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Abstract. Tracking objects of interest in video sequences, referred in
computer vision literature as video tracking or visual tracking, is an
essential task for intelligent machines able to understand and react to the
surrounding environment. This work investigates the problem of robust,
long-term visual tracking of unknown objects in unconstrained environ-
ments. Such problem is affected by several challenging difficulties arising
from fast camera movements, partial or total object occlusions and tem-
poral disappearance. We describe a novel framework based on Tracking-
Learning-Detection (TLD), that combine bayesian optimal filtering with
pn on-line learning theory [12] to adapt target visual likelihood during
tracking. We designed particle filtering algorithm for parameter inference
and propose a solution that enables accurate and efficient tracking. The
performance and the long-term stability are demonstrated and evaluated
on a set of challenging video sequences usually employed to test tracking
algorithms.
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1 Introduction

Single target tracking, defined as the problem of estimating the state X of an
object of interest at time ¢ in a sequence of images I, ---,I; , is a fundamental
issue in computer vision since it provides low-level information for a wide range
of high level analysis applications, such as visual surveillance, activity analysis,
vision-based user interfaces, augmented reality, etc.

Visual trackers rely on an appearance model, i.e. an internal representation
of the target appearance, learned by extracting from incoming images high dis-
criminative visual features characterizing the target. This model is then eval-
uated on candidate image regions, through a set of measurements, in order to
estimate the most confident target location in the current frame. In [12], sin-
gle target trackers are classified into two broad categories namely, short term
trackers (STT) and long term trackers (LTT). The former refers to standard
tracking approaches such as [I5] that try to find frame to frame correspondences

A. Petrosino (Ed.): ICTAP 2013, Part I, LNCS 8156, pp. 803-BI2] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



804 G. Gemignani et al.

assuming no complete occlusion or disappearance of the tracked object between
consecutive frames, while the latter refers to sequences of possibly infinite length,
affected by frame cuts, fast camera movements and object temporary disappear-
ance from the scene. In [I2] single target tracking is defined as the problem of
“long-term on-line tracking with minimum prior information” where the tracker
learns an appearance model by continuously adapting itself to new observed
data and exploiting only information from the past. Minimum prior information
underlines that object modeling is formulated as semi-supervised problem where
labeled data are provided manually by the user only at the first frame of the se-
quence. Such formulation requires a model able to continuously adapt to changes
of appearance and at the same time, robust to wrong measurements generated
by failures.

Appearance model adaptation introduces several challenges, such as the need
for simultaneous fulfillment of the contradicting goals of rapid learning and
stable memory referred in [8] as the stability-plasticity dilemma. Furthermore,
on-line evaluation of new data samples becomes a critical issue in order to de-
tect and learn changes in pose and scale or varying illumination condition. To
cope with the challenges of this task, Adaptive Appearance Trackers (AAT),
[IT2ITOT62406l2I22] rely on models able to learn changing imaging conditions.
According to the type of the adopted appearance model, adaptive trackers can be
grouped into three classes, namely generative, discriminative and hybrid track-
ers.

Generative trackers formulates target’s appearance modeling as an unsu-
pervised learning problem where model adaption is achieved by re-estimating
target appearance distribution with new high likely samples [TOJI6II7[7]. Such
approaches ignore discriminative information coming from the surrounding back-
ground, resulting in high sensitivity to cluttered scenes. On the other hand, dis-
criminative trackers, using a classifier that learns a decision boundary between
the appearance of the target and that of the surrounding area, w.r.t. background
or other moving objects [IT2IIRI24I6l2], are more robust to clutter or resem-
bling objects lying in the scene. Hybrid trackers combine the aforementioned
approaches providing more stable and flexible trackers. Authors in [21], propose
to switch between discriminative and generative observation models according to
targets proximity in a multi-target scenario; in [23] different generative models
are aggregated by means of a weighted combination whose values are learned
in each frame, by maximizing the distance to the background appearance; in
[3] co-training of a short-term discriminative observation model and long-term
generative one is exploited; in [I4] two generative non-parametric models of tar-
get and background appearance are used to train a discriminative tracker in
each frame. Authors in [I2] decompose the long-term tracking task into three
interacting sub-tasks, Tracking Learning and Detection (TLD), performed by
three independent components. The tracker is a STT component that follows
the target exploiting optical flow on local feature points lying on a regular grid
generated at each tracking iteration inside the target bounding box. The de-
tector localizes all appearances that have been observed so far and if necessary,
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corrects (re-initialize) the tracker. The integrator selects hypothesis coming from
the aforementioned components and update the global appearance model defined
by a set of patches. During the update stage, it also estimate detector errors and
correct it to avoid these errors in the future, by pn on-line learning paradigm
[12].

