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Abstract

This paper provides tools for the study of the Dirichlet random walk in R
d . We compute

explicitly, for a number of cases, the distribution of the random variable W using a form of
Stieltjes transform of W instead of the Laplace transform, replacing the Bessel functions
with hypergeometric functions. This enables us to simplify some existing results, in
particular, some of the proofs by Le Caër (2010), (2011). We extend our results to the
study of the limits of the Dirichlet random walk when the number of added terms goes to
∞, interpreting the results in terms of an integral by a Dirichlet process. We introduce
the ideas of Dirichlet semigroups and Dirichlet infinite divisibility and characterize these
infinite divisible distributions in the sense of Dirichlet when they are concentrated on the
unit sphere of R

d .

Keywords: Dirichlet process; Stieltjes transform; random flight; distributions in a sphere;
hyperuniformity; infinite divisibility in the sense of Dirichlet
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1. Introduction

In this paper we study the distribution of

Wn,d = X1�1 + · · · + Xn�n,

where X = (X1, . . . , Xn) ∼ D(q1, . . . , qn) is Dirichlet distributed and �1, . . . �n are inde-
pendent, identically distributed (i.i.d.), uniformly distributed on the unit sphere Sd−1 of the
Euclidean space R

d and independent of X (the scalar product on R
d is 〈x, y〉 = x1y1 + · · · +

xdyd ). In other terms, we select independently and uniformly n random points on Sd−1 and we
take their barycenter according to the random weights (X1, . . . , Xn).

We term (improperly) the random variableWn,d a Dirichlet random walk because ifYj ∼ γqj
,

j = 1, 2, . . . , are independent and if Sn = Y1 + · · · + Yn then the sequence

( n∑
j=1

Yj�j

)
n≥1

is an inhomogeneous random walk on Ed and Wn,d ∼ (1/Sn)
∑n

j=1 Yj�j according to the
well-known properties of gamma and Dirichlet distributions. The random variable Wn,d leads
to a simpler analysis than the study of

∑n
j=1 �j , initiated by Lord Kelvin, and the subject of a

recent in-depth paper by Borwein et al. (2012), where d = 2 and n = 3, 4, 5.
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1082 G. LETAC AND M. PICCIONI

If U is any random variable concentrated in the closed unit sphere, Bd of Ed , our technique
for characterizing the distribution of U is to consider the function defined on the interior B̊d of
Bd by

y �→ Tp(U)(y) = E

(
1

(1 + 〈y, U〉)p
)

,

where p is a fixed positive number. The function Tp(U) can be considered as a kind of Stieltjes
transform of the distribution of U. It is straightforward to prove that knowledge of the function
Tp(U) gives knowledge of the moments of the real variable 〈y, U〉. Since U is bounded, this
identifies the distribution of U . However, recovering the distribution of U from Tp(U) is not
always easy; in particular, from Tp(U) and Tq(V ) and if p 
= q, it may be unclear whether
U ∼ V or not.

In all the cases considered here, the distribution of U is invariant by rotation and y �→
Tp(U)(y) depends only on ‖y‖. We borrow from Le Caër (2010) the following terminology.
We say that U is hyperspherically uniform (hyperuniform for short) of type k > d if U is the
law of the projection of a random variable � uniform on the unit sphere Sk−1 of R

k onto a
subspace of dimension d . The term ‘hyperuniform’ is justified by the fact that when k = d + 2
the induced distribution is uniform on the unit sphere Bd of R

d (for k = 3 and d = 1 this result
is due to Archimedes).

Le Caër’s paper (2010) is motivated by problems in metallurgy. It studies the cases where
the Dirichlet random walk Wn,d is hyperuniform of type k for some k > d. His main result is
the description of the quadruplets (q, d, n, k) such that Wn,d is hyperuniform of type k when
X ∼ D(q, q, . . . , q) (see Theorems 6 and 9 below). We refer to Le Caër’s paper for the original
proofs, for the bibliography concerning this problem, and for some interesting simulations. In
Section 3 we provide new proofs of Le Caër’s statements. Section 4 is devoted to explicit
expressions of the distribution of Wn,d when X ∼ D(q, . . . , q), where Theorem 4 deals with
the case where q = d and gives the explicit form of the density of ‖Wn,d‖2 as a mixing of
beta distributions. In Theorem 5 we deal with q = 1 and even d, with results close to those of
Kolesnik (2009). In Section 5 we rule out the easy case where n = 2. In Section 6 we consider
the limits of Wn,d with (X1, . . . , Xn) ∼ D(Q/n, . . . , Q/n), when n goes to ∞ with Q and d

fixed, and interprets the results in terms of an integral by a Dirichlet process. The examples in
Section 6 lead to the idea of infinite divisibility in the sense of Dirichlet, introduced in Section
7.

2. Dirichlet random walks

Theorem 1. Let (q1, . . . , qn) be positive numbers and let (X1, . . . , Xn) ∼ D(q1, . . . , qn).

We write Q = q1 +· · ·+qn. Let B̊d be the interior of the unit sphere of R
d , Sd−1 its unit sphere

and let �1, . . . �n be i.i.d., each of them being uniformly distributed on Sd−1. We consider

Wn,d = X1�1 + · · · + Xn�n.

Then, for y ∈ B̊d , we have

E

(
1

(1 + 〈y, Wn,d〉)Q
)

=
n∏

j=1

2F1

(
qj

2
,
qj + 1

2
; d

2
; ‖y‖2

)
. (1)

In order to give a proof we need a lemma. In what follows (a)k is the familiar Pochhammer
symbol (a)0 = 1 and (a)k = a(a + 1) . . . (a + k − 1) = �(a + k)/�(a) for k > 0.
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Dirichlet random walks 1083

Lemma 1. Let � be uniform on Sd−1 and y ∈ B̊d . For p > 0 and k, a positive integer, we
have

E(|〈y, �〉|p) = ‖y‖p �((p + 1)/2)�(d/2)

�(1/2)�((p + d)/2)
, E(〈y, �〉2k) = ‖y‖2k

(
1

2

)
k

/(
d

2

)
k

, (2)

E

(
1

(1 + 〈y, �〉)p
)

= 2F1

(
p

2
,
p + 1

2
; d

2
; ‖y‖2

)
. (3)

Proof of Lemma 1. Consider the Gaussian random variable Z = (Z1, . . . , Zd) valued in
R

d with distribution N(0, Id). Then Z/‖Z‖ is uniformly distributed on Sd−1 and 〈y, �〉 ∼
‖y‖Z1/‖Z‖. Furthermore, 〈y, �〉 is a symmetric random variable and the knowledge of its
distribution is given by the knowledge of the distribution of its square. However,

1

‖y‖2 〈y, �〉2 ∼ Z2
1

Z2
1 + · · · + Z2

d

∼ β

(
1

2
,
d − 1

2

)

= 1

B(1/2, (d − 1)/2)
z1/2−1(1 − z)(d−1)/2−11(0,1)(z) dz

since the Z2
j are independent chi square random variables (RV) with one degree of freedom.

