

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 21 – 30, 2005.
© IFIP International Federation for Information Processing 2005

An Extensible Ubiquitous Architecture for Networked
Devices in Smart Living Environments

Thierry Bodhuin, Gerardo Canfora, Rosa Preziosi, and Maria Tortorella

RCOST - Research Centre On Software Technology,
Department of Engineering, University of Sannio,

Via Traiano, Palazzo ex-Poste – 82100, Benevento, Italy
{bodhuin, canfora, preziosi, tortorella}@unisannio.it

Abstract. Continuous technological innovation is entailing that living
environments be equipped with products that improve the quality of daily life.
Unluckily, the adopted solutions do not always represent an adequate support
and people continue to execute repetitive tasks that software infrastructures
could perform automatically. This is partially due to the fact that the existent
technological solutions cannot be always integrated in a coherent
communication platform, as they use proprietary protocols and ad hoc
implementations not easily reusable. This paper proposes an extensible
ubiquitous architecture for networked virtualized devices in smart living
environments. The aim is realizing ubiquitous applications and integrating
networked devices through an architecture that hides their complexity and
heterogeneity. Several intelligence techniques have been integrated for offering
a smart environment through the use of automatic learning techniques.

1 Introduction

People thirst for technological products helping them to have a better quality of the
everyday life. They equip with these products their professional, personal, transit,
transport, and so on, living environments. Academic and industrial world feel inclined
to promote technological progress and terms as home automation, domotic system,
smart home are diffusing in the industry, while expressions as pervasive computing,
ubiquitous computing, nomadic computing, ambient intelligent, context-aware
computing, augmentation of the real world, indicate academic research topics. The
available technologies do not always represent an adequate support as they are often
unable to interact with other products made by different makers and/or based on
different solutions. Their communication and integration too often requires human
intervention, and people are discouraged by the complexity of the new Information
and Communication Technologies (ICT) facilities and by the redundancy of the
needed administrative and configuration activities. In addition, the use of proprietary
communication protocols in software architectures for smart environments does not
facilitate the interoperability of the networked devices and the reusability and
maintainability of software packages forming part of the architecture. This forces
developers to perform repetitive implementation tasks.

22 T. Bodhuin et al.

The work presented in this paper has been carried on within the Demonstrator
project of the Regional Centre of Competence in Information and Communication
Technology, CRdC ICT. This Centre involves many researchers and industrial
partners of the Campania Region in Italy. It aims at analysing, defining and realizing
hardware and software platforms for permitting the provision of networked services
and the implementation of advanced technologies. In particular, the activities carried
on in the unit of the University of Sannio, RCOST (Research Centre On Software
Technology), aim at developing a platform in the field of home automation that is
endowed with different levels of intelligence. It addresses the following aspects:
virtualization of devices, for defining a generic functional characterization of the
networked devices, making the applications independent from the characteristics of a
particular device and supporting implementation tasks of software developers;
abstract description of devices, for defining a semantic characterization of the
networked devices, making applications more aware of the triggered actions in the
physical world and supporting human intervention and interaction; abstract
description of services, for providing a functional and semantic characterization of the
services with reference to their relations with the other services and devices.

The proposed software architecture aims at facilitating the interoperability of
networked devices, based on different technologies, and produced by different
manufacturers; offering a middleware supporting different levels of intelligence as
awareness, reactivity and adaptiveness; and permitting to activate services, through
suitable applications respect to the typology of the client accessing it.

In the following, Section 2 presents some related work, Section 3 describes the
software architecture, Section 4 discusses an example of virtualization, and the final
section summarizes the main conclusions and sketches future directions of research.

2 Related Work

The increasing request of telecommunication solutions conducted to the development
of sophisticated networked heterogeneous devices, supporting one or more of the
available communication protocols (e.g., X-10, EIB, LonWorks, Ethernet-TCP/IP)
and/or service and discovery-focused standards (e.g., HAVi, Jini, OSGi, UPnP).
Currently, these standards are complementary, rather than competitive, even if they
are sometimes partially overlapped in some provided facilities. The use of networked
devices supporting different protocols and standards requires the adoption of more
complex networking techniques, facilitating the interaction and interoperability of the
devices and their accessibility from both local-area and wide-area networks.

