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HIGHLIGHTS

» Two real-world driving patterns databases are analysed.

* The trip and parking events are characterised versus 12-hour diurnal time windows.

* The evaporative emissions have been derived for real-world driving data.

* The effectiveness of the current type approval test procedure has been evaluated.

* The evaporative emission control system could not efficiently work in real-world conditions.
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patterns from conventional fuel vehicles collected by means of on-board GPS systems in the Italian provinces
of Modena and Firenze. Approximately 28,000 vehicles were monitored, corresponding to approximately
36 million kilometres over a period of one month. The driving pattern of each vehicle was processed to derive
the relation between trip length and parking duration, and the rate of occurrence of parking events against
multiple evaporative cycles, defined on the basis of the type-approval test procedure as 12-hour diurnal time
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Keywords: windows. These results are used as input for an emission simulation model, which calculates the total evapora-
Evaporative emissions tive emissions given the characteristics of the evaporative emission control system of the vehicle and the
Real-world mobility data ambient temperature conditions. The results suggest that the evaporative emission control system, fitted to
European type-approval test procedure the vehicles from Euro 3 step and optimised for the current type-approval test procedure, could not efficiently
Passenger cars work under real-world conditions, resulting in evaporative emissions well above the type-approval limit,

especially for small size vehicles and warm climate conditions. This calls for a revision of the type-approval

test procedure in order to address real-world evaporative emissions.
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1. Introduction depend on a number of factors, such as the size of the tank, the fuel
volatility, the material used for the tank and fuel hoses, the parking
Evaporative emissions from vehicles are Volatile Organic Com- duration and the ambient temperature. Among these, the main factor

pounds (VOCs) emitted by the fuel system and other vehicle's parts determining evaporative emissions is the fuel volatility combined with
(e.g. tyres, internal trim, plastic components) and not directly related the variation of the fuel temperature as a consequence of ambient
to the combustion process of the fuel in the engine. These emissions temperature fluctuations, solar radiation and heat sources (e.g. engine),
as per Stump et al. (1990) and Rubin et al. (2006). In general, evapora-
tive emissions occur during the operation of the vehicle (i.e. running
e losses), immediately after the vehicle's engine is switched off after oper-
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elena.paffumi@jrc.ec.europa.eu (E. Paffumi), michele.degennaro@jrc.ec.europa.eu parking. In particular, this last source of VOCs is considered the predom-
(M. De Gennaro), giorgos.m@emisia.com (G. Mellios). inant part, as outlined in Yamada (2013).
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Nomenclature

Acronyms
CARB
COPERT

California Air Resources Board
COmputer Program to calculate Emissions from
Road Transport

DVPE Dry Vapour Pressure Equivalent
EPA Environmental Protection Agency
EMS Engine Management System
EUDC Extra-Urban Driving Cycle

FID Flame Ionization Detector

GMT Greenwich Mean Time

GPS Global Positioning System

GWC Gasoline Working Capacity

LDV Light Duty Vehicle

HDPE High Density Poly-Ethylene
NEDC New European Driving Cycle
OBD On Board Diagnostics

PD Probability Distribution

PFI Port Fuel Injection

SUV Sport Utility Vehicle

UDC Urban Driving Cycle

us United States of America
VELA Vehicle Emission LAboratory

VOoC
WLTC

Volatile Organic Compound
Worldwide Harmonised Light Vehicles Test Cycle

The current European legislation on evaporative emissions of
vehicles dates back to the Council Directive 98/69/EC (European Parlia-
ment, 1998), which introduced the Euro 3 and 4 steps for Light Duty
Vehicles (LDVs). As a result of the implementation of this piece of legis-
lation, since the year 2000, gasoline vehicles for the European market
have been equipped with an activated carbon canister placed on the
vent of the tank. Its purpose is to trap the fuel vapours and avoid that
these are released into the air. The carbon canister has a limited capacity
and for this reason needs purging, therefore part of the combustion air is
drawn through the canister when the vehicle is running, removing the
hydrocarbons trapped in the canister which are then burned in the
engine. The size of the carbon canister, the Gasoline Working Capacity
(GWC) of the activated carbon and the purging strategy are key
parameters affecting the efficiency of the evaporative emission control
system. It is important to stress that evaporative emissions increase
disproportionally when the carbon canister gets saturated as a
consequence of extended parking events or insufficient purging.

Since the introduction of this directive, neither the evaporative
emission standards nor the test procedure has changed. It is now
considered necessary to revise the European legislation on evaporative
emissions in order to improve the performance of the emission control
system in real-world driving conditions, as stated in several legislative
documents, such as the article 4 of the regulation (EC) No. 715/2007
(European Parliament, 2007) and the communication 2008/C 182/08
(European Parliament, 2008). According to these documents, two
main issues must be addressed:

» A more effective control of evaporative emissions under real-world
driving conditions. This implies that real-world efficiency and durability
of the evaporative emissions control system have to be addressed.

 The impact of ethanol fuel on evaporative emissions.

An attempt to quantify real-world evaporative emissions can be
found in Ross et al. (1995) and Brooks et al. (1995). These papers refer
to an experimental campaign carried out in the Phoenix area with 300
vehicles tested in real-world conditions, showing that approximately
15% had evaporative emissions above 2 g. For only 20% of these high-
emitting vehicles the high emissions could be ascribed to a malfunction

of the evaporative emission control system whilst for the remaining
80%, i.e. approximately 12% of the fleet considered, the high evaporative
emissions were due to severe ambient conditions.

The objective of this paper is to address to what extent the test
conditions specified in the current European evaporative emission leg-
islative test procedure cover typical real-world driving/parking
conditions by estimating the averaged emissions per vehicle type and
ambient condition (i.e. calendar month) with the simulation software
COPERT (Emisia, 2013). This study relies on large datasets of real-
world activity data of LDVs (i.e. approximately 28,000 vehicles equiva-
lent to 36 million kilometres, from the Italian provinces of Modena
and Firenze). These data can be useful for different studies, such as
electric vehicle usability (De Gennaro et al., 2013a) and energy demand
(De Gennaro et al., 2014), or in combination with chassis dyno tests to
calculate on-road driving emissions (Sturm et al., 2000). The innovative
contribution of this work is their use, for the first time, to evaluate the
effectiveness of the evaporative emission type-approval test procedure
in controlling real-world emissions, in order to provide scientific
evidences and quantitative data to support the improvement of the
type-approval test-procedure.