Equation (2) is now clear. Now we prove (3) by using the second part of (2):

E

(
1

(1 + 〈y, �〉)p
)

=
∞∑
i=0

(p)i

i! (−‖y‖)iE
((

1

‖y‖〈y, �〉
)i)

=
∞∑

j=0

(p)2j

(2j)! ‖y‖2j (1/2)j

(d/2)j

=
∞∑

j=0

(p/2)j ((p + 1)/2)j

(d/2)j j ! ‖y‖2j

= 2F1

(
p

2
,
p + 1

2
; d

2
; ‖y‖2

)
.

Proof of Theorem 1. We apply the following principle (see Chamayou and Letac (1994)).
If X = (X1, . . . , Xn) ∼ D(q1, . . . , qn) with Q = q1 + · · · + qn, and if f = (f1, . . . , fn) is
such that fi > 0 for all i, then

E

(
1

〈f, X〉Q
)

= 1∏n
i=1 f

qi

i

. (4)

Condition by (�1, . . . , �n) and apply (4) to fi = 1 + 〈y, �i〉, we obtain, from (3) and, (4)

E

(
1

(1 + 〈y, W 〉)Q
)

= E

(
E

(
1

(1 + 〈y, W 〉)Q
∣∣∣∣ (�1, . . . , �n)

))

= E

(
1∏n

i=1(1 + 〈y, �i〉)qi

)

=
n∏

j=1

2F1

(
qj

2
,
qj + 1

2
; d

2
; ‖y‖2

)
.
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1084 G. LETAC AND M. PICCIONI

In what follows we will need the following simple identities relating hypergeometric func-
tions with the function defined for |z| < 1 by

G(z) = 2

z
(1 − √

1 − z) = 2

1 + √
1 − z

. (5)

Lemma 2. We have, for |z| < 1,

2F1

(
c

2
,
c + 1

2
; c + 1; z

)
= G(z)c if c > 0, (6)

2F1

(
c

2
,
c + 1

2
; c; z

)
= 1√

1 − z
G(z)c−1 if c > 1, (7)

∞∑
n=1

(1/2)n

n!
zn

2n
= log G(z). (8)

Proof. Equation (6) is a consequence of 2F1(c/2, (c + 1)/2; c + 1; 4u − 4u2) = 1F0(c; u),
which is a particular case of the classical and nontrivial identity

2F1
(
2a, 2b; a + b + 1

2 ; u
) = 2F1

(
a, b; a + b + 1

2 ; 4u − 4u2) true for 0 ≤ u ≤ 1
2 .

Equation (7) is a consequence of the Euler identity

2F1(p, q; r; z) = (1 − z)r−p−q
2F1(r − p, r − q; r; z)

applied to p = c/2, q = (c + 1)/2, and r = c, then using (6). If f is the left-hand side of (8)
it is easily seen that

f ′(z) = 1

2z

(
1√

1 − z
− 1

)
, f (z) =

∫ z

0
f ′(t) dt =

∫ 1

√
1−z

ds

1 + s
= log G(z)

by the change of variable t = 1 − s2.

The next proposition shows that under certain circumstances the computation of the moments
of ‖Wn,d‖2 is easy with knowledge of Ta(Wn,d)(y).

Proposition 1. Let � be uniform on the unit sphere Sd−1. Assume that � is independent of
the random variable R ∈ [0, 1], and denote W = R�. Let a > 0 and suppose that Ta(W) has
the form of the left-hand side of (9)–(11) for some b > 0. Then the even moments of R have
the form of the right-hand side. We have

Ta(W)(y) = 1

(1 − ‖y‖2)b
�⇒ E(R2k) = (b)k(d/2)k

(a/2)k((a + 1)/2)k
, (9)

Ta(W)(y) = G(‖y‖2)b �⇒ E(R2k) = (b)2k(d/2)k

(a)2k(b + 1)k
, (10)

Ta(W)(y) = 1√
1 − ‖y‖2

G(‖y‖2)b−1 �⇒ E(R2k) = (b)2k(d/2)k

(a)2k(b)k
. (11)
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Dirichlet random walks 1085

Proof. We first expand E((1 + 〈y, W 〉)−a) in powers of ‖y‖2. Using the fact that the odd
moments of 〈y, W 〉 are 0 and using (2), we obtain

E

(
1

(1 + 〈y, W 〉)a
)

=
∞∑

k=0

(a)2k

(2k)!E(〈y, W 〉2k)

=
∞∑

k=0

(a)2k

(2k)!E(〈y, �〉2k)E(R2k)

=
∞∑

k=0

(a)2k

(2k)!
(1/2)k

(d/2)k
E(R2k)‖y‖2k. (12)

Observe also that (
1

2

)
k

= (2k)!
22kk! ,

(b/2)k((b + 1)/2)k

(1/2)k

(2k)!
k! = (b)2k.

Using the fact that the power series of G(z)b and G(z)b−1/
√

1 − z are known by Lemma 2, we
obtain the results of Proposition 1.

We now apply the equations from Proposition 1 with R2 beta distributed. Actually

R2 ∼ β(p, q) ⇐⇒ E(R2k) = (p)k

(p + q)k
. (13)

Proposition 2. The following hold.

(i) If Wn,d is a Dirichlet random walk governed by D(d−1, . . . , d−1) and if Rn,d = ‖Wn,d‖
then

R2
n,d ∼ β

(
d

2
,
(n − 1)(d − 1)

2

)
.

The same law is obtained if one of the Dirichlet parameters is set to d.

(ii) If Wn,d is a Dirichlet random walk governed by D(d/2 − 1, . . . , d/2 − 1) and if Rn,d =
‖Wn,d‖ then

R2
n,d ∼ β

(
d

2
, (n − 1)

(
d

2
− 1

))
.

The same law is obtained if one of the Dirichlet parameters is set to d/2.

Proof. The first statement follows from (1) and (9) with a = 2b = n(d − 1) and a − 1 =
2(b − 1) = n(d − 1). The second statement follows from (10) with a = b = n(d/2 − 1) and
from (11) with a = b = n(d/2 − 1) + 1.

