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Abstract. Query answering on a wide and heterogeneous environment
such as the Web can return a large number of results that can be hardly
manageable by users/agents. The adoption of grouping criteria of the re-
sults could be of great help. Up to date, most of the proposed methods for
aggregating results on the (Semantic) Web are mainly grounded on syn-
tactic approaches. However, they could not be of significant help, when
the values instantiating a grouping criterion are all equal (thus creating
a unique group) or are almost all different (thus creating one group for
each answer). We propose a novel approach that is able to overcome such
drawbacks: given a query in the form of a conjunctive query, grouping
is grounded on the exploitation of the semantics of background ontolo-
gies during the aggregation of query results. Specifically, we propose a
solution where answers are deductively grouped taking into account the
subsumption hierarchy of the underlying knowledge base. As such, the
results can be showed and navigated similarly to a faceted search. An
experimental evaluation of the proposed method is also reported.

1 Introduction

The users of the (Semantic) Web often perform interactive, and exploratory data
retrieval, where queries often result in an overwhelming number of the returned
answers. However typically, only a small part of the result set is relevant to the
user thus making necessary the analysis of the retrieved results to identify those
relevant ones. This phenomenon, known as information overload, constitutes a
ceaseless challenge for researchers. It may occur in situations when the user, at
the beginning of a search, submits a broad query to avoid exclusion of possibly
interesting results, only further possibly reformulating it into a more precise
narrower query. It is also inherent to the task of browsing through a collection of
resources instead of searching among them. Manually separating the interesting
items from the uninteresting ones is a tedious and time consuming job. For this
reason, various services have been set up to manage the information overload.
They may be categorized as variations of two complementary approaches: (a)
predefined category structures; (b) fully automatic search engines.

Predefined category structures are maintained by humans, who organize re-
sources into a hierarchy, grouping appropriate ones together under a meaningful



category description. This is meant to support user browsing activity. The main
drawback of such an approach is that the categories are frequently obsolete, since
they are not updated so quickly as new documents and new topics appear. In
turn, the mechanisms used by automatic search engines, enable them to stay
relatively up-to-date, what makes the search engines the premier choice for most
Web users. However, when the number of the results is huge, even despite their
ranked order, manually investigating them is a big effort without any additional
navigation tools. In order to facilitate browsing and managing results of a Web
search/query, methods for grouping answers on the ground of user defined cri-
teria would be exploited.

In this paper, we propose to marry the benefits of two complementary ap-
proaches for handling information overload by offering a method that, given a
query in the form of a conjunctive query [1–5], produces a dynamic categorization
over ranked query results. The key feature of the method is in the exploitation
of the semantics of knowledge bases of reference (in the form of ontologies) for
grouping results with respect to a user defined criterion. Specifically, given a
certain grouping criterion, expressed as a (complex) concept from a knowledge
base of reference, results are grouped in agreement with (part of) the subsump-
tion hierarchy deductively obtained by considering the specified concept and the
given ontology.

Currently, besides of the usual syntactic based approach (grounded on the use
of keywords) adopted by the main Web search engines such as Google or Yahoo,
the other approaches that are generally exploited for grouping structured query
answers are based on the semantics drawn from SQL, the standard language for
querying relational databases. An example is given by the implementation of
the aggregation operators (COUNT, MIN, MAX, AVG, SUM, GROUP BY) for
SPARQL in Virtuoso3. However, besides of the fact that these implementations
are not part of the SPARQL standard, these latter approaches (differently from
the method that we propose) do not assume to perform any reasoning involving
background knowledge during the query results aggregation, and as such they
are purely syntactic as well. The same happens for grouping/aggregating fea-
tures that are to be included in the ongoing SPARQL 2 standard.

The main contributions of the paper are summarized as follows: (a) we intro-
duce a novel way for grouping query answers (semantic grouping) where group-
ing is done on the ground of a knowledge base of reference; (b) we propose a
technique for aggregating query results consisting on a dynamic generation of a
navigable hierarchy on top of the retrieved results and that is based on their se-
mantics. Such a hierarchy constitutes a multi-valued classification of the results
that may be seen as a novel approach for generating a dynamic faceted classifica-
tion over retrieved results, enabling further faceted search/browsing over them;
(c) we present the experimental results of the application of our proposed method
to ontologies expressed in Web Ontology Language (OWL)4, whose semantics is
based on description logic (DL) [6].