The results of the analysis show that the evaporative emission
control systems used in European vehicles, which are typically designed
to comply with the European legislative evaporative emission test, do
not adequately cover real-world conditions and how a large share of
parking events could systematically lead to emissions well above the
limit set by the type-approval test procedure, mainly as a consequence
of canisters not sufficiently purged.

2. Background information

2.1. European type-approval test-procedure for evaporative emissions and
comparison with the US legislation

The evaporative emission test (Type IV), laid down in the Council Di-
rective 98/69/EC (European Parliament, 1998), is designed to determine
hydrocarbon evaporative emissions as a consequence of diurnal tem-
perature fluctuation during parking and hot soaks. Hot soak emissions
are usually attributed to the evaporation of the petrol in the fuel and in-
jection system immediately after the engine is switched off. Diurnal
emissions are instead the evaporative emissions occurring from a vehi-
cle whilst it is not being operated. The European test procedure consists
of the following main phases:

* test preparation (i.e. canister and vehicle conditioning);
* hot soak loss determination (i.e. hot soak test, 1-hour duration);
* diurnal loss determination (i.e. 24-hour diurnal test).

Evaporative emissions are measured using an air-tight chamber able
to contain the vehicle under test. The VOCs concentration inside the
chamber is monitored by means of a Flame Ionization Detector (FID)
analyser. The mass emissions of hydrocarbons from the hot soak and
the diurnal loss phases are added up to provide an overall result for
the test. Before starting the measurement of the evaporative emissions,
both the vehicle and the carbon canister have to be properly prepared
according to a specific conditioning described in the legislative proce-
dure. The carbon canister has to be loaded with butane to the break-
through condition, defined as the operation point when 2.0 g of
hydrocarbons have been emitted by the canister. As far as the vehicle
is concerned, the following conditioning steps have to be carried out:

* Fuel drain and refill: after the butane loading of the canister to the
breakthrough condition is completed and the canister reconnected
to the fuel system, the tank is filled with test fuel at a temperature
of about 287 K (14 °C) to 40 + 2% of the tank's normal volumetric ca-
pacity.

Preconditioning drive: within 1 h from completing the canister load-
ing, the vehicle has to be placed on a chassis dynamometer and driven
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through one Part One (i.e. Urban Driving Cycle, UDC) and two Part
Two (i.e. Extra-Urban Driving Cycle, EUDC) driving cycles of Type |
test (i.e. New European Driving Cycle, NEDC).

* Conditioning drive: after the completion of the pre-conditioning drive
and a minimum of 12 h to maximum 36-hour soaking, the vehicle is
driven further through one complete NEDC and one Part One (i.e.
UDC). Therefore, the total distance driven during the preconditioning
and conditioning drive equals to 33 km.

After the vehicle conditioning is completed, the actual measurement
of the emissions can start:

Hot soak test: this test simulates the condition of a vehicle parked
after having been driven for a certain distance. Within 7 min from
the completion of the preconditioning drive, the vehicle is placed
into the measuring chamber with the engine switched off. The test
lasts 60 min and the temperature must not be less than 296 K
(23 °C) and more than 304 K (31 °C) during the hot soak period.
Diurnal test: this test lasts 24 h and simulates the situation of a vehicle
parked for one full day in the summer period; the temperature in the
measurement chamber is varied according to a profile defined by the
legislation to ideally reflect the fluctuations occurring during day and
night time. The starting temperature is 20 °C whilst the maximum
value is 35 °C, reached after 12 h. Then, during the subsequent 12 h
the temperature slowly decreases and goes back to 20 °C.

The final result of the test is given by the sum of the emissions
measured during the hot soak and diurnal test, and this is defined
total evaporative emissions. The European limit for this sum is currently
2 g/test according to the Directive 70/220/EC (European Parliament,
1970) and subsequent amendments.

Despite some similarities, the European and the US legislative re-
quirements on evaporative emissions are very different. In general the
US legislation is more complete than the European one, covering all
the critical factors affecting evaporative emissions. One of the main
differences between the EU and the US test procedures is the duration
of the diurnal test. Whilst in Europe the diurnal test lasts 24 h, in
the USA there are two different diurnal tests lasting respectively 48
(twodays) and 72 (threedays) hours. The two-day diurnal test is
designed to cover conditions corresponding to short distance driving
and two day parking maximum, whilst the three-day diurnal test is
designed to cover extended parking events. The different purpose of
the two-day and three-day diurnal tests is reflected also in the con-
ditioning procedures for both the canister and the vehicle that differ
significantly. In the two-day test the canister is loaded to the break-
through whilst in the three-day test it is loaded to complete saturation.
Finally, the conditioning drive to be completed prior to starting the test
is much shorter in the two-day test compared to the three-day test. Not
only is the test procedure very different, but also the emission standards
are much more severe in the USA. The emissions limits are 1.2 g/24 h
(worst day) for the two-days and 0.95 g/24 h (worst day) for the
three-day diurnal test (Delphi, 2013/14). The standards in force in
California are even lower (0.5 g/test). Further details on the comparison
between the European and the US legislation on the evaporative
emissions can be found in (Martini et al,, 2012a).

2.2. Factors influencing evaporative emissions

As stated in the Introduction section real-world evaporative emis-
sions are the result of a combination of factors. One of the most impor-
tant factors is the efficiency of the carbon canister in trapping the fuel
vapours (i.e. the GWC of the activated carbon) that depends not only
on the size of the canister (that is the amount of carbon) but also on
the level of saturation of the activated carbon. The latter depends on
the history of the vehicle and particularly on the duration of the
previous parking event (i.e. quantity of fuel vapour generated)

combined with the length, speed and duration of the previous trip (i.e.
total purging volume drawn through the canister, active purging).

In addition to the active purging performed during vehicle operation,
the canister can be also passively purged during parking events with a
decreasing ambient temperature (e.g. overnight parking). In this case air
flows into the tank to compensate the decreasing of the volume of the
fuel vapours purging at the same time in the canister. However the
passive purging has a relatively small influence compared to the active
purging. Furthermore the adsorption efficiency of the activated carbon
can decrease over time due to ageing of the carbon itself or to the
formation of a hydrocarbon heel that cannot be removed by purging.

According to the current legislative test procedure (see Section 2.1),
the carbon canister is purged during the vehicle preconditioning and
conditioning steps (i.e. accounting for a total driving distance of 33 km).