Note that when d , m, and n are positive integers such that

(n − 1)(d − 1) = (m − 1)(d − 2) = t

we obtain, from the previous result, four different representations as Dirichlet random walks
for the same law β(d/2, t/2) for the squared radius. For example, with d = 3, n = 2,
m = 3 the same law β( 3

2 , 1) for the squared radius is obtained from X�1 + (1 − X)�2,
X′�1 + (1 − X′)�2, Y1�1 + Y2�2 + Y3�3, and Y ′

1�1 + Y ′
2�2 + Y ′

3�3, where X ∼ β(2, 2),
Y ∼ β(2, 3), X′ ∼ D( 1

2 , 1
2 , 1

2 ), and Y ′ ∼ D( 3
2 , 1

2 , 1
2 ). This example was already noted in

Le Caër (2010).
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1086 G. LETAC AND M. PICCIONI

3. Hyperuniformity

It is easy to describe hyperuniform random vectors by introducing the standard Gaussian
random variable

Z = (Z1, . . . , Zk) ∼ N(0, Ik).

Then U = Z/‖Z‖ is uniformly distributed on the unit sphere of R
k and (Z1/‖Z‖, . . . , Zd/‖Z‖)

is hyperuniform on R
d of type k. We have

‖U‖2 = Z2
1 + · · · + Z2

d

Z2
1 + · · · + Z2

k

∼ βd/2,(k−d)/2

by standard beta gamma algebra. Note that, for k−d = 2, the distribution βd/2,1 is the measure
induced on the squared radius by the Lebesgue measure in Bd, in agreement with Archimedes’
theorem. Thus, we can rephrase and extend the definition in the introduction by allowing k > d

to be an arbitrary real number. There is no particular problem in allowing k > d to be a real
number.

Definition. Let U be a random variable valued in the unit sphere of R
d such that its distribution

is invariant by rotation (namely a(U) ∼ U for all a ∈ O(Rd)). We say that U is hyperuniform
of type k > d if ‖U‖2 ∼ β(d/2, (k − d)/2).

With Proposition 2 we immediately have the first main result of Le Caër (2010).

Theorem 2. Let X = (X1, . . . , Xn) ∼ D(q + m, q, . . . , q) with m = 0 or 1. Let (�j )
n
j=1 be

i.i.d. and uniform on the unit sphere of R
d . Then Wn,d = X1�1 + · · ·+Xn�n is hyperuniform

of type k > d in the unit sphere of R
d irrespectively of m = 0, 1, if

(i) d ≥ 2, n ≥ 2, q = d − 1, and k = n(d − 1) + 1;

(ii) d ≥ 3, n ≥ 2, q = d/2 − 1, and k = n(d − 2) + 2.

Proof. This is immediately obtained from Proposition 2.

Proposition 3. If U in the unit sphere of dimension d is invariant by rotation, then U is
hyperuniform of type k > d if and only if, for any p > 0, we have

Tp(U)(y) = 2F1

(
p

2
,
(p + 1)

2
; k

2
; ‖y‖2

)
.

Proof. From Lemma 1 and (13),

E

(
1

(1 + 〈U, y〉)p
)

= E

(
1

(1 + 〈�, ‖U‖y〉)p
)

= E(2F1

(
p

2
,
(p + 1)

2
; d

2
; ‖U‖2‖y‖2)

)

= 2F1

(
p

2
,
(p + 1)

2
; k

2
; ‖y‖2

)
.

Corollary 1. Let X = (X1, . . . , Xn) ∼ D(q1, . . . , qn) and Q = q1+· · ·+qn. Let �1, . . . , �n

be i.i.d., and uniform on the unit sphere of R
d and independent of X. Then W = X1�1 + · · ·+
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Xn�n is hyperuniform of type k > d if and only if, for |z| < 1,

n∏
i=1

2F1

(
qi

2
,
(qi + 1)

2
; d

2
; z

)
= 2F1

(
Q

2
,
(Q + 1)

2
; k

2
; z

)
.

Proof. This is an immediate consequence of Theorem 1 and Proposition 3, with z replacing
the term ‖y‖2.

The second main result of Le Caër (2010) is a partial converse of Theorem 2 and its proof
and includes an unexplained miracle.

Theorem 3. Let X = (X1, . . . , Xn) ∼ D(q, . . . , q). Let (�j )
n
j=1 be i.i.d. and uniform on the

unit sphere of R
d . Then Wn,d = X1�1 +· · ·+Xn�n is hyperuniform of type k > d in the unit

sphere of E only if

(i) either d ≥ 2, q = d − 1, n ≥ 2, and k = n(d − 1) + 1; or

(ii) d ≥ 3, q = d/2 − 1, n ≥ 2, and k = n(d − 2) + 2.

Proof. By Proposition 3 and Corollary 1 the random variable Wn,d is hyperuniform of order
k if and only if the following holds:

2F1

(
q

2
,
q + 1

2
; d

2
; z

)n

= 2F1

(
nq

2
,
nq + 1

2
; k

2
; z

)
.

With the notation

ai = (q/2)i((q + 1)/2)i

i! (d/2)i
= (q)2i

22i i! (d/2)i
, bi = (nq/2)i((nq + 1)/2)i

i! (k/2)i
= (nq)2i

22i i! (k/2)i
,

for i = 1, 2, . . . , we have

(1 + a1z + a2z
2)n ≡ 1 + b1z + b2z

2 mod z3.

Expanding the left-hand side term through the multinomial formula, we obtain two equations:

b1 = na1, (14)

b2 = na2 + n(n − 1)

2
a2

1 . (15)

Equality (14) implies k(q + 1) = d(nq + 1). Equality (15), after simplification, becomes

(nq + 1)(nq + 2)(nq + 3)

k(k + 2)
= (q + 1)(q + 2)(q + 3)

d(d + 2)
+ (n − 1)

q(q + 1)2

d2 .

Replacing k by d(nq + 1)/(q + 1) in this equation and simplifying again leads to

(q + 1)(nq + 2)(nq + 3)

d(nq + 1) + 2q + 2
= (q + 2)(q + 3)

d + 2
+ (n − 1)

q(q + 1)

d
.

Next, set x = d/(q + 1), obtaining (for fixed q) an equation in x:

(nq + 2)(nq + 3)

x(nq + 1) + 1
= (q + 2)(q + 3)

x(q + 1) + 1
+ (n − 1)

q

x
. (16)

Now we attend to a little miracle of the theory. Equation (16) is a second order equation in x,
whose solutions x = 1 and x = 2 depend neither on n nor q. From this we have that (16) has
only q = d − 1 and q = d/2 − 1 as solutions, as desired.
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1088 G. LETAC AND M. PICCIONI

Remark. From Theorems 2 and 3 the only Dirichlet walks Wn,d governed by (X1, . . . , Xn) ∼
D(q, . . . , q) are uniform (that they are hyperuniform with type k = d + 2) if and only if

(i) d = 2, n = 3, q = 1;
(ii) d = 3, n = 2, q = 2;

(iii) d = 3, n = 3, q = 1
2 ;

(iv) d = 4, n = 2, q = 1.

