! P]].

Proof of Lemma 4.1. We only consider the interesting cases:

(2) Let |V |= n and write)n for (0, . . . , n − 1). Then,

C[[V ! ā(b). P]] = O[[V ! ā(b). P]]n)n
= boutn(O[[V ! a]]n)n, (λO[[V, b ! P]])n)n)

= (S3)n(C[[V ! a]], δn((λ O[[V, b ! P]])n)n) newn)

and, by Proposition A.1 (2), we are done.

(3) Writing)n for (0, . . . , n − 1),

C[[V ! a(b). P]] = O[[V ! a(b). P]]n)n
= inn(O[[V ! a]]n)n, (λ O[[V, b ! P]])n)n)

= inn(C[[V ! a]], (λ O[[V, b ! P]])n)n),

and, by Proposition A.1 (1), we are done.

(8) Let |V |= n and write)n for (0, . . . , n − 1). Then,

C[[V ! νa P]] = O[[V ! νa P]]n)n
= Rn(δn ((λ O[[V, a ! P]])n)n) newn)

and, by Proposition A.1 (2), we are done.

APPENDIX B

Some Category-Theoretic Notions

DEFINITION B.1 (Algebra for an endofunctor). For a (strong) endofunctor F , a map F A → A is said
to be an F-algebra. Moreover, a map h : A → B is said to be an F-homomorphism from a : F A → A
to b : F B → B iff b ◦ Fh = h ◦ a : F A → B.

116 FIORE, MOGGI, AND SANGIORGI

DEFINITION B.2 (Algebra for a monad). For a (strong) monad T , a map a : T A → A is a T -algebra
iff the diagram

T A ✛ T a
T 2 A

�
�

�
�

ηT
A

✒

A
idA

✲ A

a

❄
✛

a
T A

µT
A

❄

commutes. Moreover, a map h : A → B is said to be a T -homomorphism from a : T A → A to
b : T B → B iff b ◦ T h = h ◦ a : T A → B.

DEFINITION B.3 (Monad morphism). For (strong) monads S and T on the same category, a natural
transformation λ : S

.→ T is said to be a monad morphism from S to T iff the diagram

SX ✛ µS
X S2 X

λSX

✲ T (SX)

�
�

�
�

ηS
X

✒

✠�
�

�
�

T (λX)

X
ηT

X

✲ T X

λX

❄
✛

µT
X

T 2 X

commutes.

DEFINITION B.4 (Distributive law). For a (strong) monad T and a (strong) endofunctor F on the same
category, the natural transformation σ : FT

.→ T F is said to be a distributive law iff the diagram

F(T X) ✛F(µT
X)

F(T 2 X)
σT X

✲ T (F(T X))

�
�

�
�

F(ηT
X)

✒

✠�
�

�
�

T (σX)

F X
ηT

F X

✲ T (F X)

σX

❄
✛
µT

F X

T 2(F X)

commutes.

REFERENCES

1. Abramsky, S. (1991), A domain equation for bisimulation, Inform. and Comput. 92, 161–218.
2. Abramsky, S., Jagadeesan, R., and Malacaria, P. (1994), Full abstraction for PCF (extended abstract), in “Proceedings,

Theoretical Aspects of Computer Software. International Symposium TACS’94” (M. Hagiya and J. C. Mitchell, Eds.),
Lecture Notes in Computer Science, Vol. 789, Springer-Verlag, Berlin/New York.

3. Abramsky, S., and Jung, A. (1994), Domain theory, in “Handbook of Logic in Computer Science,” Oxford Univ. Press,
London.

4. Aceto, L., and Ingólfsdóttir, A. (1996), CPO models for compact GSOS languages, Inform. and Comput. 129(2), 107–141.
5. Anderson, S. O., and Power, A. J. (1997), A representable approach to finite nondeterminism. Theoret. Comput. Sci. 177(1),

3–25.
6. Baeten, J., and Weijland, W. (1990), “Process Algebra,” Cambridge Tracts in Theoretical Computer Science, Cambridge

Univ. Press, Cambridge, UK.
7. Boreale, M., and De Nicola, R. (1996), A symbolic semantics for the π -calculus, Inform. and Comput. 126, 34–52.
8. Bolognesi, T., and Brinksma, E. (1989), Introduction to the ISO specification language LOTOS, in “The Formal Description

Technique LOTOS” (P. H. J. van Eijk, C. A. Vissers, and M. Diaz, Eds.), North Holland, Amsterdam.

A FULLY ABSTRACT MODEL FOR THE π -CALCULUS 117

9. Cattani, G. L., Stark, I., and Winskel, G. (1997), Presheaf models for the π -calculus, in “7th International Conference on
Category Theory and Computer Science,” Lecture Notes in Computer Science, Vol. 1290, Springer-Verlag, Berlin/New York.

10. Cenciarelli, P., and Moggi, E. (1993), A syntactic approach to modularity in denotational semantics, in “Proceedings, CTCS-5
(Category Theory and Computer Science Fifth Biennial Meeting),” pp. 9–12. CWI.

11. Fiore, M. P. (1996), “Axiomatic Domain Theory in Categories of Partial Maps,” Distinguished Dissertations in Computer
Science, Cambridge University Press, Cambridge, UK.