3 http://virtuoso.openlinksw.com/
4 http://www.w3.org/TR/owl-features/



The rest of the paper is organized as follows. In Sect. 2 a motivating example
for our work is presented. In Sect. 3 we introduce the basics of the knowledge
representation formalism of choice: description logics and the notion of con-
junctive queries over DL knowledge bases. In Sect. 4 we present our proposed
approach. Sect. 5 reports on the experimental evaluation of our method while
Sect. 6 discusses the work related to ours. In Sect. 7, conclusions are drawn.

2 Motivating example

Let us discuss the need for and advantage of semantic query answer aggregation
on the ground of a motivating example.

Example 1 (Motivating scenario). Maria and Sebastian are searching for a week-
end break offer. In order to get faster insight to the retrieved results they would
like to have the answers grouped by a destination criterion. After getting first
insight to the results, they perform further exploration, and hence they submit
another query, most specific one, asking for destinations located in mountains,
and for budget accommodations offered in these destinations with a request to
group results w.r.t. destinations, and additionally w.r.t. accommodations offered.

Let us suppose that the Web service mentioned in the example exploits a SPARQL
endpoint that retrieves the results from Semantic Web datasets. Furthermore the
Web service uses an ontology as background knowledge on the given domain (an
instance is presented in Example 3). In the following, instances of SPARQL
queries for the needs illustrated in Example 1 are showed.

Example 2 (Example queries in SPARQL syntax).
Q1 group by = SELECT ?x ?y WHERE { ?x rdf:type :WeekendBreakOffer .

?x :hasDestination ?y } GROUP BY ?y

Q2 group by = SELECT ?x ?y ?z WHERE { ?x rdf:type :WeekendBreakOffer.

?x :hasDestination ?y . ?y :locatedIn ?v . ?v rdf:type :Mountains .

?x :hasAccomodation ?z . ?z rdf:type :BudgetAccomodation } GROUP BY ?y ?z

Let us assume an application of the classical semantics of the GROUP BY clause
known from SQL in the evaluation of the query Q1. Let us assume further that
instances that bind to variable y are town names. In such a case, the results will
be partitioned so that one row for each town name is created. Considering that
there may be possibly many towns satisfying the query conditions, there will be
also too many groups to provide significant added value.

Note also that classical semantics of GROUP BY clause, which is to parti-
tion the results by identical values, disregards the presence of any background
knowledge, even if there is available some. Consider for example that the towns
are annotated by terms from the ontology such as City, EuropeanDestination,
ItalianDestination, PolishDestination. Considering such annotations as a grouping
condition, it would be possible to aggregate the results into a smaller number of
’semantic’ groups. The classical semantics of GROUP BY disregards also semantic



relationships between groups like subclass-superclass relation ( e.g. ItalianDes-
tination, and EuropeanDestination). Exploiting the background ontology would
enable making such relations explicit.

Another problem with the syntactic approach may happen when all the re-
sults in the grouping condition, e.g. all destinations in our case, refer to the same
town. This gives as grouping result a unique row which synthesizes all instances,
thus giving almost null information.

Summarizing, a merely syntactic approach, as the one used by the GROUP BY

clause in the database context, could not be of great help when several destina-
tions are found, or when the results refer to the same destination. To manage
situations like these, a semantic group by could be adopted, namely a method
that is able to group query results on the ground of a knowledge base of reference.

3 Preliminaries

3.1 Representation and Inference

Description logics (DLs) [6] are a family of knowledge representation languages
(endowed with a model-theoretic semantics and reasoning services) that have
been adopted as theoretical foundation for OWL language [7]. Basic elements
in DLs are: atomic concepts (denoted by A) and atomic roles (denoted by R,
S). Complex descriptions (denoted by C and D) are inductively built by using
concept and role constructors.