4. Density of the Dirichlet random walk in the case where D(q, . . . , q)

Let us study the density of the squared radius of the Dirichlet random walk Wn,d governed
by D(q, . . . , q), with n ≥ 2. The cases in which q = d − 1 and q = d/2 − 1 have already
been dealt with in Theorem 2. First, we rule out the simple cases where d = 1 and q is
arbitrary (Proposition 4). We present the main results of this section for the case where q = d

(Theorem 4), and the case where q = 1 and d is even (Theorem 5). The case where q = d

is the subject of Le Caër (2011). The case where q = d = 2 is considered by Beghin and
Orsingher (2010). The case where (q, d) = (1, 6) is the subject of Kolesnik (2009).

For the case where d = 1, for arbitrary q > 0.

For this case we can deal with a slightly more general case. A Dirichlet random walk occurs
when p = 1

2 in the following proposition.

Proposition 4. Let X = (X1, . . . , Xn) ∼ D(q, . . . , q) (n times) and let ε1, . . . , εn be i.i.d.
random variables independent of X with distribution pδ1 + (1 − p)δ−1. Then the law of
Y = X1ε1 + · · · + Xnεn is

(1 − p)nδ−1(dy) + pnδ1(dy)

+ �(nq)2−nq−1
n−1∑
k=1

(
n

k

)
pk(1 − p)n−k (1 + y)kq−1(1 − y)(n−k)q−1

�(kq)�((n − k)q)
1(−1,1)(y) dy.

Proof. This is easy by conditioning on K = ε1 + · · · + εn.

For the case where q = d > 1.
With R = Rn,d = ‖Wn,d‖, Theorem 1 and (9) show that, for q = d,

E(R2k) = ((nd + n)/2)k

((nd + 1)/2)k

(d/2)k

(nd/2)k
.

In other terms, if Z ∼ R2 and X are independent then X ∼ β((nd + 1)/2, (n − 1)/2) implies

Y = XZ ∼ β

(
d

2
,
(n − 1)d

2

)
. (17)

This is a consequence of (13). However, finding the distribution of Z from the multiplicative
convolution equation (17) is not easy. Here is the result.

Theorem 4. Suppose that d > 1. Consider the Dirichlet random walk Wn,d governed by
D(d, . . . , d), denote Rn,d = ‖Wn,d‖ and let f be the density of V = R2

n,d . Then the Mellin
transform M of f is given by

M(s) =
∫ 1

0
f (v)vs dv = C

�((nd + n)/2 + s)�(d/2 + s)

�((nd + 1)/2 + s)�(nd/2 + s)
, (18)
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where C is determined by M(0) = 1. Furthermore,

(i) if n = 2N + 1 is odd then M is a rational function of the form

M(s) = C
(Nd + (d + 1)/2 + s)N

(d/2 + s)Nd

=
Nd−1∑
k=0

Ak

d/2 + k + s

and f (v) = ∑Nd−1
k=0 Akv

d/2+k−1, where, for k = 0, . . . , Nd − 1, we have

Ak = (−1)kC
(Nd + 1/2 − k)N

k! (Nd − k − 1)! ;
(ii) if n = 2N is even then

M(s) = C
�(d/2 + s)

�(Nd + 1/2 + s)
(s + Nd)N

and f is a mixture of the beta densities

f (v) dv =
N∑

k=0

rkβ

(
d

2
+ k, Nd − d − 1

2
− k

)
(dv),

with the weights r0, . . . , rN , that are positive, satisfy
∑N

k=0 rk = 1, and have the explicit
value

rk = 1

(Nd)N

(
d

2

)
k

(
d

(
N − 1

2

))
N−k

(
N

k

)
, k = 0, . . . , N. (19)

Proof. With the notation X, Y , Z used in (17) we can claim that E(Xs)E(Zs) = E(Y s) for
s > 0, which implies (18). When n = 2N + 1 is odd the Ak are computed by partial fraction
expansion and 1/(d/2 + k + s) is the Mellin transform of the function vd/2+k−11(0,1)(v).

When n = 2N the situation is more complicated. Since ((x)k/k!)k≥0 is a basis for real
polynomials, every polynomial P(x) of degree N can be written as

P(x) =
N∑

k=0

pk

(x)k

k!
for some coefficients p0, . . . , pN . This implies that we have P(−j) = ∑j

k=0(−1)kpk

(
j
k

)
that

we invert into pk = ∑k
j=0(−1)jP (−j)

(
k
j

)
. We now apply these remarks to the polynomial

P(x) = (x +A)N/(Nd)N, with A = d(N − 1
2 ). Taking x = s +d/2, we obtain P(s +d/2) =

(s + Nd)N/(Nd)N, thus,

(s + Nd)N

(Nd)N
=

N∑
k=0

rk
(s + d/2)k

(d/2)k
. (20)

We proceed to an explicit calculation of the rks as follows:

rk = 1

(Nd)N

(
d

2

)
k

k∑
j=0

(−1)j

j !
1

(k − j)! (A − j)N = 1

(Nd)N

(
d

2

)
k

(A)N−kak,

where

ak =
k∑

j=0

(−1)j
(A − j)j

j !
(A + N − k)k−j

(k − j)! .
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For computing the aks we use their generating function and the change of index k′ = k − j :

∞∑
k=0

akz
k =

∞∑
k=0

k∑
j=0

(−1)j
(A − j)j

j ! zj (A + N − k)k−j

(k − j)! zk−j

=
∞∑

j=0

(−1)j
(A − j)j

j ! zj
∞∑

k′=0

(A + N − j − k′)k′

k′! zk′

=
∞∑

j=0

(−1)j
(A − j)j

j ! zj (1 + z)A+N−j

= (1 + z)A+N−1
∞∑

j=0

(A − j)j

j !
( −z

1 + z

)j

= (1 + z)A+N−1
(

1 − z

1 + z

)A−1

= (1 + z)N ,

which proves ak = (
N
k

)
and (19). Finally, setting s = 0 in (20) we have

∑N
k=0 rk = 1.