In this scenario, it would be expected that different interconnected networks,
supporting distinct features of smart living environments, exist. Consequently,
manufacturers of different communication technologies, such as LonWorks and EIB,
continuously upgrade their systems for increasing the reciprocal interoperability [4]
and allowing devices from different vendors to communicate each other. However,
the communication between devices is still not supported [4, 10, 11] in many cases.
For example, it is possible to find living environments including EIB controlled
devices, Ethernet networked devices and Bluetooth mobile devices, but it is unlikely
to find living environments where other components, such as a X-10 and a EIB
controlled lamp, interoperate.

 An Extensible Ubiquitous Architecture for Networked Devices 23

In many cases, the effort addresses the integration of various physical elements,
including sensors, actuators, microcontrollers, computers and connectors [5]. But,
many of the proposed solution are mostly manual and ad-hoc, lack of scalability and
are too close to the third parties. Likewise, each time a new component is inserted into
the considered space, conflicts and uncertain behaviours may be verified in the overall
system, requiring programming and testing interventions. For facing these problems, a
middleware automating integration task is required for ensuring pervasive space
openness and extensibility [6]. It must enable programmers to dynamically integrate
devices without interacting with the physical world, and, then, decouple programming
tasks from construction and integration of physical devices.

The typical approach that is applied regards the connection of sensor-actuator
devices using classical network infrastructures, such as OSI, CORBA, and so on, at a
low level. Unfortunately, the use of these kinds of infrastructures does not ease the
integration of the devices. The approach in [12] is based on the integration of the
devices at high-level, and ad-hoc networking infrastructures that dynamically
integrate sensors and actuators into complex interactive systems while providing
services and interfaces.

The architectural design presented in this paper has been defined for partially
solving the problems of integrating devices, and for controlling and monitoring
personal living environments from heterogeneous terminals. It considers requirements
of interoperability, portability, extensibility, reusability and maintainability from the
developer’s point of view and usability and adaptability from the end-user’s point of
view. In addition, the proposed solution is based on the OSGi (Open Service Gateway
initiative) [9], an emergent open architecture, which permits the deployment of a large
array of wide-area-network services to local network services such as smart homes
and automobile [5]. OSGi defines a lightweight framework for delivering and
executing service-oriented applications. It presents advantages, such as: platform
independence, different levels of system security, hosting of multiple services and
support for multiple home-networking technologies.

3 Extensible and Ubiquitous Architectural Design

Figure 1 shows the proposed extensible ubiquitous architectural design. The various
layers are grouped in six levels, going from A to F, and they are next presented.

3.1 Levels F, E, D

Level F in Figure 1 depicts the heterogeneous networked devices to be accessed.
They may be produced from different manufacturers and/or using different
communication protocols and, service and discovery-focused standards. Level E
includes the needed drivers, grouped in two layers: a hardware layer and a layer of
network IP cards, audio cards, RS-232 ports, etc., necessary for connecting the
devices of level F. Level D concerns the portability of the implemented software and
includes the operating system and the Java Virtual Machine (JVM).

24 T. Bodhuin et al.

D e v i c e s V i r t u a l i z z a t i o n

RS-232

.....

A u d i o

c a r dN e t w o r k IP c a r d

H a r d w a r e

IP / N e t w o r k D r i v e r A u d i o D r i v e r

A u d i o

c a r d RS-232
..…..

RS-232 D r i v e r

Card

Audio

1

A u d i o s y s t e m

w i t h s o u n d
d i f f u s i o n

S y s t e m
o f

a c t u a t o r s
a n d

s e n s o r s

IP

camera
engine

IP

camera
audio in/out

V i d e o c o n t r o l s y s t e m,

A u d i o (I n / O u t),

O r i e n t a t i o n e n g i n e

(I P a n d H T T P)

IP

camera
audio in Identification

system and
RFID

localization

IP

.....