Semantics is defined by interpretations I=(∆I , ·I), where non-empty set ∆I

is the domain of the interpretation and ·I is an interpretation function which
assigns to every atomic concept A a set AI ⊆ ∆I , and to every atomic role R
a binary relation RI ⊆ ∆I × ∆I . The interpretation function is extended to
complex concept descriptions by the inductive definition as presented in Tab. 1.
A DL knowledge base, KB, is formally defined as: KB = (T ,A) where T is called

Table 1: Syntax and semantics of example DL constructors.
Constructor Syntax Semantics

Universal concept > ∆I

Bottom concept ⊥ ∅
Negation of arbitrary concepts (¬C) ∆I\CI

Intersection (C uD) CI ∩DI

Union (C tD) CI ∪DI

Value restriction (∀R.C) {a ∈ ∆I |∀b.(a, b) ∈ RI → b ∈ CI}
Full existential quantification (∃R.C) {a ∈ ∆I |∃b.(a, b) ∈ RI ∧ b ∈ CI}

a TBox and it contains axioms defining concepts, and A is called an ABox and it
contains assertions about individuals such as C(a) (that means that the invidual
a is an instance of the concept C) and R(a, b) (that means that a is R-related
to b).

As regards the inference services, we recall the definition of instance-checking



and subsumption that are further used in the paper. Instance-checking amounts
to determine whether an individual, say a, belongs to a concept extension, i.e.
whether C(a) holds for a certain concept C. As regards subsumption, given two
concept descriptions C and D in a TBox T , C subsumes D (denoted by D v C)
if and only if, for every interpretation I of T it holds that DI ⊆ CI . C equivalent
to D (denoted by C ≡ D) amounts to C v D and D v C.

3.2 Conjunctive Queries

Queries admitted in this work are expressed in the form of conjunctive queries [1–
5]. Let NC , NR, NI be the sets of concept names, role names and individual
names respectively and let NV be a countably infinite set of variables disjoint
from NC , NR, and NI . Let by x and y denote the sets of distinguished and
nondistinguished variables, respectively where x,y ⊆ NV . A conjunctive query,
denoted with Q(x,y), is a finite conjunction of a non-empty set of atoms. An
atom is an expression of kind A(t1) (concept atom) or R(t1, t2) (role atom),
where A is a concept name, R is a role name, and t1 and t2 are individuals
from NI or variables from x or y. V ar(Q) (V ar(at)) denote the set of variables
occurring in the query Q (atom at).

An answer to a query Q(x,y) w.r.t. KB is an assignment θ of individuals to
distinguished variables such that KB |= ∃y : Q(xθ,y).

Example 3 (Conj. Query). Given the following knowledge base:
T = { City v Destination, EuropeanDestination v Destination, ItalianDestination v

EuropeanDestination, PolishDestination v EuropeanDestination,
Hotel v Accomodation, BudgetAccomodation v Accomodation, B&B v
BudgetAccomodation, Hostel v BudgetAccomodation, SkiingSite v Site,
SightSeeingSite v Site, > v ∀ hasSite.Site, > v ∀ hasDestination.Destination,
> v ∀ hasAccomodation.Accomodation}.

A = { locatedIn(ZAKOPANE, TATRA),hasSite(ZAKOPANE, SKI LIFTS NOSAL),
SkiingSite(SKI LIFTS NOSAL), locatedIn(CHOCHOLOW, TATRA),
hasSite(CHOCHOLOW, HIGHLANDERS WOODEN HOUSES),
SightSeeingSite(HIGHLANDERS WOODEN HOUSES), Mountains(TATRA),

WeekendBreakOffer(O1), hasAccomodation(O1,A1), B&B(A1),
hasDestination(O1, ZAKOPANE),PolishDestination(ZAKOPANE),
WeekendBreakOffer(O2),hasAccomodation(O2,A2),B&B(A2),
hasDestination(O2, CHOCHOLOW), PolishDestination(CHOCHOLOW),
WeekendBreakOffer(O3), hasDestination(O3, ROME), City(ROME),
WeekendBreakOffer(O4), hasDestination(O4, PISA), ItalianDestination(PISA)}.

we formalize conjunctive queries corresponding to the ones from Example 2 as:
Q1(x, y) = WeekendBreakOffer(x) ∧ hasDestination(x, y)

Q2(x, y, z) = WeekendBreakOffer(x)∧hasDestination(x, y)∧locatedIn(y, v)∧Mountains(v)∧
hasAccomodation(x, z) ∧ BudgetAccomodation(z)



4 Deductive Aggregation: Semantic Grouping

Let us consider the knowledge base and the example queries from Example 3.
Supposing the case in which many offers are available, the user would be inter-
ested in grouping the results with respect to the different destinations. However,
as already discussed in the previous section, a merely syntactic approach, as the
one used by the group by clause in the database context, could not be of great
help in cases in which several destinations are found or all results refer to the
same destination. In order to manage cases like this, a semantic group by could
be adopted, namely a method that is able to group query results on the ground
of a knowledge base of reference. Specifically, looking at the knowledge base in
the example above, results could be grouped on the ground of the pertaining
country of a destination (ItalianDestination, PolishDestination).