Recent investigations (Pierson et al., 1996; McLaren et al., 1996)
show that the purging strategy adopted in European vehicles is in
general optimised for the test procedure, and in some passenger cars
the canister is not purged efficiently over the low speed part of the
NEDC cycle which should represent urban driving (Martini et al.,
2012). Moreover, real-world activity data analyses show that the typical
trip length is much shorter than 33 km, especially in urban areas (De
Gennaro et al., 2013b; Paffumi et al., 2014). From the above consider-
ations it is easy to conclude that the most critical conditions for real-
world evaporative emissions occur in urban areas, where the vehicle
is typically driven for very short distances at low speeds and then can
be left parked for long time under solar radiation (i.e. warm climate
conditions).

Fuel permeation represents another major source of evaporative
emissions from passenger cars and it strictly depends on the material
used for the fuel tank and lines. Standard mono-layers High Density
Poly-Ethylene (HDPE) tanks, still adopted in about 35% of the vehicles
sold in Europe according to Association of plastic tank manufacturers
(2013), are characterised by higher permeation rates compared to
multilayer or metal fuel tanks, typically used in the US, where stricter
emission limits are applied. In addition fuel volatility is also important
to determine the amount of vapours generated at a given temperature.
The reference fuel prescribed by the current European legislation for the
evaporative emission test must have a maximum Dry Vapour Pressure
Equivalent (DVPE) of 60 kPa (European Parliament, 1998). Fuels with
a higher vapour pressure, as in the case of fuel containing ethanol,
may lead to faster saturation of the canister and higher real-world
evaporative emissions. The European directive 2009/28/EC on the
promotion of renewable fuels (European Parliament, 2009) set the
objective of 10% coverage of the transport fuel market with renewable
energy sources, including biofuels by 2020. Bioethanol is one of the
main options to achieve this target, but it has a significant influence
on both exhaust and evaporative emissions of petrol passenger cars.

If ethanol is splash blended into a standard gasoline at low levels (i.e.
5-10%), the vapour pressure in many cases significantly increases (i.e.
approximately by 6-7 kPa) and larger volumes of vapour are generated
in the tank. The current European fuel Directive requires pure gasoline
and ethanol/gasoline blends to meet the same vapour pressure
specification (60 kPa for the summer grade gasoline) and allows splash
blending only upon a derogation to be requested and justified by
Member States. However, even in absence of a request for derogation,
where gasoline with and without ethanol coexist in the same area, the
vapour pressure of fuel will inevitably increase as a result of accidental
mixing of these fuels in the tank (i.e. commingling effect). This may
lead to a faster saturation of the canister and consequently to higher
emission values, since the certification test is carried out with a fuel
containing 5% ethanol but with a maximum vapour pressure of 60 kPa
whilst in the real world the fuel in the tank may reach values around
67-68 kPa. In addition ethanol also increases the permeation rate of
fuel through plastic materials, as those of which the tank is made, and
may also reduce the GWC of the carbon canister due to the polarity of
its molecule.
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These issues have been addressed in literature by Furey and King
(1980) and Poulopoulos et al. (2001) and, in response to this, the
US Environmental Protection Agency (EPA) and the California Air
Resources Board (CARB) developed specific measures in order to cope
with them. These measures are still missing in Europe and for a forward
looking review of the test procedure these aspects have to be taken into
account. As far as the EU legislation is considered, the reference fuel for
emission testing at vehicle type approval must contain 5% ethanol.
However, the effect of ethanol on fuel permeation is not instantaneous
and it can take up to few tens of weeks to achieve a stable permeation
rate. In other words, if the ethanol containing fuel is put in the cars
just at the moment of the evaporative test, the effect on fuel permeation
will be strongly underestimated.

Ethanol influence on evaporative emissions is only partially
addressed in this work, by considering the increased permeation rate
of the fuel tank material, whilst the commingling effect is not
considered.

3. Methodology

The methodology developed in this study is based on the three
following steps:

1) Derivation of real-world typical trip lengths and parking duration
distributions from the activity databases.

2) Evaluation of the correlation of these real-world parking events with
the legislative test in terms of parking duration (24 h with 12 h of in-
creasing temperature). To this purpose diurnal time windows
relevant for evaporative emissions have been defined, on the basis
of the solar radiation windows in May (i.e. month in which the
data acquisition campaign was carried out).

Simulation with COPERT (Emisia, 2013) of the evaporative emis-
sions on the basis of the results of step 2. The simulation set-up
and model were based on the experimental results from the VELA

3

—

laboratories (Mellios et al., 2009), partially presented in Section 3.3.

3.1. Description of the activity databases and mobility analysis results

Two large vehicles activity data sets of two Italian mid-sized prov-
inces Modena and Firenze were purchased from the private company
Octo Telematics (Octo Telematics Italia S.r.l, 2013). These sets of data
were extracted from the Octo Telematics data pool according to specific
criteria in order to obtain a sample representative of urban driving
conditions in those geographical areas. The vehicle activity data were
acquired by means of GPS devices installed on the vehicles and connect-
ed via GSM to a remote storage unit. This is becoming more and more
popular in some countries due to the possibility to pay reduced vehicle
insurance fees. The acquisition devices anonymously records: time, GPS
position coordinates, engine status, instantaneous speed and cumula-
tive distance and this enables to reconstruct in detail the driving pattern
of each of the monitored vehicles.

The two data sets analysed cover a period of one month (i.e. May
2011) and were initially referred to 52,834 vehicles for Modena
(12.0% of the total fleet of the province) and 40,459 vehicles for Firenze
(5.9% of the total fleet of the province). As mentioned above, urban
driving conditions represent the most critical conditions for evaporative
emissions. Therefore only the cars showing a predominant urban use,
defined as the majority of the trips (i.e. more than 50%) occurring within
the province border, were considered in this analysis. As a consequence,

Table 1
Overview of the analysed data for the provinces of Modena and Firenze.

the final data sets included 16,223 vehicles for Modena (30.7% of the
original size, 3.7% of the fleet in the province) and 12,422 vehicles for Fi-
renze (30.7% of the original size, 1.82% of the fleet in the province). The
cumulative mileage analysed amounts to 15.0 million km and
20.6 million km, for Modena and Firenze respectively, corresponding
to approximately 16.0 million and 32.0 million records and 2.64 million
and 1.87 million trip and parking events, as summarised in Table 1.

The activity data analysed are referred to the month of May and have
been assumed to be representative of the driving behaviour also for the
other months of the year. This means that in this analysis the seasonal
variation of the driving habits, which however is assumed to be rather
limited even for different countries according to Marconi et al. (2004),
has not been considered. Moreover the data refers to specific areas of
the provinces of Modena and Firenze, characterised by homogeneous
social and wealth conditions, and therefore, with similar mobility
demand and driving behaviours.