.....

.....

.....

O p e r a t i n g S y s t e m

J a v a V M

L o g I c a l

S e r v i c e s

F r a m e w o r k : O S G I, …

B u n d l e s a p p l i c a t i o n s

AWT / Swing UI W e b M o b i l e UI

A

B

C

D

E

F

Levels minimizing repetitive tasks of
common people and realizing the

requirements of usability and
adaptability.

Level minimizing repetitive tasks of
designers and developers and realizing the

requirements of reusability and
maintainability.

Levels implementing the requirements of
extensibility, reusability and

interoperability.

Levels implementing software
portability.

Levels containing the drivers, hardware,
network IP card, audio cards, RS-232

ports.

Networks of interoperating heterogeneous
networked electronic devices coming from
different manufacturers. The interoperability
of this level simplifies the common people’s

purchases.

J a v a L i b r a r i e s

D e v i c e s a n d S e r v i c e s

F u c t i o n a l I n t e r f a c e s

D e v i c e s a nd S e r v i c e s

S e m a n t i c I n t e r f a c e s

Fig. 1. Extensible and ubiquitous architectural design

3.2 Levels A, B, C

Levels A, B and C form the Domus intelligent Keeper (DiK) software infrastructure.
DiK is composed of three main components: a framework component, which aims at
minimizing the activities of developers and helping the extensibility and ubiquity
capability of the architecture; a service oriented applications component which uses
the framework and aims at simplifying and minimizing human intervention and
interaction activities; and an intelligence component aiming at decreasing repetitive
daily activities and facilitating the automatic evolution of the software infrastructure,
on the basis of people’s continuous changing habits and modifications of the
networked devices adopted in the living environments.

Level C assures the characteristic of interoperability of the proposed architectural
design. It includes the OSGi (Open Service Gateway initiative) Framework [9]
enabling the connectivity and management of the devices based on different
transmission technologies. It defines a platform model where the software
applications are installed and executed. These applications are Java archives, called
bundles, which cooperate to the implementation of a service. The OSGi Framework
represents a common environment hosting bundles. The bundles use: the resource of
the OSGi Framework, all the standard Java libraries, virtualized devices and service
interfaces. In addition, they access level E and, consequently, monitor and control the
networked devices of level F. In particular, the OSGi Framework is the part that
changes a JVM from a single application environment into a multiple one. The
advantages are many. Actually, running multiple applications in a single JVM means
less process swaps, fast inter-application communication, and significantly less
memory consumption. Moreover, the OSGi Framework makes possible the
interoperability among different devices, service providers, network operators, service
gateway manufacturers, and home appliance manufacturers. Level C in Figure 1
manages the life cycle of the bundles and solves their interdependence, keeps a

 An Extensible Ubiquitous Architecture for Networked Devices 25

registry of services and manages the events informing the listeners when the state of a
bundle is changed, when a service is stored and when an error occurs. Besides the
usage of OSGi bundles, level C includes an alternative device access solution based
on the Java Remote Method Invocation (RMI) and the Jini technology. RMI/Jini and
OSGi solutions are not the only ones to be considered for level C, as this level is a
dynamic container with changeable content according to the technological progress so
that it can deliver access to services over any network and protocol. Level C was
developed with the intention of ensuring the satisfaction of the extensibility
requirement. This aspect is strongly related to the capability of evolving the software
when new technologies are introduced and needs of the end-user change. The
extensibility requirement is also preserved by the usage of class libraries in the level
C. In this manner, developers can take advantage from the object-oriented techniques,
which facilitate a more modular designing and encourage the use of constructs related
to inheritability for better organizing the source code, avoiding repetitions, gaining
time and reducing development costs.