In this paper we present a method that is able to perform the semantic group
by on the ground of concepts that are more specific (in the knowledge base of
reference) with respect to the concept that is adopted by the user for grouping
the results. The method is presented in the following parts of this section.

4.1 Basics of the Semantic Aggregation

The general idea behind semantic group by is to categorize the results with
regard to concept hierarchies inferred for each variable appearing in a grouping
condition. Thus, in order to formalize our proposition of a semantic group by,
we introduce a special second order predicate categorize by as presented in the
following definition.

Definition 1 (categorize by). A conjunctive query with a semantic aggregate
subgoal is of the form

categorize by([X1, X2, ..., Xm]) : Q(x,y)

where [X1, X2, ..., Xm] is a grouping list of variables appearing in x.

In Example 4 we present the conjunctive queries with the categorize by clause
for the scenario discussed throughout this paper.

Example 4 (Example queries with the categorize by clause).

Q1 categorize by(x, y) = categorize by(y) : WeekendBreakOffer(x)∧hasDestination(x, y)

Q2 categorize by(x, y, z) = categorize by(y, z) : WeekendBreakOffer(x)∧hasDestination(x, y)
∧locatedIn(y, v)∧Mountains(v)∧hasAccomodation(y, z)∧BudgetAccomodation(z)

Further, we formally define the notion of semantic category.

Definition 2 (Semantic category). Given is query

Q = categorize by([X1, X2, ..., Xm]) : Q(x,y)

A semantic category is a tuple of concepts 〈C1, C2, . . . , Cm〉, where each Ci cor-
responds to Xi in the grouping variables list of Q.



Semantic categories form a partially ordered multi-valued classification H in-
duced by a subsumption relation between concepts appearing in the same place
in tuples. Then, the operational semantics for categorize by clause is to first cre-
ate H, a partially ordered set of semantic categories, based on inferred semantic
types of grouping variables, and then to partition the input relation to groups
with equal values for the same semantic categories.

4.2 Inferring the Type of the Variables

Let vi be a query variable used in the grouping clause of a query. For each such
variable a concept is derived. Firstly, the explicit typing represented by those
concepts explicitly mentioned in the query atoms C(vi) is considered. Addition-
ally, the implicit types inferred by the role atoms R(vi, ·) or R(·, vi), respectively
the domain and range of role R are added. Now, let Bi := {Ci1, . . . , Cini

} be the
set of concepts describing individuals the variable vi can be bound to according
to the query atoms. The final concept determined for each query variable is:

Ci :=
l

Ci
p∈B

Cip

A concept corresponding to each query variable included in the CATEGORIZE

BY clause is derived. Then it is classified in the subsumption hierarchy of the
concepts in the knowledge base. A sub-hierarchy of concepts rooted at these
concepts will be used in the next step, which determines the final multivalued
classification of semantic categories used for grouping the query answers.

Example 5 (Determining the type of variable). Consider queryQ2 categorize by(x, y, z)
from Example 4, and variable z appearing in the grouping variables list. Then
the concept inferred for the variable z is:

Cz := Accomodation u BudgetAccomodation

4.3 Constructing a Tree of Semantic Categories

The primary motivation for this work is to enable better results exploration
for the user by reducing information overload by means of presenting him/her
the groupings of the results. From this perspective we are rather interested in
some compromise between generating a complete multivalued classification of
semantic categories versus meeting the demands of real time computation of the
results, and improving the user experience, not overloading him/her with too
many groupings (the initial problem). In particular we propose to concentrate
on subtrees of concepts, generated for each grouping variable, and on a tree
product as a mean to obtain a tree-shaped classification of semantic categories.
In general, however, one may adopt different solutions, what is also discussed in
this section.