It must be also considered that evaporative emissions strongly
depends on climate conditions and therefore Southern Europe coun-
tries, like Italy, represent the worst cases. The databases have been
analysed by means of in-house built scripts in MATLAB® (Mathworks
Inc., 2012) according to the procedure described in De Gennaro et al.
(2013b) and Paffumi et al. (2014), in order to characterise the urban
mobility in the analysed areas and derive the rate of occurrence of the
evaporative cycles in real-world conditions.

3.1.1. Mobility results

Fig. 1 provides the percentage of the total fleet which is in motion at
the same time during week days against time. Time data are averaged
on a second basis over the total period of analysis (i.e. May 2011).
Three traffic peaks can be seen from Monday till Friday for both
provinces, in the morning (approximately at 7.30), in mid-day (approx-
imately at 12.00) and in the evening (approximately at 18.30). Instead,
two peaks are found in the weekend approximately at 12.00 and at
19.00. The mobility patterns are similar for both databases and are
periodically repeated during the week. The fleet share in motion at the
same time never exceeds 11.72% for Modena and 10.36% for Firenze,
with a mean value of 4.29% for Modena and 4.47% for Firenze. The
remaining percentage to 100% in Fig. 1 represents the fleet share parked
during the week. More than 90% of vehicles are parked at any given
hour of the average day and in the month this value never drops
below 85%.

Fig. 2 shows the trip length and the parking duration for the vehicles
for the two provinces against time, based on second-average over the
total period of analysis. The results show that the mean trip length is
between 5 and 20 km, whilst the average parking duration is between
2 and 12 h (daily and nightly values respectively). This suggests that
average trip and parking events occurring during the night are typically
longer than those occurring during day time.

Fig. 3 shows the Probability Distribution (PD) histograms of the
number of trips, cumulative trip length and cumulative parking
duration (given as percentage of the total), aggregated per day and
per week. The results are given for the province of Modena from (a)
to (f) and for the province of Firenze from (g) to (1). These distributions
show that more than half of the vehicles of the sample are driven for less
than 6 trips and 20 km per day, and 30 trips and 200 km per week, being
parked for more than 90% of the time. The time-dependent results
depicted in Fig. 2 and the probability results depicted in Fig. 3 show
that most of the trips are much shorter than the 33 km conditioning
drive prescribed by the type-approval test for evaporative emissions.

Analysed sample (no. of vehicles)

Number of analysed records [ -10°]

Analysed km [-10°] Number of analysed events [ -10°]

15.998
32.008

Province of Modena
Province of Firenze

16,223
12,422

14.98 2.64
20.66 1.87
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Fig. 1. Averaged percentage fleet share in motion at the same time, averaged over the week for Modena (black) and Firenze (grey).

This implies that in many vehicles the carbon canister is not properly
purged in real-world driving conditions. However the driving distances
have to be evaluated in combination with the duration of the parking in
order to estimate the real carbon canister saturation level achieved
during each parking event. This aspect is addressed in the next section.

3.1.2. Correlation between the trip length and the parking duration

In order to assess how real driving conditions impact on real-world
evaporative emissions, the sequence of trips and parking events of the
vehicles must be considered for determining the saturation level of
the carbon canister at the beginning of each parking event. In this
analysis each trip is considered as an event during which the carbon
canister is totally or partially purged (according to the purging strategy
implemented and the driving length). On the other hand during each
parking event the carbon canister is loaded to a certain level that
depends on the parking duration and the ambient conditions.

The results derived from the analysis of the activity data highlight an
inverse relation between the trip length and the parking duration,

showing that long trips are mostly associated to short parking durations
and vice versa. Fig. 4 shows the cloud distribution of the parking
duration versus the trip length and hour of the day for the 2.64 million
parking events of the province of Modena and 1.87 million events of the
province of Firenze. Each dot represents an event. Although these
pictures only provide a qualitative representation of the distribution of
the events on these axes, the inverse proportionality between trip
length and parking duration mentioned above is well visible. With
respect to the parking duration versus the daily hours, we find an almost
uniform distribution, with events accumulated in striped-like clusters
around the multiples of 24 h (vehicles parked for several days).

The quantitative representation of the clouds is provided in the
tables included in the Supplementary material (from Tables S1 to S4)
where cross-probabilities of the trip and parking events are given,
normalised over the total number of the events considered. Each trip
distance is associated to the parking event that occurs immediately
after. For example in Table S1 the first box in the left-top corner
indicates that 36.3% of the events are a combination of a trip length
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Fig. 2. Average trip length (a) and parking duration (b). Averaged second-by-second values over the analysed period for the vehicles in motion, Modena (black) vs. Firenze (grey).
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Fig. 3. PD histograms of the number of trips, cumulative trip length and cumulative parking duration per day and per week for Modena, black bars from (a) to (f), and Firenze, grey bars

from (g) to (1). Results refer to the complete fleet.

between 0 and 5 km followed by a parking event with a duration
between 0 and 1 h. The values integrated over the columns and the
rows are respectively given in the last row and last column of each
table and represent the PDs of the total occurrence of the given events.
This holds for all the tables.

The distributions of the duration of the parking events and length of
the trips for each vehicle in the databases have been also derived in
order to evaluate the total rate of occurrences of these events per
vehicle. This enabled to investigate if some vehicles in the databases
are likely to bias the aggregated results (e.g. a vehicle which does a

large number of very short trips, being alone the major responsible of
an event of that kind). This analysis, not reported here for brevity,
shows that the results are not altered by this effect.

3.2. Parking events and trip lengths versus evaporative cycles

In order to assess to what extent the legislative test procedure covers
real-world driving/parking conditions, the analysis has been focused on
parking events that can be considered similar to those simulated with
the legislative test procedure (24 h duration, with 12 h of increasing
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Fig. 4. Cloud distribution of parking duration vs. trip distance and hour of the day for Modena, black dots in picture (a) and (b), and Firenze, grey dots in picture (c) to (d). Results refer to

the totality of the fleet.

temperature). To this purpose the diurnal time window relevant for
evaporative emissions has been defined on the basis of the solar radia-
tion windows. Considering that the analysed activity datasets refer to
the month of May, an average sunrise time approximately at 05.50 in
the morning and an average sunset time approximately at 20.20 (values
of the 15th of May for Italy, GMT + 2 h) have been assumed. Typical
temperature profiles for that period show that the temperature
increases approximately from 6.00 to 18.00, period that is here defined
as evaporative cycle.