Level B, including the Devices Virtualization layer, is located between the bundles
of the OSGi Framework and Level A of the services accessible from the user. Its
objective is to provide an abstraction of the devices of level F, by generalizing their
behaviour independently from their identity (or type), nature and communication
protocol, and hiding the complexity of the reciprocal communications. In particular,
two different devices have different identity expressed from a set of attributes like:
name, serial, version, model, manufacturer, etc. Two devices with different nature are
logically connected to two distinct physical concepts. Nevertheless, two different
devices with distinct type and nature may share the same actuation mechanism. For
example, a networked lamp is a device different from an alarm. The lamp is logically
connected to the electric light concept and may change the state of the environment
where it is installed by providing, or not providing, light on the basis of the switch
on/off actuation mechanism. The alarm is logically connected to the sound concept
and may change the state of the environment hosting it by providing or not providing
noise in accordance with its open/close actuation mechanism. The lamp and alarm are
devices of different identity, nature and semantic, but share an actuation mechanism
with the same working procedure. So, it is possible to extract a functional view
permitting a first classification of the devices grouping them in two families: Sensors,
capturing information from the networked devices and/or the environments, and
producing events; Actuators, consuming events and, triggering actions on the
networked devices in the considered environments. Sensors and Actuators can be still
specialized in other objects. For example, the networked rolling shutter has a
mechanism of actuation different from that of the networked lamp and alarm. It
cannot be defined by two values but considering a set of valid values. For instance,
the rolling shutter may have five possible valid values, absent, low, medium, high,
highest, modelling five different positions and brightness degrees. Besides the
Sensors and Actuators, complex devices exist in the living environments. They are the
result of the composition of more elementary devices. For instance, a camera is
defined as a complex device with different elementary actuation mechanism related to
different functionalities, as later described. Figure 2 exhibits a view of the device
interface hierarchy. It shows that the specialization of the generic devices of type
Sensor and Actuator is reasonable. For example, the networked lamp is a device of

26 T. Bodhuin et al.

Actuator type, which can be described by a BinaryActuator interface, able to assume
only two valid values. While the rolling shutter is a device of Actuator type
describable by a SetValuesActuator interface being able to assume different discrete
defined values. Furthermore, a device with values inside a given continuous range can
be characterized by a RangeValuesActuator interface. Besides those discussed, further
specialization levels can be identified. In addition, Figure 2 highlights that Interface
Device is characterized by methods adding/removing the EventListener objects and
used from clients for registering/un-registering a listener in Device. Thus, clients can
be notified in a push way of changes in the state of the devices for taking their
decisions. Listener and event interface hierarchies are also defined. Moreover,
interface Device is characterized by getting/ setting methods for accessing and/or
manipulating the identity of a considered device. The identity information is
maintained in the logical layer and its handling is a first step toward the modelling of
devices that considers the semantic aspect.

The interface hierarchy shown in Figure 2 is not complete. It permits the
realization of reusable software components. Furthermore, the Devices Virtualization
layer is still valid, even when the hierarchy is extended for including new devices,
independently from their complexity.

Finally, level A groups the layers oriented to minimize the work of the end-user. In
fact, they allow DiK to adapt a personal living environment to the needs of common
people and/or situations and to simplify the human interaction. Level A includes three
layers named Logical, Services and User Interface (UI).

Logical layer manages and maintains the information regarding the logical internal
characterization of each networked electronic device and the optional logical external
characterization. The internal characterization of a device is defined by its datasheet,
while the external one is described by the logical connections between the considered
device and the physical concepts it can affect. The physical concepts are attributes
characterizing the environment that is external to the device. For example, a
networked rolling shutter is a device internally characterized by the raising behaviour.

<< Interface>>

Device

+addEventListener (eventListener):void

+getDeviceInfo():DeviceInfo

+removeEventListener(eventListener):void

+setDeviceInfo(deviceInfo:DeviceInfo):void

<< Interface>>

MutiDevices

+addDevice (device:Device):void

+getDevice(pos:int):Device

+getDevices():Device[]