As stated in [19], many of these techniques ([6222/T2[18]) are successful in
several scenarios and TLD is one of the best performing AAT paradigm, how-
ever some critical aspects of its tracker component have been highlighted by
theoretical analysis and verified by experimentation where high sensitivity to
strong occlusions and resembling background has been revealed.

Inspired by such analysis, we extensively investigated TLD architecture re-
vealing a systematic drifting behavior of the tracker component that passes
wrong hypothesis to the integrator component, causing in the worst case, the
learning of wrong examples. We argue that such behavior is due to the design
choice of tracking points over a fixed grid that is reinitialized at each tracking
iteration on the previous estimated location, assuming complete visibility of the
target. As it will be explained in section Bl under occlusions, this strategy drifts
the STT component, that starts to track the occluding object (see fig. 2l) until
the detector provides more confident hypothesis. If the target have high visual
similarity with the occluding object, wrong samples could be injected into the
appearance model leading to an inconsistent detector and breaking the overall
performance of the tracker. The reinitialization strategy is a challenging prob-
lem in adaptive visual tracking. In [9] a set of simple features (e.g., optical flow
features) is used to track individual parts of the object while distances among
features are used to add or remove salient points during tracking. Since the set
of features is geometrically unconstrained, the tracker is likely to get stuck on
the background, losing the target. In [24] harris corner is used to detect stable
regions for tracking and enforcing a single global affine transformation constraint
to avoid drifting. However, authors assume that shape of the object can be ap-
proximated with an ellipsoid and that the object does not deform, limiting the
generality of the tracker.

In this work we approach the aforementioned problems by focusing short term
tracking on high textured regions localized around harris local maxima and for-
mulating a novel reinitialization strategy that is directly encoded into our prob-
abilistic framework. The novel idea behind our reinitialization strategy is to add
new regions of interest around high confident points tracked from the previous
frame and filter out those regions that are not geometrically consistent with the
best explanation of target global appearance during the inference process. In-
spired by the outlier filtering scheme proposed in [5] for multiple target tracking,
we designed an Markov Chain Monte Carlo (MCMC) particle filter that auto-
matically rejects local features not consistent with the current estimate of the
target location and scale. In this way stable regions are geometrically constrained
to the estimated target area without any assumption on its shape.
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We integrated our method into TLD approach, resulting in a new efficient
and accurate long term tracker, that we named Bayesian Tracking Learning
Detection (BTLD).

Our contributions Are Three-Fold: we propose (i) a tracker that make TLD
robust to occlusions and resembling background; (i) a novel bayesian model
that jointly estimate target location and select new stable feature points for the
next tracking iteration, exploiting adaptive visual likelihood provided by TLD
learning component; (i) quantitative evaluation on a number of challenging
video sequences, verifying how our intuition corrects the baseline method respect
to underlined critical conditions.

The paper is organized as follows: section 2 describes TLD framework and its
weakness; in section [3] the proposed generative tracker and its integration in to
the TLD framework is presented; in section M experimental results are showed
comparing the proposed approach with the original TLD and other state-of-the
arts methods; finally, section [ summarizes the main contributions and highlights
open research challenges.

2 Tracking Learning Detection and Its Limits

As previously introduced, TLD is an hybrid long term tracker that performs
robust tracking by decoupling object tracking and object detection. It uses a
specific object detector, trained on-line with examples found on the trajectory
of a short term generative tracker that itself does not depend on the object de-
tector. The system architecture is built on three interacting components namely
the tracker, detector and integrator. The tracker component is a short term
generative tracker that self-learns the appearance model and is based on me-
dian flow tracker [11] extended with failure detection. At each frame, it tracks
by pyramidal Lucas Kanade Tracker (KLT) [], a set of patches centered over
points Kt = {Kfyj}m:l___N lying on a regular grid overlapped with the target
estimated bounding box. KLT failures are controlled by a refinement step, where
wrong correspondences are rejected by a median filter computed over measures
of visual similarity and motion reversibility ( forward-backward error) calculated
on the set of tracked points K!H! = {Kfjl}i’jzlmN. Given K and KT, visual
similarity is computed by normalized cross correlation between patches centered
on them. Forward-backward error is computed, by backward tracking each point
in C'*1 for k frames and measuring the geometric distance between points lying
on backward and forward trajectory.