The duration and the starting time of each parking event included
in the databases have been crossed with this diurnal time window
to quantify the number of evaporative cycles (as defined above)
to which each car is exposed. The result has been rounded to an
integer number, meaning that a parking event which shows a partial
overlapping with one or more evaporative cycles is rounded to the
closest integer. For instance let us consider a parking event from
8.00 to 12.00. The event lasts for 4 h, with a 4 h overlapping with
the evaporative cycle which extends from 6.00 to 18.00. However
its duration versus the duration of the cycle (i.e. overlap-to-cycle
ratio = 4/12 = 0.33) is below 0.5, therefore the event is marked as
“0-cycle”. On the other hand let us consider a parking event from
10.00 to 24.00. The event lasts for 14 h, with 8 h overlap with the
cycle. The overlap-to-cycle ratio is 0.66; therefore the event is marked
as “1-cycle”. Finally let us consider the parking event from 10.00 of a
day to 17.00 of the day after. It overlaps 8 h with the cycle in the first
day and 11 h with the cycle in the second day. The total overlap time is
19 h, resulting in an overlap-to-cycle ratio of 1.58, rounded to “2-cycles”.
This overlap-to-cycle ratio is evaluated for all the parking events in the

database, characterising the occurrence of full evaporative cycles for
each vehicle parking event.

It must be highlighted that if it is true that this round-off of the data
approximates the events from 0.51 overlap-to-cycle ratio on to one full
evaporative cycle, overestimating their diurnal exposure, it is also true
that those events characterised by an overlap-to-cycle ratio up to 1.49
are approximated to one full evaporative cycle as well underestimating
in this case their exposure. These approximations compensate each
other, being the parking duration distribution rather flat from 6 h on,
as shown in Tables S1 and S3 (see Supplementary material).

All the parking events marked as “0O-cycle” are assumed to be
covered by the type approval test procedure and filtered out of the
database. These are parking events with either a too short duration
(corresponding to small amount of generated vapours) or that happen
mostly during the night, even though with a relatively long duration.
The overnight events are typically characterised by the passive purging
of the carbon canister, due to the decrease of the temperature.

The parking events that are filtered-out being marked as “0-cycle”
are approximately 90% of the total parking events. The events, marked
as “1-cycle”, are about 0.252 million for the province of Modena and
0.193 million for the provinces of Firenze (Table 2).

Although the large majority of events are considered well covered by
the existing test procedure, the remaining 10% of events shows a non-
negligible rate of occurrence per vehicle as shown in Table 2. On
average, in the Modena province, each vehicle is left parked for one,
two and three evaporative cycles for approximately 8, 6 and 1 times
per month respectively. These values become 11, 10 and 5 times per
month in the Firenze province. Long parking events, involving 6
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evaporative cycle on, have a very low probability to occur (i.e. less than
one event per vehicle in one month). However these events are respon-
sible of evaporative emissions of two orders of magnitude higher than
the legislation limit (as shown later on in Section 4) and they must be
considered for the evaporative emission assessment. The differences
of the average occurrences of evaporative cycles reported in Table 2
between the provinces of Modena and Firenze can be presumably
ascribed to the impact of use of public transportation on mobility habits
of people.

Tables 3 and 4 show the cross-probability of the occurrence of a
given number of evaporative cycles against the length of the trip before
the parking event. In both provinces about 50% of the parking events
correspond to one evaporative cycle, but the large majority of these
events is preceded by a trip length well below the 33 km conditioning
drive prescribed by the type-approval test procedure. Longer parking
duration that involves more evaporative cycles has less probability to
occur, and approximately 1.5% of parking events last more than 6 days.

3.3. Experimental tests on evaporative emissions

The typical purging strategy of passenger cars available on the
European market has been investigated at the Vehicle Emission LAbora-
tory (VELA) of the Joint Research Centre of the European Commission in
Ispra (Italy) with the experimental campaign described in Martini et al.
(2012a), involving 5 different vehicles equipped with Port Fuel Injection
(PFI) gasoline engines, Table 5. Here only a summary of the results is
presented, focusing on the influence of the driving distance and purging
strategy on the cumulative purging volume and therefore on the carbon
canister loading after driving.

Vehicles 1 and 2 were popular Euro 4 small passenger cars, with 1.3
and 1.2 | engine respectively, whereas vehicle 3 was a medium class
Euro 4 passenger car equipped with a 1.8 | engine. Vehicle 5 was a
small Euro 5 passenger car, with a downsized 0.9 | engine, whereas
vehicle 4 was a large Sport Utility Vehicle (SUV) manufactured in the
USA and imported in Europe. It is important to notice that the evapora-
tive control system of vehicle 4 is designed to comply with the US
legislation.

The vehicles 1, 2, 3 and 4 were tested for evaporative emissions
and the second-by-second purging flow rate was recorded both over
the pre-conditioning and conditioning drive cycles prescribed by the
relevant legislative test procedure (European Parliament, 1998)
(see Section 2.1). Instead vehicle 5 was tested only for exhaust
emissions and therefore the purging flow rate was recorded over the
NEDC and over the new worldwide harmonised test cycle for light
duty vehicles (WLTC, draft version).

The results are given in Fig. 5, where the instantaneous purging flow
rate and cumulative purging volume over the pre-conditioning and
conditioning driving cycles are shown. It appears that the purging
strategy of typical European passenger cars can vary significantly from
model to model. In general, as expected, the purging flow rates recorded
over the urban part of the cycle are significantly lower compared to
those measured over the extra-urban part. However, in some cases,

Table 2
Summary of the results of the analysis of the parking events versus the evaporative cycles.

Table 3
Cross-probability [%] of the occurrence of the 12-hour evaporative cycles (horizontal) vs.
trip length of the previous trip [km] (vertical) for the Modena database.