To conclude the proof, we now have, from (18) and (20),

M(s) = C

N∑
k=0

rk
�(d/2 + s)

�(Nd + 1/2 + s)

(s + d/2)k

(d/2)k
,

where C = (�(Nd + 1/2))/(�(d/2)) and we observe that

C
�(d/2 + s)

�(Nd + 1/2 + s)

(s + d/2)k

(d/2)k
= �(Nd + 1/2)

�(d/2 + k)

�(d/2 + k + s)

�(Nd + 1/2 + s)

is the Mellin transform of β(d/2 + k, Nd − (d − 1)/2 − k).

For the case where d is even and q = 1.

The next theorem (Theorem 5) is inspired by Kolesnik (2009) who computes the distribution
of W for d = 6 when W is a Dirichlet random walk governed by D(1, 1, . . . , 1) but when n

is random and Poisson distributed. More specifically, let Y0, . . . , Yn, . . . be i.i.d. RV such
that Pr(Y0 > y) = e−cy , let N(t) be a Poisson process such that E(N(t)) = λt and let
�0, . . . , �n, . . . be i.i.d. and uniform on the unit sphere of R

d . Denote

X(t) =
N(t)∑
i=0

Yi�i, S(t) =
N(t)∑
i=0

Yi, W(t) = X(t)

S(t)
.

Kolesnik computes the distribution of X(t) for d = 6. Here we are rather interested in the
distribution of W(t)|N(t) = n − 1, which is independent of S(t)|N(t) = n − 1.
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Before stating Theorem 5, we need a presentation of the hypergeometric function 2F1(
1
2 , 1;

D; z) when D ≥ 2 is a positive integer. The main point of Proposition 5 is that this function is
actually a polynomial

∑D−1
k=1 BkG(z)k with respect to the function G defined by (5).

Proposition 5. Let D be a positive integer ≥ 2. Then, for 0 < u < 1
2 ,

2F1

(
1

2
, 1; D; 4u − 4u2

)
= (D − 1)!BD(u)

4D−1(1 − u)D−1 =
D−1∑
k=1

Bk

(1 − u)k
, (21)

where BD(u) is a polynomial of degree D−2 defined as follows: if AD(u) = uD−1BD(u) then
A′

D(u) = 4(1 − 2u)AD−1(u), AD(0) = 0, and A1(u) = 1/(1 − 2u). In particular, B1 = 1 for
D = 2, B1 = 4

3 and B2 = − 1
3 for D = 3, and B1 = 8

5 , B2 = − 7
10 and B3 = 1

10 for D = 4.

Proof. For |z| < 1, we have

2F1

(
1

2
, 1; D; z

)
= (D − 1)! 1

zD−1 HD(z),

where
HD(z) =

∞∑
n=0

(1/2)n

(n + D − 1)! zn+D−1.

Therefore, HD(0) = H ′
D(0) = · · · = H

(D−2)
D (0) = 0 and, for 0 ≤ i < D, we have(

d

dz

)i

HD(z) = HD−i (z),

(
d

dz

)D−1

HD(z) = H1(z) = 1√
1 − z

.

We now show by induction on D > 1 that u �→ AD(u) = HD(4u − 4u2) is a polynomial of
degree 2D − 3 and valency D − 1. Note that A1(u) = H1(4u − 4u2) = 1/(1 − 2u). Since, for
D ≥ 2, A′

D(u) = 4(1−2u)AD−1(u), and since AD(0) = 0, then A2(u) = 4u and the property
is true for D = 2.

Suppose that the property is true for some 2 ≤ D. Then A′
D+1(u) = 4(1 − 2u)AD(u) and

the induction hypothesis shows that AD+1 is a polynomial of degree 2D − 1. Introduce the
polynomial BD such that AD(u) = uD−1BD(u). It exists from the induction hypothesis. Since
AD+1(0) = 0, we have AD+1(u) = 4

∫ u

0 (1 − 2v)vD−1BD(v) dv. Therefore, the valency of
AD+1 is D and the induction hypothesis is extended. The remainder is straightforward.

Theorem 5. Let Wn,2D be a Dirichlet random walk in the unit sphere of R
2D governed by

D(1, 1, . . . , 1) (n times), where D is a positive integer ≥ 2. Define the sequence {pi, i =
n, n + 1, . . . , n(D − 1)} by (D−1∑

k=1

Bkz
k

)n

=
n(D−1)∑

i=n

piz
i,

where B1, . . . , BD−1 are the numbers defined by (21). Then

Tn(Wn,d)(y) =
n(D−1)∑

i=n

pi2F1

(
i

2
,
i + 1

2
; i + 1; ‖y‖2

)
.

In particular, if Rn,d = ‖Wn,d‖ we have the moments of R2
n,d ,

E(R2k
n,d) = (D)k

(n)2k

n(D−1)∑
i=n

pi

(i)2k

(i + 1)k
(22)
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as well as the Mellin transform of R2
n,d ,

E(R2s
n,d) = (n − 1)!

(D − 1)!
n(D−1)∑

i=n

ipi

(s)D

(s)i+1

(2s)i

(2s)n
. (23)

Proof. From Theorem 1 we have

E

(
1

(1 + 〈y, Wn,d〉)n
)

= (
2F1

( 1
2 , 1; D; ‖y‖2))n

.

From Proposition 5 we have

(
2F1

( 1
2 , 1; D; 4u − 4u2))n =

n(D−1)∑
i=n

pi

1

(1 − u)i
.

With the notation (5) for G and using (6), we obtain

(
2F1

( 1
2 , 1; D; z

))n =
n(D−1)∑

i=n

piG(z)i

=
n(D−1)∑

i=n

pi2F1

(
i

2
,
i + 1

2
; i + 1; z

)

=
∞∑

k=0

zk

k!
(n(D−1)∑

i=n

pi

(i/2)k((i + 1)/2)k

(i + 1)k

)

=
∞∑

k=0

zk

k!
(n(D−1)∑

i=n

pi

(i)2k

22k(i + 1)k

)
.

We write Wn,d = Rn,d� and apply (12) to (22). For proving (23) we rewrite (22) as follows:

E(R2k
n,d) =

n(D−1)∑
i=n

pi

�(D + k)

�(D)�(k)

�(i + 1)�(k)

�(i + 1 + k)

�(i + 2k)

�(i)�(2k)

�(n)�(2k)

�(n + 2k)

= (n − 1)!
(D − 1)!

n(D−1)∑
i=n

ipi

(k)D

(k)i+1

(2k)i

(2k)n
.

Therefore, (23) is correct when s is a nonnegative integer. Now observe that the right-
hand side H(s) of (23) is a rational fraction. More specifically, it is a linear combination
of the rational fractions ((s)D/(s)i+1)((2s)i/(2s)n) and the difference between the degree
of the denominator and that of the numerator is n + 1 − D and does not depend on i.