+removeDevice(device:Device):void

+size():int

<< Interface>>

Actuator

+getState():Object

+setState(obj:Object):void

<< Interface>>

Sensor

+ getState():Object

<< Interface>>

BinaryActuator

+getBooleanState():boolean

+setBooleanState(state:boolean):void

+setState(state:boolean):void

<< Interface>>

RangeValuesActuator

+decreaseValue():boolean

+getRangeValues():RangeValues

+getValue():Value

+increaseValue():boolean

+setValue(value):void

…

…
…

<< Interface>>

SetValuesActuator

+getSetValues():SetValues

+getValue():Value

+setValue(value):void

…

…
…

Fig. 2. A simplified view of device interface hierarchy

 An Extensible Ubiquitous Architecture for Networked Devices 27

This behaviour allows the rolling shutter to be (un)rolled at a given grade. In this way,
it allows one to change the state of brightness of a given environment. Therefore a
logical connection exists between the cited device and the solar light physical
concept, which represents its external characterization.

Services layer aggregates functionalities exported from single networked devices
for providing services that are able to promote comfort, safety, security, initial
minimization of human intervention and improved lifestyle for residential end-users.
For instance, if an illumination control service exists in a house, it could promote
comfort in terms of luminosity, while reducing associated cost for producing light in
the area where the householder is located. This service may use: any localization
sensor (e.g., presence sensor, RFID identification) for recognizing human presence in
a given area; a luminosity sensor for knowing if a given luminosity threshold is
achieved; and light actuators, like dimmer or on/off lamp, for reaching the light
condition requested. Aggregating the functionality of networked curtains, rolling
shutters and lamps allow the reduction of the associated cost for reaching a certain
luminosity level, corresponding to the householder wished level of comfort. The
control services use standard control mechanisms with loop control. However, in the
context of home automation networks with slow action to effect, the control services
were enhanced by using neural network for learning the relation between wishes (e.g.,
light condition), context (e.g., sensors, time, occupants), and possible actuations on
the different actuator devices, that are located in the area where the service control
takes place and are connected with the interesting physical aspect (e.g., devices
connected with the illumination aspect). The use of a neural network allows the
control services to achieve more rapidly their objective on slow networks and/or slow
action/effect relation. In addition the Service layer includes a group of intelligent
services permitting to support different levels of intelligence: context-aware,
automated, reactive, adaptive. Whatever intelligence type might be, it requires the
measurement and collection of data, as well as the extraction, aggregation and
abstraction of information. The progress made in hardware technology allows storing
very large amounts of data, while abstracting valuable information is still a very
difficult task. This task is more difficult when applied to data collected when the
people interact with devices and services in the living environments. A high degree of
randomness in the real human life is source of high complexity.

Despite the high degree of randomness, it is possible to identify patterns in the
person’s life [3]. Patterns may represent regular repetitive interactions of the people
with the networked devices. People have habits that are usually sampled in time and
inter-connected with the other people’ habits through various constraints, which are
dependent on the current role and activities that people have when they use the
devices and services of the actual environment. A person’s life can be “sampled” on
the basis of the hours, days, week days or week-ends, seasons, and so on. Human
living environments can be “sampled” based on the location, room or areas, where
federations of devices and persons are defined. The repetition of these patterns may
have a high or low frequency according to the variability of the person’s life. These
facts suggest that person’s life in human living environments can be automatically
“photographed” and patterns captured, processed and transformed in rules for
enabling control systems and autonomously acting, while remaining unobtrusive, in
addressing people’s needs by requesting user’s feedback.

28 T. Bodhuin et al.

One important component of the intelligent services group is a rule engine named
Jess [8] that allow the execution of rules describing relations between events and
actions. The rules may be created by smart environment users, or be automatically
generated by a learning system that was developed on the basis of the WEKA
(Waikato Environment for Knowledge Analysis) tool [14]. This tool provides a suite of
facilities for applying data mining techniques to large data sets for supporting various
tasks including classification, market basket analysis (MBA or association rules),
prediction. Currently, MBA algorithms are used for analyzing end-user patterns.

User Interface layer allows a transparent access to heterogeneous networked
devices installed in living environments from interface AWT/Swing, Web and mobile.

4 An Example

Figure 3 depicts an example of virtualization. It refers to an Axis Video Camera with
Pan/Tilt and Zoom functionalities [1]. The figure is organized in three blocks going
from a) to c).