12 hevap.cycles 1 2 3 4 5 6-30 Y|

Trip [km)]

0-1 9.685 7.095 1614 0542 0211 0354 19.500
1-2 7.088 4887 0968 0280 0.116 0.151 13.488
2-3 4908 3472 0634 0204 0083 0.112 9413
3-4 3.739 2703 0495 0.144 0.053 0.085 7219
4-5 2971 2235 0393 0.117 0.050 0.065 5.830
5-6 2.595 1.887 0356 0.093 0.039 0.062 5.032
6-7 2.166 1.501 0271 0078 0.029 0.044 4.088
7-8 1.770 1.288 0236 0.068 0.029 0.040 3430
8-9 1.533 1.076  0.189 0.059 0.020 0.028 2905
9-10 1.276 1.000 0.171 0051 0.018 0.032 2.548
10-12 2236 1.653 0310 0.104 0.038 0.040 4381
12-14 1.938 1423 0256 0079 0.031 0.043 3.769
14-16 1.494 1172 0210 0.061 0.025 0.036 2999
16-18 1.185 0907 0.167 0.058 0.016 0.030 2363
18-20 0917 0741 0.118 0.036 0.016 0.024 1.853
20-30 2723 2212 0391 0114 0048 0.072 5.560
30-785 2442 2330 0497 0.161 0.073 0.119 5.622
3 — 50.665 37.579 7276 2249 0894 1337 100.000

the flow rates over the urban part are unacceptably too low (e.g. vehicle
3 and to a lesser extent vehicle 2). Obviously, although the legislative
evaporative emission standard is met, the different purging strategy
may lead to different level of canister loading in real-world driving
conditions, resulting, in some cases, in uncontrolled evaporative emis-
sions especially when the vehicle is driven in urban areas.

Vehicle 4 (a large SUV for the US market and whose evaporative
emission control system is designed to comply with the US legislation)
has instead the highest purging flow rate and this seems to be less
dependent on the cycle phase and on the driving speed. If it is true
that this can be partially attributed to the large displacement of the
engine (i.e. higher purging flow rate), it is also true that the US legisla-
tive requirements force the adoption of a more aggressive purging
strategy when compared to the EU procedure. The 48-hour diurnal
test required by the US legislation has been designed with the main
objective of covering the urban critical conditions mentioned above.
The driving time/distance available for canister purging after the
canister loading to the breakthrough condition is in fact much shorter
than the total conditioning drive prescribed by the European test
procedure, resulting in a more aggressive purging strategy with
approximately 200 1 of volume flow air just after the UDC cycle (well
above the other vehicles).

3.4. COPERT set-up for the evaporative emission simulation

The COPERT software (Emisia, 2013) was used to estimate the total
evaporative emissions from passenger cars based on the driving/
parking patterns derived from the activity data described above. The
evaporative emission model implemented in COPERT is described in

Analysed Total parking events Parking events > 12 h

Vehicles [-10°] [-10°] — (% of the total)
Province of Modena 16,223 2.642 0.252 — (9.55%)
Province of Firenze 12,422 1.870 0.193 — (10.26%)

Average occurrence of evaporative cycles per vehicle in the month

12 h evap. cycles 1 2 3 4 5
Database
Province of Modena 7.89 5.85 1.13 035 0.14

Province of Firenze 11.27

10.15 5.46 0.88 0.70

6 7 8 9 10 11-31
0.08 0.05 0.03 0.01 0.01 0.03
0.30 022 0.10 0.10 0.05 0.24
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Table 4
Cross-probability [%] of the occurrence of the 12 -hour evaporative cycles (horizontal) vs.
trip length of the previous trip [km] (vertical) for the Firenze database.

12 hevap.cycles 1 2 3 4 5 6-31 Y|

Trip [km]

0-1 8,571 7326 1811 0.627 0290 0486 19.111
1-2 6.726 5073 1.028 0318 0.131 0.204 13.479
2-3 4955 3.736 0.785 0240 0.116 0.141 9.972
3-4 3.768 2966 0570 0.180 0.075 0.111 7.670
4-5 2939 2258 0429 0.137 0.056 0.088 5.907
5-6 2404 2014 0334 0119 0046 0.069 4.986
6-7 2.052 1.629 0305 0.110 0.039 0.061 4.196
7-8 1.757 1.377 0297 0096 0.039 0.061 3.627
8-9 1.515 1195 0224 0081 0.029 0.043 3.087
9-10 1.244 1.038 0.203 0.058 0.027 0.028 2597
10-12 2.124 1.706 0305 0.107 0.042 0.058 4341
12-14 1.655 1.306 0.227 0.090 0.041 0.050 3.369
14-16 1.248 1.014 0205 0066 0026 0.043 2.602
16-18 0.978 0.821 0.153 0.055 0.020 0.029 2.056
18-20 0.733 0595 0.104 0.039 0.010 0.031 1.512
20-30 2225 1.815 0357 0.132 0.051 0.084 4.663
30-805 3.057 2685 0608 0211 0.090 0.175 6.826
3 - 47951 38553 7944 2666 1.128 1.758 100.000

Mellios et al. (2009) and it is based on experimental tests, partially
presented in Section 3.3. The model requires as input:

* Carbon canister size. Different sizes were assumed, in order to repre-
sent small, medium and large size passenger cars. The values were
set to 0.8 | for the small size vehicles, 1 for the medium size vehicles
and 1.5 1 for the large size vehicles.

* Fleet composition. The fleet composition for Italy was based on the

data available from TREMOVE, an impact assessment model widely

used in Europe to simulate the effects of different transport policy
options on emissions and costs (University of Thessaloniki, 2008). It
includes data on the circulating fleet in the EU28 countries plus

Norway, Switzerland and Turkey. According to these data, the Italian

fleet of LDVs amounts to approximately 37.9 million vehicles in

2011, with approximately 4.4 million vehicles classified as pre-Euro,

2.8 million vehicles classified as Euro 1, 6.7 million vehicles as Euro

2, 7.5 million vehicles as Euro 3, 10.8 million vehicles as Euro 4 and

5.7 million vehicles as Euro 5. Summing up the number of vehicles

marketed after the introduction of the current legislation for evapora-

tive emissions (i.e. Euro 3), it can be estimated that approximately

24.0 million passenger cars in Italy (corresponding to 63.3% of the

fleet) are equipped with an evaporative emission control system.

Therefore we have restricted our evaporative emission simulations

to this fleet share, which is associated to approximately 74.6% of the

total 2011 mileage of the Italian fleet.