If n + 1 > D the rational fraction H is a linear combination of partial fractions of the form
1/(s + j) = ∫ 1

0 vs+j−1 dv, and H is the Mellin transform of a polynomial PH restricted to
(0, 1). Since E(R2k

n,d) = ∫ 1
0 vkPH (v) dv, this implies that

R2
n,d ∼ PH (v)1(0,1)(v) dv

and, therefore, (23) holds for all s ≥ 0. If n + 1 ≤ D the rational fraction H is the sum of a
polynomial Q of degree ≤ D − n − 1 and of a linear combination of partial fractions of the
form 1/(s + j) = ∫ 1

0 vs+j−1 dv.
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We claim that Q is the zero polynomial. If deg Q > 0 then k �→ E(R2k) is unbounded,
which is impossible since 0 ≤ Rn,d ≤ 1. If Q is a nonzero constant c, this implies that
limk→∞ E(R2k

n,d) = c which means that Pr(R2
n,d = 1) = c. This fact is impossible since

Rn,d = ‖Wn,d‖ = ‖X1�1 + · · · + Xn�n‖ = 1 implies that all �j are equal, which has zero
probability if d > 1. Therefore, Q = 0 and we conclude that (23) holds as in the case where
n + 1 > D.

Example. For the case where q = 1, d = 6, and n = 2. We have seen, in Proposition 5 that
since D = d/2 = 3, we have

2F1
( 1

2 , 1; 3; z
) = 4

3G(z) − 1
3G2(z)

which implies (
2F1

( 1
2 , 1; 3; z

))2 = 16
9 G2(z) − 8

9G3(z) + 1
9G4(z),

that is, to say p2 = 16
9 , p3 = − 8

9 , p4 = 1
9 . Careful calculations from (23) gives

E(R2s
6,2) = 8

3 + s
− 20

3

1

4 + s
=

∫ 1

0
vs

(
8v2 − 20

3
v3

)
dv.

In other terms R6,2 ∼ (8v2 − 20
3 v3)1(0,1)(v) dv. This is equivalent to Equation (13) of Kolesnik

(2009). Applying the same method as above for n = 3 would provide Equation (15) of Kolesnik.

5. The case D(q1, q2)

Since the Dirichlet distribution D(q1, q2) is nothing but the distribution of (X, 1−X), where
X ∼ β(q1, q2), it is almost trivial to directly study the Dirichlet random walks for n = 2, but
it offers the opportunity to check general formulae in this particular case.

Proposition 6. Let X ∼ β(q1, q2), �1, and �2 be three independent random variables such
that the �i are uniformly distributed on the unit sphere of R

d . Let R2,d = ‖W2,d‖, where W2,d

is the Dirichlet random walk, such that

W2,d = X�1 + (1 − X)�2. (24)

Then the Mellin transform of H2,d = 1 − R2
2,d is

E(Hs
n,d) = C

�(q1 + s)�(q2 + s)�((d − 1)/2 + s)

�((q1 + q2)/2 + s)�((q1 + q2 + 1)/2 + s)�(d − 1 + s)
,

where C is the normalizing constant such that the right-hand side is 1 when s = 0.

Proof. Setting Z = 1
2 (1 − 〈�2, �1〉), we have

1 − H2,d = R2
n,d ∼ ‖X�1 + (1 − X)�2‖2 = 1 − 4X(1 − X)Z.

Since X and Z are independent, we have E(Hs
2,d ) = E((4X(1 − X))s)E(Zs).

Since X ∼ β(q1, q2), then

E((4X(1 − X))s) = C1
�(q1 + s)�(q2 + s)

�((q1 + q2)/2 + s)�((q1 + q2 + 1)/2 + s)

with a suitable normalizing constant C1. From Lemma 1, conditioning first on �2, we know
that 〈�2, �1〉 is symmetric and that 〈u, �1〉2 ∼ β( 1

2 , (d − 1)/2); this easily implies that
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Z ∼ β((d − 1)/2, (d − 1)/2). From this the computation of E(Zs) can be done and this leads
to the proof of the proposition.

Example. If we apply the above proposition to D(q, q) and D(q, q + 1), we obtain in both
cases the same result:

E(Hs
2,d ) = �(d − 1)�(q + 1/2)�(q + s)�((d − 1)/2 + s)

�(q + 1/2 + s)�(d − 1 + s)�(q)�((d − 1)/2)
.

The above equality states that H2,d ∼ XY , where X ∼ β((d−1)/2, (d−1)/2) and Y ∼ β(q, 1
2 )

are independent. When q = d − 1,

E(Hs
2,d ) = �(d − 1/2)

�((d − 1)/2)

�((d − 1)/2 + s)

�(d − 1/2 + s)

and, therefore, H2,d ∼ β((d−1)/2, d/2) and R2
2,d ∼ β(d/2, (d−1)/2), which is in agreement

with Proposition 2.

Corollary 2. If X is uniform on (0, 1) the Mellin transform of H2,d = 1 −‖W2,d‖2, as defined
by (24), is as follows:

(i) if d = 2 then E(Hs
2,d ) = 1/(1 + 2s), which implies H2,d ∼ (1/2h1/2)1(0,1)(h) dh and

R2
2,d ∼ β(1, 1

2 );

(ii) if D ≥ 2 is an integer then

E(Hs
2,2D) = (2D − 2)!

(3/2)D−2

(s + 3/2)D−2

(s + 1)2D−2
;

(iii) if D ≥ 1 is an integer then

E(Hs
2,2D+1) = �(3/2)(2D − 1)!

(D − 1)!
�(s + 1)

�(s + 3/2)

1

(s + D)D
.

Example. If d = 6, part (ii) shows that

E(Hs
2,6) = 16

s + 3/2

(s + 1)(s + 2)(s + 3)(s + 4)

= 20
3

1

s + 4
− 12

s + 3
+ 4

s + 2
+ 4

3
1

s + 1

=
∫ 1

0

( 20
3 h3 − 12h2 + 4h + 4

3

)
hs dh.

Therefore the distribution of R2
2,6 = 1 − H2,6 is( 20

3 (1 − v)3 − 12(1 − v)2 + 4(1 − v) + 4
3

)
1(0,1)(v) dv = (

8v2 − 20
3 v3)1(0,1)(v) dv.

This result, of course, coincides with the result of the last example in Section 4.

6. Limits of Dirichlet walks

It is quite natural to ask what happens in Theorem 1 as n → ∞ and qj = Q/n for
j = 1, . . . , n, for some positive constant Q > 0. The answer turns out to be rather surprising.
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Theorem 6. Let qj = Q/n for j = 1, . . . , n in the definition of Wn,d . The following hold.