Block b) shows that the Java AxisVideoCamera class is implemented as a
specialization of the MultiDevices class. In particular, it is composed of the following
parts: six RangeValuesActuators, which are specializations of the Actuator class and
virtualize the Pan, Tilt, Zoom, Iris, Focus and Frame/sec functionalities; one
SetValuesActuator, which is a specialization of the Actuator class and virtualizes the
preset position functionality; two BinaryActuators, which are specializations of the
Actuator class and virtualize the Auto iris and Auto focus functionalities; one
VideoSensor, virtualizing the video functionality as a specialization of the Sensor
class. The specific implementation of VideoSensor for the Axis Video Camera
includes the implementation of the Java Media framework DataSource [7] for the
encapsulation of the MJPEG format provided by the Web server included in the
Internet video camera. All the implemented classes include the functional code
needed for the communication between the specific Actuators and Sensors and the
physical Axis Camera, in accordance to the contract between the device
implementation and their clients. Further, they exhibit suitable interfaces, exemplified
by the c) block, to the client objects. The implementation of the considered Axis
Camera uses the same actuation mechanisms adopted in other devices, such as the
networked lamp, alarm and rolling shutter, but with a different semantic specification.

Focus Iris Pan Tilt Zoom Fs

Position Preset

Video

Audio iris Audio focus

RangeValuesActuator

SetValuesActuator

VideoSensor

Binary Actuator

a) b) c)

A
x
is

V
id

e
o

C
a
m

e
ra

M
u

lt
iD

e
v
ic

e
s

Fig. 3. Camera virtualization: a) mask of functionalities; b) implemented classes; c) interfaces

 An Extensible Ubiquitous Architecture for Networked Devices 29

Therefore, a new complex device, different from the Axis camera, can be obtained
simply changing the mask of the functionality shown in block a). This is possible
thanks to the device virtualization process. In particular, the implementation of the
defined classes are generic and provide a generic implementation of the methods for
getting and setting the state of a device, for the (un)registering of listeners and events
notification, related to the modification of the state of a device. Therefore, the device
virtualization process simplifies the reuse of the generic parts of the devices and the
mechanisms notifying change events to the listeners. When the implemented classes
and their interfaces are introduced in the framework of the architectural design shown
in Figure 1, it is possible to get and modify the video camera state trough any kind of
user interfaces. For example, the Axis Video camera provides an http network
protocol interface. Getting and modifying the video camera state (e.g., Rotating the
video camera in PAN/TILT or Zooming), could be performed through the http
interface, and connecting to the URL http://videocamerahost/axis-cgi/com/ptz.cgi?
autofocus=on, sets the state of the BinaryActuator regarding the AutoFocus to ON.
The Video source is acquired in a MJPEG format from an http connection to the
networked video camera (e.g., http://videocamerahost/axis-cgi/mjpg/video.cgi). This
video source is encapsulated inside a Java Media Framework DataSource for
facilitating its integration with the video/audio streaming and the visualization utilities
offered by the Java Media Framework. The video source is transmitted by using the
Real Time Streaming protocol for permitting its visualization through unicast or
multicast connection and in on-demand way. The device virtualization process also
simplifies the implementation of the device remotization for letting it be accessible in
a remote way by using a RMI interface. The actual protocol between the RMI client
and server is defined through the Jini Extensible Remote Invocation [13] that permits
the use of protocols different from the Java specific one, named JRMP.

The described implementation was tested with frame rate of more than 30
frame/sec through Real Time Streaming protocol and replicated with a D-Link DCS
2100+ Wireless Internet Audio/Video Camera, providing the video and audio without
the Pan/Tilt and Zoom functionalities.