Parking and trip distribution. The distributions of the parking events

in the evaporative cycles from the activity data analysis provided in

Tables 3 and 4 have been used as input for the calculations. The evap-

orative cycles as defined in section 3.2 (i.e. month of May) have been

assumed for all the year. This constitutes a limitation of the current
analysis; however, being the evaporative emission model mainly
influenced by the maximum and minimum temperature in the day
rather than by the diurnal time window (as discussed below), the de-
viation introduced on the total evaporative emission results can be

Table 5
Vehicles tested for evaporative emissions.
Vehicle1  Vehicle2 Vehicle3  Vehicle4 Vehicle 5

Emission level Euro 4 Euro 4 Euro 4 Euro 4 Euro 5
Engine Gasoline  Gasoline  Gasoline  Gasoline  Gasoline
Displacement [cm®] 1360 1197 1794 6063 875
Max. power [kW] 55 47 88 313 62.5
Injection system PFI PFI PFI PFI PFI

considered negligible. We would like to add a further clarification
here, in order to improve the interpretation of the results given
below. In order to better estimate the canister saturation status at
the beginning of a parking event, the distance driven prior to each
parking is considered. A trip distribution is introduced in the model
and a purge volume per trip is calculated.
Purge rate. Two purge rates are used to calculate the purge volume:
9.66 1/km for small size cars and 16.68 I/km for medium and large
size cars. These values are assumed constant in time, even though
the experiments show that they depend on the purging strategy
of the vehicle. Fig. 5 shows a lower purging rate at lower speed
(i.e. UDC phase of the cycle) to increase then to higher values
at high speed (i.e. EUDC phase of the cycle). Assuming a constant
value overestimates the purging rate at a lower speed whilst underes-
timates it at a higher speed, leading to conservative evaluations. The
GWC of the carbon canister (i.e. amount of VOCs which the canister
is able to trap) is then calculated for each trip prior to a parking event.
Fuel permeation rate and effect of the ethanol. Based on data
provided by the European association of plastic tank manufacturers
(Association of plastic tank manufacturers, 2013), the permeation
emissions rate of the fuel tank was set to 0.9 g/day for the fluorinated
mono-layer tank (mounted on 35% of the vehicles) and to 0.5 g/day
for the multi-layer tanks (mounted on 65% the vehicles). These values
are derived from the base rates of 0.6 and 0.2 g/day increased
by 0.3 g/day to account for the effects of ethanol (Section 2.2). No
further effects (e.g. fuel vapour increase and commingling effects)
are considered.

Durability. In order to estimate the deterioration of the canister per-

formance with ageing, data derived from an in-use compliance testing

programme, carried out by the Swedish Transport Administration

(Johansson and Schmidt, 2009a), were used. This study suggested

that deterioration of efficiency of the activated carbon can be mainly

ascribed to the presence of ethanol in the gasoline, very popular in

Sweden. In this analysis the efficiency of the activated carbon is set

to decrease by 1% every 8000 km for small cars (i.e. approximately

20% drop over the lifetime) and by 1% every 32,000 km for medium

and large cars (i.e. approximately 5% drop over vehicle lifetime).

However in other countries, where ethanol is not so widely used,

the deterioration rates may be lower.

* Ambient temperature. The averaged ambient temperatures per
month as reported in Table 6 have been considered for the simula-
tions in the provinces of Modena and Firenze respectively. The
model only considers minimum and maximum temperatures.

4. Results of the evaporative emission simulations

The COPERT model results for real-world total evaporative
emissions have been compared to the type-approval limit of 2 g/test.
Figs. 6 and 7 show the total evaporative emissions defined as the sum
of the following contributions:

* hot soak emissions, assumed equal to 0.1 g/test;

« fuel permeation emissions, assumed as weighted average between
mono and multi-layer tanks, plus the effect of the ethanol (as described
in Section 3.4).

» breathing emissions, as variable contribution from the vapours
generated in the fuel tank, depending on the parking duration and
trip length before the parking.

The results are given for the small (a), medium (b) and large (c) size
vehicle over different trip lengths before a parking of one evaporative
cycle for the province of Modena and Firenze (left scale). The bars report
the absolute values (i.e. not cumulative quantities) and refer to a single
vehicle. The bolded dashed line indicates the 2 g threshold set by legis-
lation, and the values are given per each month of the year in grey scale.

In general it can be noticed that the emissions depend on the vehicle
size; the larger the vehicle the lower the emissions. Of course they also
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Fig. 5. Instantaneous purging flow rate [I/min] and cumulative purging volume [1] over the preconditioning (i.e. NEDC + EUDC, left picture) and conditioning (i.e. NEDC + UDC, right
picture) drive cycles for the tested vehicles reported in Table 5 (from vehicle 1 to vehicle 5, from top to bottom). Black curves refer to left scale, grey curve refers to right scale. Legend

at the top of the figure.
Table 6
Maximum and minimum temperatures [°C] for the province of Modena and Firenze.
[°C] Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
Modena Min. —-15 0.8 39 7.6 11.8 15.6 18.2 179 14.8 10.1 43 —03
Max. 4.8 82 134 17.8 22.7 26.8 29.9 29.2 253 189 111 59
Firenze Min. 0.6 2.8 39 6.7 10.6 139 15.6 156 139 8.9 5.6 1.7
Max. 89 10.6 139 17.8 22.8 26.7 30.0 30.0 25.6 20.0 13.9 10.0
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Fig. 6. Total evaporative emission distribution for the small (a), medium (b) and large size (c) over different trip lengths before a parking of one evaporative cycle (left scale). The bars
report the absolute values, not cumulative quantities. PD of the parking events (right scale). Province of Modena.

depend on the ambient temperature: the warmer the temperature, the
higher the emissions. Note that in Modena the highest total evaporative
emissions are estimated to occur in July, whilst in August for Florence,
due to the difference in ambient temperature (see Table 6).
Considering the length of the trip, the results show that trips below
10 km for the small size, 4 km for the medium size and 2 km for the large
size vehicle result in evaporative emissions above the threshold limit
from June to August for a parking corresponding to one evaporative
cycle, whilst considering longer trip lengths (>30 km, >10 km and
>6 km respectively for the small, medium and large size vehicle), the
evaporative emissions are lower than the legislative limit, regardless
the month considered. This implies that the purging strategy, which
depends very much on the length of the trip, plays a major role in deter-
mining total evaporative emissions especially during the warmer
months. The PD of the parking events versus the trip length is reported
on the right scale of these figures (i.e. first column of Tables 3 and 4). We
observe that parking events after short trips have higher probability to
occur in the databases and, summing up this cross-probability, we
derive approximately 95% of the events are below 30 km, 70% below
10 km and 55% below 6 km, and only 2.5% of the parking events are
associated to a trip length longer than 33 km conditioning drive.
Considering the composition and the different market segments of
the Italian circulating fleet (referred to the year 2011 (De Gennaro

et al, 2013a), according to the market segmentation provided in
(European Commission, 1999)), we derive that approximately 37.6%
of the fleet is made by small size vehicles (i.e. market segments A
and B), 29.1% by medium size vehicles (i.e. market segments C and D),
and only 4.9% of the fleet by large size vehicles (i.e. segments E, F, M
and ]). Therefore combining these shares with the cumulative trip
share mentioned above (i.e. 95%, 70% and 55%), we derive that more
than 80% parking events of the vehicles which belong to these market
segments potentially lead to an exceedance of the evaporative emission
limit in warm climate conditions up to a factor 4 (see small vehicle
Figs. 6(a) and 7(a)).