12. Fiore, M. P., Cattani, G. L., and Winskel, G. (1999), Weak bisimulation and open maps, in “Fourteenth LICS Conf.,” IEEE
Comput. Soc. Press, New York.

13. Hennessy, M. (1981), A term model for synchronous processes, Inform. and Control 51(1), 58–75.
14. Hennessy, M. (1994), A fully abstract denotational model for higher-order processes, Inform. and Comput. 112(1), 55–95.
15. Hennessy, M. (1996), “A Fully Abstract Denotational Semantics for the Pi-Calculus,” Computer Science Technical Report

1996:04, School of Cognitive and Computing Sciences, University of Sussex.
16. Hennessy, M., and Plotkin, G. (1979), Full abstraction for a simple parallel programming language, in “Proceedings, 8th

Symposium on Mathematical Foundations of Computer Science” (J. Becvar, Ed.), Lecture Notes in Computer Science,
Vol. 74, Springer-Verlag, Berlin/New York.

17. Hennessy, M., and Plotkin, G. (1980), A term model for CCS, in “Proceedings, 9th Symposium on Mathematical Foundations
of Computer Science” (P. Dembinski, Ed.), Lecture Notes in Computer Science, Vol. 88, Springer-Verlag, Berlin/New York.

18. Hyland, J. M. E., and Ong, C.-H. L. (1995), Pi-calculus, dialogue games and PCF, in “Proceedings, 7th Annual ACM
Conference on Functional Programming Languages and Computer Architecture,” Assoc. Comput. Mach., New York.

19. Jeffrey, A. (1995), A fully abstract semantics for a concurrent functional language with monadic types, in “Proceedings, 10th
Annual IEEE Symposium on Logic in Computer Science,” pp. 255–264, IEEE Comput. Soc. Press, New York.

20. Lambek, J., and Scott, P. J. (1986), “Introduction to Higher Order Categorical Logic,” Cambridge University Press,
Cambridge, UK.

21. Milner, R., Parrow, J., and Walker, D. (1992), A calculus of mobile processes, I and II, Inform. and Comput. 100(1), 1–77.
22. Milner, R. (1993), “The Polyadic π -Calculus: A Tutorial,” Technical Report ECS–LFCS–91–180, LFCS, University of

Edinburgh, 1991. (Also in “Logic and Algebra of Specification” (F. L. Bauer, W. Brauer, and H. Schwichtenberg, Eds.),
Springer-Verlag, Berlin/New York.)

23. Moggi, E. (1991), Notions of computation and monads, Inform. and Comput. 93(1), 55–92.
24. Oles, F. J. (1985), Type algebras, functor categories and block structure, in “Algebraic Methods in Semantics” (M. Nivat and

J. C. Reynolds, Eds.)
25. Parrow, J., and Sangiorgi, D. (1995), Algebraic theories for name-passing calculi, Inform. and Comput. 120(2), 174–197.
26. Pitts, A. M., and Stark, I. D. B. (1993), Observable properties of higher order functions that dynamically create local names,

or: What’s new? in “Proceedings, MFCS’93” (A. M. Borzyszkowski and S. Sokolowski, Eds.), Lecture Notes in Computer
Science, Vol. 711, Springer-Verlag, Berlin/New York.

27. Rutten, J. (1992), Processes as terms: Non-well-founded models for bisimulation, Mathematical Structures in Computer
Science 2, 257–275.

28. Sangiorgi, D. (1992), “Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms,” Ph.D. thesis,
Department of Computer Science, University of Edinburgh.

29. Sangiorgi, D. (1998), On the bisimulation proof method, Mathematical Structures in Computer Science 8(5), 447–479.
30. Sangiorgi, D. (1996), A theory of bisimulation for the π -calculus, Acta Informatica 33, 69–97.
31. Sangiorgi, D. (1996), π -Calculus, internal mobility and agent-passing calculi, Theoret. Comput. Sci. 167(2), 235–274.
32. Sangiorgi, D., and Walker, D. (Forthcoming), “The π -Calculus: A Theory of Mobile Processes,” Cambridge University Press,

Cambridge, UK.
33. Smyth, M., and Plotkin, G. (1982), The category-theoretic solution of recursive domain equations, SIAM J. Comput. 11(4),

761–783.
34. Stark, I. (1996), A fully abstract domain model for the π -calculus, in “Eleventh LICS Conf.” IEEE Comput. Soc. Press,

New York.
35. Thomsen, B. (1990), “Calculi for Higher Order Communicating Systems.” Ph.D. thesis, Department of Computing, Imperial

College.

	INTRODUCTION
	1. p-CALCULUS
	TABLE 1

	2. AN w-BIRULE AND SOME SYNTACTIC CONSTRUCTIONS
	TABLE 2
	TABLE 3

	3. OPERATIONAL VALIDITY OF THE w-BIRULE
	4. DENOTATIONAL SEMANTICS
	TABLE 4
	TABLE 5

	5. DENOTATIONAL VALIDITY
	6. FULL ABSTRACTION
	7. BISIMILARITY UNDER A CONSTRAINT
	8. CONCLUSIONS
	APPENDIX A
	APPENDIX B
	REFERENCES