5 Conclusions and Future Work

This paper describes an extensible ubiquitous layered architectural design for smart
living environments supporting different levels of intelligence. The technologies used
for developing it, were already used with success in other projects in the ubiquitous
computing context. The main difference respect to the previous usage consists of the
existence of the B layer. It contains the Devices Virtualization layer and is oriented to
decouple the A layers from layers below it. So, several technologies can be integrated
for providing an architecture that is open to different makers and adequately supports
the developers implementation tasks and decisions of the users that can feel free to
buy and insert different new devices in their living environments and make them
operative. Devices Virtualization layer aims at defining a framework for easily
developing services, by decoupling the physical devices from the clients accessing
them, and offering a middleware that permits the activation of a service, choosing a
suitable user interface implementation with reference to the type of client accessing it.
Further, this layer enables DiK to better survive to the changes due to the

30 T. Bodhuin et al.

technological progress. This aspect is very important when a software system with
unstable requirements has to be developed. This is the case of the applications for
living environments, where people’s habits continuously change together with the
physical devices to be used and integrated.

The need of a semantic characterization for networked devices was also
highlighted, for addressing the dynamic discovery of devices and services, promoting
comfort, safety, security, communication, and so on. This aspect is deepened in [2]. It
required investigation in using ontology and specialized representation mechanisms of
contextual information for ubiquitous systems. Finally, the Intelligence services were
developed to achieve automatic generation of rules based on the finding of patterns in
the interaction between users and devices/services in the smart living environment.
Another Intelligence service regarded finding the relations for each physical aspect
(e.g., light, temperature) between sensor level target and possible actuations
considering constraints like cost saving. The Intelligence services use data-mining and
neural networks techniques and apply them for achieving smart living environments
without creating autonomous and non-manageable or understandable environment.

Future work will be considered in the field of embedded software in hardware
devices with distributed infrastructure and intelligence. The aim is to support the
cooperation between these devices to reach some comfort level based on the living
environment occupants without needing of a semi-centralized architecture.

References

1. Axis Communications: Axis Networked Video Camera. http://www.axis.com/products/
cam_213/

2. Bodhuin, T., Canfora, G., Preziosi, R., Tortorella, M.: Hiding complexity and
heterogeneity of the physical world in smart living environments. Submitted. Available
from the authors (2005)

3. Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems, J. of Personal and
Ubiquitous Computing. To appear (2005). http://reality.media.mit.edu/pdfs/realitymining.pdf

4. Fuertes, C. T.: Automation System Perception-First Step towards Perceptive Awareness
Dissertation. Institute of Computer Technology, TU Wien (July 2003)

5. Gu, T., Pung, H.K., Zhang, D. Q.: Toward an OSGi-Based Infrastructure for Context Aware
Applications, IEEE Pervasive Computing, Vol.3, No.4 (October-December 2004) 66-74

6. Helal, S.: Programming Pervasive Spaces, IEEE Pervasive Computing, Vol.4, No.1
(January-March 2005) 84-87.

7. JavaSoft: Java Media Framework. http://java.sun.com/products/java-media/jmf/index.jsp
8. Sandia National Laboratories: Java Expert System Shell. http://herzberg.ca.sandia.gov/jess
9. Open Service Gateway Initiative: The Open Service Gateway. http://www.osgi.org

10. Russ, G.: Situation-dependent behaviour in building automation. Dissertation, Institute of
Computer Technology, TU Wien (2003)

11. Russ, G., Dietrich, D., Tamarit, C.: Situation Dependent Behaviour in Building
Automation. Proceedings of Workshop EurAsia-ICT 2002, Advances in Information and
Communication Technology, Shiraz, Iran (2002) 319-323

12. Schramm, P., Naroska, E., Resch, P., Platte, J. Linde, H. , Stromberg, G. and T. Sturm,: A
Service Gateway for Networked Sensor Systems, IEEE Pervasive Computing, Vol.3, No.1
(January-March 2004) 66-74

13. Sommers, F.: Call on extensible RMI – An Introduction to JERI, JavaWorld.
http://www.javaworld.com/javaworld/jw-12-2003/jw-1219-jiniology_p.html (2003)

14. Waikato Environment for Knowledge Analysis Project. http://www.cs.waikato.ac.nz/~ml/

	Introduction
	Related Work
	Extensible and Ubiquitous Architectural Design
	Levels F, E, D
	Levels A, B, C

	An Example
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