Figs. 8 and 9 provide the total evaporative emissions for the small
(a), medium (b) and large (c) size vehicle over different numbers of
evaporative cycles for the province of Modena and Firenze (left scale),
referring to an associated trip with a length between 7 and 8 km
(average trips length, as derived from the activity data analysis,
Section 3.1). The higher the number of evaporative cycles (i.e. the longer
the parking duration), the higher the emissions. In this case the
emissions set well above the threshold (bolded dashed line) from two
evaporative cycles on, showing that, in general, the current evaporative
emission control system could not be able to cope with parking period
longer than one evaporative cycle. The evaporative emissions exceed
the legislative limit for almost all the year, if the vehicle is parked for
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Fig. 7. Total evaporative emission distribution for the small (a), medium (b) and large size (c) over different trip lengths before a parking of one evaporative cycle (left scale). The bars
report the absolute values, not cumulative quantities. PD of the parking events (right scale). Province of Firenze.

more than 4 evaporative cycles (i.e. see the fourth bar in Figs. 8 and 9).
The larger the vehicles, the higher the evaporative emissions on long
parking events (6-31 days), being the fuel tank bigger. The PD of the
parking events is also reported (right scale, eighth row of Tables 3 and
4). Also in this case approximately half of the parking events last more
than one evaporative cycle, being not represented by the evaporative
emission regulation procedure. The results depicted in these figures
also support the argument that, in spite of the fact that the evaporative
emissions analysis is carried out only for 10% of the parking events
(being the 90% marked as “0-cycle”, as per Section 3.2), the weight
on total evaporative emissions of this minority of events is non-
negligible. In fact, even though the probability of very long events
(i.e. from 6 evaporative cycle on) to occur is very low (i.e. below
one event per vehicle, see Table 2), they are responsible of emissions
two orders of magnitude higher that the legislation limit.

Fig. 10 shows the monthly averaged values of total evaporative
emissions in grams per day, against the month and the vehicle size.
These values refer to the fleet composition as reported in Section 3.4.
The results show that the emissions per day are higher than the thresh-
old (bolded dashed line) from June to September, regardless the vehicle
size. Higher emissions are found for the small vehicle and in May
emissions above the limit might occur for the small and medium-sized

vehicles only. This is due to the ambient temperature, as given in
Table 6, calling for a revision of the current evaporative emission
regulation, either only during the summer months or along all the year.

Table 7 reports the results for the yearly averaged total evaporative
emissions for the province of Modena and Firenze, depending on the
vehicle size. In both provinces the averaged emissions for the small
and medium vehicle are higher than the 2 g threshold, whilst they are
below the threshold for the large vehicle. Of course total evaporative
emissions can be lowered by re-designing the evaporative emission
control systems, e.g. increasing the carbon canister volume or purging
rate, or by optimising the purging strategy, as it already happens for
the vehicles complying with the more restrictive US legislation (see
Section 2.1). Therefore similar measures are likely to be taken into ac-
count also in Europe in case of a revision of the current evaporative
type approval legislation. However the re-engineering aspects of the
evaporative emission control systems to be applied are out of the
scope of this paper.

5. Conclusions

The effectiveness of the European relevant legislation for evapora-
tive emission control has been evaluated against real-world mobility
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data of two Italian provinces from activity databases by means of the
emission simulation software COPERT. The objective of this analysis
was to address to what extent the legislative type-approval test
procedure covers the real-world driving/parking conditions.

The driving patterns used were collected on conventional fuel vehi-
cles with GPS systems in two Italian provinces (i.e. Modena and Firenze)
over a period of one month, accounting for approximately 28,000 vehi-
cles and 36 million kilometres. These data were processed in order to
derive the relation between the trip length and the parking duration
as well as the rate of occurrence of parking events covering multiple
evaporative cycles (i.e. 12-hour diurnal time windows considered
relevant to the evaporative emissions).

These results were used as input for the a model, to calculate the
evaporative emissions depending on real-world trip length and parking
duration (i.e. carbon canister loading level), vehicle size and ambient
temperature conditions. The mobility results show that the 33 km
conditioning drive from the type-approval test procedure is representa-
tive of only 2.5% of real-world trips, and that the typical urban trip
length sets well below it, often resulting in evaporative emissions
above the type-approval limit of 2 g/test.

This is more prominent for small size vehicles (equipped with a
smaller carbon canister than larger vehicles) and during the summer
months. In particular considering one evaporative cycle, the results
show that trips below 10 km for the small size, 4 km for the medium
size and 2 km for the large size vehicle result in evaporative emissions

above the threshold limit from June to August, and that more than
80% of the considered parking events potentially exceed the limit in
warm climate conditions up to a factor 4. In addition, by considering
the average trip length in urban driving, the emission limit is exceeded
all over the year if the vehicle is parked for more than 4 days, potentially
increasing, in the worst case, to a value of two orders of magnitude
larger than the limit.

These results suggest that the current type-approval test procedure
for evaporative emissions does not effectively cover real-world driving
and parking conditions. In the long term, a worldwide harmonised
test procedure for evaporative emissions is foreseen and it should be de-
veloped within UN-ECE GRPE (Working Party on Pollution and Energy),
working group for WLTP (Worldwide Harmonised Test Procedure for
Light Duty Vehicles). However, a revision of the European procedure
is considered necessary also in the short term, since the actual passen-
ger car will be on the roads for many years and a future worldwide
harmonised procedure will result in significant benefits only after
some years from its introduction, depending on the car fleet renewal
rate.

Future developments will be targeted to extend this work to differ-
ent European geographical areas and periods of the year, better address-
ing the seasonal variation of the evaporative emissions, their geo-
referenced distribution over the territory, to suggest the most effective
measures to be considered for their control and reduction in real-
world conditions.
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Table 7
Yearly average total evaporative emissions in grams per day for the province of Modena
and Firenze.

Vehicle size Modena province Firenze province

Small 2.799 3.145

Medium 2.256 2.547

Large 1.650 1.878
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