(i) If n → ∞ then, for y ∈ B̊d , we have TQ(Wn,d)(y) → eLd(‖y‖2), where

Ld(z) = 1

2

∞∑
k=1

(1/2)k

(d/2)k

zk

k
.

(ii) For y ∈ B̊d and � uniform on the sphere Sd−1, denote by U1 the first component of �.

Then
Ld(‖y‖2) = −E{log(1 + ‖y‖U1)}.

(iii) We have, that Wn,d tends weakly to W
Q
∞,d , which is characterized by

TQ(W
Q
∞,d )(y) = exp{−QE{log(1 + ‖y‖U1)}.

(iv) Let {�i, i = 1, 2, . . . } be a sequence of i.i.d. RV’s uniform on the unit sphere Sd−1 and
let {	i, i = 1, 2, . . . } be obtained from an independent i.i.d. sequence {Yi, i = 1, 2, . . . }
of β(1, Q) random variables, through 	1 = Y1 and 	n = Yn

∏n−1
i=1 (1 − Yi). Then

W
Q
∞,d ∼

∞∑
i=1

	i�i.

Proof. Statement (i) results from Theorem 1 and the development of

2F1

(
Q

2n
,

Q

2n
+ 1

2
; d

2
; z

)
= 1 + Q

n
Ld(z) + o

(
1

n

)
,

from which we obtain(
2F1

(
Q

2n
,

Q

2n
+ 1

2
; d

2
; ‖y‖2

))n

→ eQLd(‖y‖2).

Moreover, recalling that Wn,d = ∑n
i=1 X

(n)
i �i , with X(n) = (X

(n)
1 , . . . , X

(n)
n ) ∼ D(Q/n, . . . ,

Q/n), we have, for y ∈ B̊d ,

TQ(Wn,d)(y) = E

(
1

(
∑n

i=1 X
(n)
i (1 + 〈y, �i〉))Q

)
,

which, by using (4), can be written as

E

(
1∏n

i=1(1 + 〈y, �i〉)Q/n

)
=

(
E

(
1

(1 + ‖y‖U1)Q/n

))n

= (E(eX/n))n,

where X = log(1 + ‖y‖U1)
−Q. For fixed y ∈ B̊d , X is a bounded random variable. Thus,

log(E(eX/n))n converges to E(X) = −QE(log(1 + ‖y‖U1)), which is Theorem 6(ii).
For Theorem 6(iii) observe that the sequence {Wn,d, n = 1, 2, . . . } is clearly tight, since all

these variables have support in Sd−1. So take any converging sequence and call W
Q
∞,d its limit.

Since the function w �→ fy(w) = 1/(1 + 〈y, w〉)Q defined in the unit sphere for y ∈ B̊d and
Q > 0 is bounded and continuous, we have (along this subsequence)

E

(
1

(1 + 〈y, Wn,d〉)Q
)

converges to E

(
1

(1 + 〈y, W
Q
∞,d〉)Q

)
.
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Therefore,

E(
1

(1 + 〈y, W
Q
∞,d〉)Q ) = exp{QLd(‖y‖2)}

and since, as mentioned in the introduction, the knowledge of TQ(W
Q
∞,d ) characterizes the law

of W
Q
∞,d we have uniqueness of the law of W

Q
∞,d and the stated representation.

For Theorem 6(iv) we first observe that Theorem 6(ii) says that W
Q
∞,d is the mean vector

of a Dirichlet random measure (sometimes called a Dirichlet process) with parameter measure
equal to Q times the uniform distribution on Sd−1. To see this, apply the classical result
about the Stieltjes transform of the mean of a Dirichlet random measure from Cifarelli and
Regazzini (1979), (1990), conveniently stated in Theorem 2.1 of Lijoi and Prunster (2009).
Even if this result is stated for a Dirichlet random measure concentrated on the real line,
passing from R to R

d is standard: it is enough to apply the theorem to the real mean 〈v, W
Q
∞,d〉

of the Dirichlet process generated by the measure Qα(du), where α is the distribution of U1,
v ∈ Sd−1 being arbitrary. Finally, recall from Sethuraman (1994) that P = ∑∞

i=1 δ�i
	i is

actually a Dirichlet random measure governed by Q times the uniform probability on Sd−1.

Therefore W
Q
∞,d ∼ ∫

Sd−1
θP ( dθ) since both random variables have the same TQ-transform

given by Theorem 6(ii). Thus, the representation of W
Q
∞,d given in Theorem 6(iv) is obtained.

Theorem 6(iv) says that this limit of Dirichlet walks can be obtained as a walk with an infinite
number of steps. This is a particular instance of a more general result appearing in Hjort and
Ongaro (2005), (2006).

Finally, we investigate the random vectors in R
d whose Q-transform has the form

exp{QLd(‖y‖2)}. If d = 1, we obtain

exp{QL1(‖y‖2)} = 1

(1 − ‖y‖2)Q/2 .

We apply Proposition 1 to this equation and it yields that the corresponding limiting distribution
has the square radius (R

Q
∞,1)

2 distributed as β( 1
2 , Q/2) and, therefore, the distribution of

W
Q
∞,1 = ±R is

1

B(Q/2, Q/2)
(1 − w2)Q/2−11(−1,1)(w) dw.

This result is not easy to obtain as a limiting case of Proposition 4.
For d = 2, (8) shows that exp{QL2(‖y‖2) = G(‖y‖2)Q}, where G is defined by (5). This

time the distribution of (R
Q
∞,2)

2 is β( 1
2 , Q).

What about d ≥ 3? The function Ld , when d is odd, is explicitly computable. Here is the
example for d = 3:

2L3(z) =
∞∑

k=1

zk

k(1 + 2k)
=

∞∑
k=1

zk

k
− 2

∞∑
k=1

zk

1 + 2k
.

Introducing

f (x) =
∞∑

k=1

x2k+1

1 + 2k
= −x + 1

2
log

1 + x

1 − x
, f ′(x) = −1 + 1

2(x + 1)
− 1

2(x − 1)
,

we obtain

L3(‖y‖2) = 1 + 1
2 {(1 − ‖y‖) log(1 − ‖y‖) − (1 + ‖y‖) log(1 + ‖y‖)}. (25)
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However, finding the distribution of W
Q
∞,3 in the unit sphere of R

3 such that

E

(
1

(1 + 〈y, W
Q
∞,3〉)Q

)
= exp(QL3(‖y‖2)) (26)

or, equivalently, finding the distribution of ‖WQ
∞,3‖2, seems to be a challenging open problem.