Concept Hierarchy for a Single Variable A basic approach for generating
a sub-hierarchy of concepts to be rooted at the concept Ci, corresponding to a
grouping variable vi, is to reproduce a part of a classified subsumption hierarchy
produced by a DL reasoner.

In some cases, however, this may not be enough to obtain meaningful hierar-
chy of groups. Consider for example the situation, where the concept Ci is a leaf
in the classified subsumption hierarchy, e.g. PolishDestination in the knowledge
base from Example 3. Another case where this basic approach would not be of
help is when all the retrieved results for variable vi, e.g. all destinations from the
discussed example, fall under the same type, e.g. again PolishDestination. This
would happen in case of query Q2 categorize by(x, y, z) from Example 4.

In such cases more advanced approach could be adopted, that is based on
an iterative application of a concept refinement operator, for example adapted
from such concept specialization operators like the ones proposed in [8–10]
to the case of purely deductive approach. The application of the refinement
operator would introduce further, unnamed, complex concepts into the sub-
hierarchy rooted at Ci. For example, the concept PolishDestination could be
then specialized into the concepts: PolishDestination u ∃hasSite.SkiingSite and
PolishDestination u ∃hasSite.SightSeeingSite to differentiate two Polish destina-
tions present in the example knowledge base, ZAKOPANE, and CHOCHOLOW,
based on the sites they offer.

Multiple Variables: Tree Product Let us define the subtrees trees by the
quadruple (N,E, r, `), where N is the set of nodes, E is the set of edges between
nodes (na, nb), r ∈ N stands for the root node and ` is the labeling function
assigning each node with the corresponding concept.

Now, let us consider the case of two variables, say vi and vj in the CATEGORIZE
BY clause and their related subtrees, Ti = (Ni, Ei, ri, `i) and Tj = (Nj , Ej , rj , `j),
in the subsumption hierarchy. Multiple variables will be processed by iterating
the binary product operation presented in the following. A formal sketch of the
algorithm is shown in Figure 1. The product Ti × Tj := (Nij , Eij , rij , `ij) of the
two subtrees is computed recursively. The root of the product tree is made up
by the node rij = 〈ri, rj〉 ∈ Nij labeled with `ij(rij) = 〈`(ri), `(rj)〉. For each
couple of children nodes ci of ri and cj of rj , a new child r′ = 〈ci, cj〉 of rij is
obtained. Hence r′ is the root of the subtree that constitutes the product T ′ of
the subtrees T ′i and T ′j , rooted respectively, at ci and ci. The product subtree T ′

is finally connected to the product tree under construction Tij .
An important feature of the product is that its complexity is polynomial

(note that if the trees are represented with matrices then the proposed product
corresponds to a matrix product).

Figure 2 illustrates the general idea of generation of the tree product, and
Figure 3 illustrates the tree product by means of an example following our mo-
tivating scenario.

Alternative Tree Products In some cases the lever-wise computation of prod-
uct trees would yield poorly structured trees, when one of them is rooted with



×(Ti, Tj) : (Nij , Eij , rij , `ij)
begin
Eij ← ∅
rij ← 〈ri, rj〉
Nij ← {rij}
`ij(rij)← 〈`(ri), `(rj)〉
for each (ci, cj) where (ri, ci) ∈ Ei and (rj , cj) ∈ Ej do

T ′
i ← subtree(Ti, ci)

T ′
j ← subtree(Tj , cj)

(N ′, E′, r′, `′)← ×(T ′
i , T

′
j)

Nij ← Nij ∪N ′

for each node ∈ N ′ do
`(node)← `′(node)

Eij ← Eij ∪ E′ ∪ {〈rij , r′〉}
return (Nij , Eij , rij , `ij)
end

Fig. 1: Tree product operator.

a primitive concept, for example. In such cases it may be advisable to use al-
ternative definition of the tree product operator (derived from graph product
operators), which is able to retain all of the structural information contained in
the subsumption hierarchies.