As stated before the adopted reinitialization strategy is prone to drift in pres-
ence of strong occlusion. In fig. Pl a clarifying example of this critical behavior is
verified: the coke is characterized by areas of uniform color resembling surround-
ing background and as it moves behind the leaf the tracker component drifts.
Indeed, after reinitialization, stationary local points on the leaf (blue dots) are
identified by median operator as the correct ones, leading the final solution to
drift (yellow bozx). Even if among ensemble’s detections (all other colored bozes),
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Fig. 1. TLD failure on Coke sequence. On the right column positive samples, on the left
negative samples. In yellow TLD final solution corresponding to median flow tracker
solution, while other colored boxes are detections provided by detector

the correct one is present, its confidence is still too low to activate error correc-
tion. The time required to correct the tracker depends on leaf similarity respect
to target appearance and on the ability of the detector component to recover
with an higher confidence the correct target hypothesis that enables error correc-
tion trigger. Such detector is a cascaded object detector, that analyzes the entire
image by a scanning window approach, providing new hypothesis to the integra-
tor component in order to correct the aforementioned failure. It performs three
main stages: at the beginning, it applies a variance filter rejecting all patches
with a variance lower than a given threshold; subsequently it classifies remaining
patches by an ensemble of random ferns [I3]; in the last step it evaluates the con-
fidence of the detections by normalized cross correlation, computed with respect
to the nearest positive and negative patches (respectively on the right and left,
in fig. @) defining the appearance model. The integrator component is designed
to perform model adaption by selecting the highest confident results provided
by tracker and detector to estimate current target location X and providing
new samples to the learning process. It also bootstraps the ensemble classifier
building the object detector, by pn-learning [12]. Such approach is based on
structural constraints namely P-constraint and N-constraint that identify and
relabel miss-classified data samples according to the assumption that all patches
highly overlapping with the estimated state X should be classified as positive
while patches far from it should be classified as negative. Retraining the detector
with such strategy realizes a feature selection stage where challenging samples, in
fern feature space, lying near the decision boundary are continuously corrected,
providing a strong classifier, able to re-detect the target during drift.

3 Proposed Approach

In this work, we focus KLT only on salient regions defined around local maxi-
mum of harris operator. This strategy as stated in [20], reduces KLT failures to
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resembling background since it restricts the tracking on high textured regions,
even if further refinement steps are still necessary to remove the remaining erro-
neous correspondences. Assuming coherent motion of tracked points, we remove
those whose motion does not agree with the motion distribution estimated by
kernel density estimation, over the set ™! of tracked points. This processes
removes KLT serious failures but reduces drastically the number of local feature
points. To guarantee a sufficient number of such salient points, new ones, de-
tected near the remaining points are added. This is the most critical stage, since
there is no prior knowledge about the “nature” of such new salient regions. The
main idea is to allow the selection of new unconstrained salient points followed by
a refining step where not consistent elements are rejected. In this way geometrical
constraints can be encoded in our MCMC' particle filter, where we introduce two
competitive likelihood functions: one promotes the maximum number of salient
points in K'+1, the other rejects local feature points that are not consistent with
the visual model.

3.1 Bayesian Formulation

Following the Sequential Bayesian formulation, the posterior probability of target
state X! a time ¢ is given by

p(Xt|Ot) ~ p(ot‘Xt) /p(Xt‘Xt_l)p(Xt_l‘Ot_l) dXt—l (1)
N YN N 7S ~ N ~ -
posterior a b ¢

where (a), (b) and (c¢) in Eq. [l represent the observation likelihood, the motion
model and the posterior from previous time, respectively. The hidden state X*
encodes location and scale of the 2D box enclosing the target, resulting in a 4D
state space X! = [z y w h], where z, y, w and h are the coordinates of the
center the width and the height of the bounding box, respectively. Ot = [K! A!]
represents the measurement space, where K! = {K! € R?} is the set of lo-
cal points tracked from previous frame and A’ represent the adaptive global
appearance model learned on-line by TLD. Assuming K! and A’ independent,
the observation likelihood O is factorized by p(A", K'|X") = p(A'| X")p(K! X?).
Observation likelihood of K! measures the fraction of local feature points lying
inside the candidate target state X*': p(K'|X") = K“tlcf‘xt. Such distribution
promotes candidate states containing the maximum number of tracked local fea-
tures, assuming that they are free of errors. KLT failures, are automatically
rejected by the global appearance likelihood modeled by TLD. It assign low con-
fidence to hypothesis containing local tracked points and not resembling target
appearance, assuming an “outliers-rejection” role similar to RANSAC. p(A'|X?),
measuring the normalized cross-correlation distance respect to target’s patches,
is given in [I2]. We use a linear dynamic model defined by a Gaussian distribu-
tion over X, centered on previous target X‘~! location and scale. Considering
the complexity of the given probabilistic formulation, it is extremely challenging
to design an analytical inference method for estimating the MAP solution. This
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challenge is due to the presence of the high nonlinearity of observation likelihood
functions. We propose to employ a sampling based sequential filtering technique
based on the MCMC particle filter. At each time step t given a set of N pre-
dictions on hidden variable status X*~!, we propagate samples in the particle
filtering framework to get an approximation of the final posterior distribution:
p(Xt1 O ~ { X1}, Propagating samples through the motion model, we
generate particles for the predictive distribution and approximate the posterior
distribution at time ¢ by Monte Carlo integration:

N
p(XUYE K oc pV X )p(KH XY Y p(XHXEp(XETHATL K (2)

s=1

Approximation in eq. ] is achieved by a Markov chain over the joint space
of X that converges over the posterior distribution p(X*|V*, K!). The whole
Metropolis-Hasting procedure is sketched in algorithm [Il For MCMC' sampling

Algorithm 1. MCMC Particle Filter
1: procedure MCMC PARTICLE FILTER
Input: ', )* ,Xf_l

3 Output: p(X*|V', K

4 Initialize X§ = X'*

5 while i < Nyccept do

6 Propose X* ~ N(X?|X*~1)

7 Evaluate the acceptance probability a = min(1
8

9

10:

P(X7IATKY) )
T p(x{THALKY)
Accept X — X! if o < u « uniform sample € [0 1]
end while
end procedure

to be successful, it is critical to have a good proposal distribution which can
explore the hypothesis space efficiently. Our proposal distribution generates sep-
arate random hypothesis for location and scale subspaces, according to nor-
mal deviates from previous accepted hypothesis. Once the sampling method has
reached convergence, the maximum a posterior estimate for X! is analyzed by
the TLD integrator to establish the final solution.

4 Experimental Results

We evaluate, quantitatively, BTLD using challenging sequences from the MIL-
Boost dataset. Each experiment in this section adopts the evaluation protocol
proposed in [I2]. The tracker is initialized in the first frame of a sequence and
tracks the object of interest up to the end. The performance are evaluated by
the average percentage of frames for which the overlap between the identified
bounding box and the ground-truth bounding box is at least 50%. Authors in
[19], identified in Coke and Faceocc2 the most critical sequences for TLD.
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Fig. 2. From top to bottom: Faceocc2, Coke. In Red TLD estimated object state, in
blue BTLD estimated object state

Fig. 3. Sequences Sylvester(a), David(b), Dollar(c), Tiger2(d). In Red TLD estimated
object state, in blue BTLD estimated object state

As stated in Section 2] the Coke sequence proves sensitivity to occlusion and
resembling background. The target is affected by several occlusions at the be-
ginning of the sequence (fig. Bd) resulting in a not effective object detector.
Furthermore, coke continuous motion causes drifting of the median flow that
in few frames loses the target and is unable to be restarted since the ensemble
classifier does not detect the target (fig. 2e,f). Our method, by tracking only
stable points, does not lose the target (fig. Bte,f) outperforming the baseline
method and other state of the art approaches. In sequence Faceocc2 sensitivity
to occlusions and changes of appearance is analyzed, since a man is continuously
occluding his face behind a book (fig. 2lb). Moreover during the sequence the
man wears a hat (fig. Blc), so that the adaptivity of the tracker to permanent
changes of appearance can be evaluated. Reported frames (a,b,c) highlight how
BTLD produces more accurate detection results since target state estimation is
exploited by temporal consistency that controls variation in position and scale
over time. Quantitative results reported in table @ confirm the improvement in
accuracy achieved respect to the baseline method. We evaluated our method
also on sequences Sylvester, David, Tigerl, Tiger2 and Dollar in order to ver-
ify the ability of our method to improve TLD results in other scenarios where
the baseline method produces accurate tracking itself. In fig. Bl we show some
conditions where our method corrects (fig. @la,d) or produces more accurate
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results (fig. 2 b,c) compared to the baseline method. As expected from the the-
oretical analysis, by fixing short term tracking instability, we increase tracking
performance on all the tested sequences. Results reported in table @ underline
the improvement achieved by integrating our component into the T'LD method.
Furthermore, experiments underline how BTLD also affects appearance model-
ing since it provides more stable hypothesis to the learning component.

Table 1. recall measuers. The best performance on each video is boldfaced.

Sequence  frames MIL [2] ORF [I§] TLD [12] BTLD

1. David 1200 0.70 0.95 1.00 1.00
2. FaceOcc 820 0.96 0.70 0.96 1.00
3. Sylvester 1440 0.93 0.71 0.97 1.00
4. Coke 292 0.46 0.17 0.60 0.91
5. Tigerl 353 0.78 0.27 0.88 0.92
6. Tiger2 364 0.80 0.21 0.85 0.94
7. Dollar 326 1.00 — 0.86 0.93

5 Conclusions

In this paper, we developed BTLD, a novel generative tracker that corrects
a systematic drifting behavior revealed in the short term tracker of TLD ap-
proach. We designed a generative model that jointly solve feature selection and
resampling exploiting a global adaptive appearance model as outlier removal.
A real-time implementation of the MCMC particle filter framework has been
described in detail and an extensive set of experiments was performed in order
to highlight the ability of our approach to increase robustness of TLD tracker.
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