Let us give some details about it. Consider the random vector � such that � is uniform on the
unit sphere of R

3 and denote by U its first coordinate. Then U is uniform on (−1, 1) by the
Archimedes theorem. Denoting R = ‖WQ

∞,3‖ we claim that

E

(
1

(1 + 〈y, W
Q
∞,3〉)Q

)
= E

(
1

(1 + ‖y‖RU〉)Q
)

= E(fQ(R‖y‖)),

where fQ(t) = 1
2

∫ 1
−1(1+ut)−Q du is defined for t ∈ (−1, 1) and is easy to compute. Replacing

for simplicity ‖y‖ by t in (25) and using (26), the problem of the explicit description of the
distribution of W

Q
∞,3 is now reduced to the following problem of harmonic analysis. For fixed

Q > 0 find the unique distribution for R ∈ [0, 1] such that, for all t ∈ (0, 1),

E(fQ(Rt)) = exp

(
Q

∞∑
k=1

t2k

2k(2k + 1)

)
= (exp(1 − t)(1−t)/2t (1 + t)(−1−t)/2t )Q.

For instance, for Q = 1, we want R such that

E

(
1

2tR
log

1 + tR

1 − tR

)
= exp(1 − t)(1−t)/2t (1 + t)(−1−t)/2t .

7. Dirichlet infinite divisibility and Dirichlet semi groups

Limits of Dirichlet random walks or, in view of Theorem 6, means of Dirichlet random
measures are examples of the following property of infinite divisibility.

Definition. Let W ∼ μ be a random variable on the unit sphere Bd of R
d . We say that W or μ

is Dirichlet infinitely divisible of type Q > 0 if, for all n, there exists a probability measure νn

on the unit sphere such that the following occurs. If Y = (Y1, . . . , Yn) ∼ D(Q/n, . . . , Q/n)

and, independently, W1, . . . , Wn are i.i.d. with distribution νn, then

Y1W1 + · · · + YnWn ∼ μ.

Here is the following equivalence property.

Theorem 7. The three following properties are equivalent:

(i) W is Dirichlet infinitely divisible of type Q;

(ii) for all n there exists a random variable W̃ (n) on the unit sphere such that, for all y ∈ B̊d ,

TQ(W)(y) = [TQ/n(W̃
(n))(y)]n;

(iii) there exists a random variable Ŵ on the unit sphere such that, for all y ∈ B̊d , we have

TQ(W)(y) = exp{−QE(log(1 + 〈y, Ŵ 〉))}.
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Proof. For (i) to imply (ii) observe that, by assumption, W ∼ Y1W
(n)
1 + · · · + YnW

(n)
n ,

where we have made explicit the dependence on n of the Wi . Thus,

E

(
1

(1 + 〈y, W 〉)Q
)

= E

(
1

(1 + 〈y, Y1W
(n)
1 + · · · + YnW

(n)
n 〉)Q

)

= E

[
E

(
1

(1 + 〈y, Y1W
(n)
1 + · · · + YnW

(n)
n 〉)Q

∣∣∣∣ W
(n)
1 , . . . , W(n)

n

)]

= E

(
1

(1 + 〈y, W
(n)
1 〉)Q/n

· · · 1

(1 + 〈y, W
(n)
n 〉)Q/n

)

=
[
E

(
1

(1 + 〈y, W
(n)
1 〉)Q/n

)]n

;

thus by taking W̃ (n) equal in law to W
(n)
1 the representation is obtained.

Property (ii) implies property(i). This is obtained since TQ(W) characterizes the law of W .
Property (ii) implies property (iii). Again {W̃ (n), n = 1, 2, . . . } is a tight sequence so we

may assume that it has a limit Ŵ . Arguing, as in the previous proof, we conclude that

lim
n→∞[E

(
1

(1 + 〈y, W̃ (n)〉)Q/n

)
]n = exp{−QE(log(1 + 〈y, Ŵ 〉))}.

Property (iii) implies property (ii). For any q > 0, the mean Wq of a Dirichlet random
measure with parameter measure q times the law of Ŵ has the property

Tq(Ŵ q)(y) = exp{−qE(log(1 + 〈y, Ŵ 〉))}.
As a consequence Statement (ii) is obtained by taking W̃ (n) equal in law to Wq/n.

Thus from the Dirichlet infinite divisibility property a stronger property follows, via the
equivalent Statement (iii) of Theorem 7. Any Dirichlet infinite divisible random variable WQ

of type Q > 0 is indeed embedded in a Dirichlet semigroup of laws {μq, q > 0}, defined
according to the following definition, in the sense that WQ ∼ μQ. Note that this semigroup is
weakly continuous at 0 since μq converges to the distribution of Ŵ as q → 0.

Definition. Let Q �→ μQ be a map from (0, ∞) to the set of probability measures in the
unit sphere Bd of R

d . We say that this map is a Dirichlet semigroup if, for all n and all
q1, . . . , qn > 0, the following occurs. Taking W1, . . . , Wn, Y independent such that Wi ∼ μqi

and Y = (Y1, . . . , Yn) ∼ D(q1, . . . , qn), then setting Q = q1 + · · · + qn, we obtain

Y1W1 + · · · + YnWn ∼ μQ.

For instance, when G is defined by (5),

TQ(W
Q
d )(y) = G(‖y‖2)Q

describes W
Q
d = RQ�, with � uniform in Sd−1 and R2 ∼ β(d/2, Q + 1 − d/2), with Q >

d/2 − 1. Thus, W
Q
d follows a hyperuniform law of type 2(Q + 1). For d = 2, we have a

Dirichlet semigroup and for d = 1 the restriction to Q > 0 is a Dirichlet semigroup as well.
Similarly, the relation

TQ(W̄
Q
d )(y) = 1

(1 − ‖y‖)Q/2
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describes W̄
Q
d = (R̄)Q�, with � uniform distribution in Sd−1 and

(R̄)2 ∼ β

(
d

2
,
Q + 1 − d

2

)

, with Q > d − 1. Thus, W̄
Q
d follows a hyperuniform law of type Q + 1. Here we have a

Dirichlet semigroup only for d = 1. However, by direct inspection of the parameters of these
beta distributions it is seen that W̄

Q
1 ∼ W

(Q−1)/2
1 , and with a straightforward calculation we

obtain (1 + W̄
Q
1 )/2 ∼ β(Q/2, Q/2). Thus, if such a family of symmetric beta distributions is

reparametrized by q = (Q − 1)/2, for Q > 1, it retains the Dirichlet semigroup property.
Note that, for any d > 2 in the first case and any d > 1 in the second, we still obtains a

family of hyperuniform distributions with the Dirichlet semigroup property, but the index of
the family runs on a parameter set of the form (a, +∞), with a > 0, which clearly remains an
additive semigroup.
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