Definition 3 (alternative tree products). Given two trees T1 = (V1, E1, r1, `1)
and T2 = (V2, E2, r2, `2), their product, denoted T1×T2, is a tree Tp = (Vp, Ep, rp, `p)
defined as follows:

– the vertex set is a subset of the Cartesian product Vp ⊆ V1 × V2;
– rp = (r1, r2) ∈ Vp;
– `p(u, v) = (`1(u), `2(v));
– two product vertices (u1, u2) ∈ Vp and (v1, v2) ∈ Vp are connected in Tp, i.e.

((u1, u2), (v1, v2)) ∈ Ep, iff u1, u2, v1, v2 satisfy the conditions specified in the
following table:

Co-normal product (u1, v1) ∈ E1 ∨ (u2, v2) ∈ E2

Tensor product (u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2

Rooted product
⋃
u∈V1

{((u, v), (u, v′)) | (v, v′) ∈ E2}

4.4 From Trees to Groups

Having produced a tree of semantic categories, the next step is to assign results
(tuples) to the semantic categories. We propose to perform it incrementally in
line with the ranking of the results provided by the query answering engine.
For each tuple only the projection of the bindings of variables has to be taken
into account (that is only bindings of the variables appearing in the CATEGORIZE

BY clause). Then starting from the root of a tree and following paths to its
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Fig. 2: Tree product example: the lower tree is the product of the two upper
trees.

Destination

City EuropeanDestination

PolishDestination ItalianDestination

Accomodation u BudgetAccomodation

B&B Hostel

〈Destination,Accomodation u BudgetAccomodation〉

〈City,B&B〉 〈City,Hostel〉 〈EuropeanDestination,B&B〉 〈EuropeanDestination,Hostel〉

Fig. 3: Tree product illustration for query Q2 categorize by from Example 4
.



leaves the membership check of instances to concepts in the tree nodes may be
performed in order to find the most specific node under which to place the result
tuple. Such incremental technique will allow to obtain more populated hierarchy
in the longer time frame. This is in line with the recent trends in the Semantic
Web research to propose the solutions whose completeness/quality increases over
time. A sketch of the algorithm is shown in Figure 4. The time complexity of the

populate(T , KB, H)
input:

T = (aij)j=1,n
i=1,r : query answer table

KB: knowledge base
H: semantic category hierarchy
Q: query
output:
H: populated semantic category hierarchy

begin
i← 0
while !resources up() and i < r

ai ← T.getAnswer(i);
assignToMostSpecificSemanticCategory(ai,H,H.root(), KB,Q);

return H
end

assignToMostSpecificSemanticCategory(ai,H,H.node(), KB,Q)
begin

〈(C0), ..., (Cn)〉 ← H.node().getSemanticCategory();
assigned ← false;
followsUnderNode ← true;
j ← 0;
while followsUnderNode and j < n

aij ← ai.getBinding(j);
if ¬(KB |= C(aij)) then

followsUnderNode ← false;
j ← j + 1;

if followsUnderNode then
for each H.node().child()

if assignToMostSpecificSemanticCategory(ai,H,H.node().child(), KB,Q)then
assigned ← true;

if assigned=false then
H.node().assign(ai);
assigned ← true;

return assigned;
end

Fig. 4: Population of a semantic category hierarchy.

proposed population algorithm depends on a complexity of instance membership
checks. The population algorithm itself has the complexity O(nkbm), where n
represents the number of answers, k the number of grouping variables, and where
b is the branching factor and m is the maximum depth of the tree. Note that
besides this simple algorithm, also other solutions could be adopted, e.g. such in
which a non-standard inference of computing most specific concept [11, 12] would
be employed. It should be noted, hovewer, that for some description logics the
most specific concept may not exist.



Table 2: Characteristics of test datasets.
dataset DL #concepts #obj. roles #individuals
NTN SHIF 49 29 728
FINANCIAL ALCIF 60 16 17941
VICODI ALHI 194 10 16942
LUBM SHI(D) 43 25 17174

Table 3: Tested queries.
dataset query

NTN Q1(x, y) = categorize by(x, y) : Agent(x) ∧ relativeOf(x, y)
NTN Q2(x, y, z) = categorize by(x, y, z) : CognitiveAgent(x) ∧ collaboratesWith(x, y) ∧ knows(x, z)
FINANCIAL Q3(x, y) = categorize by(x, y) : Client(x) ∧ hasCreditCard(x, y) ∧ CreditCard(y)
FINANCIAL Q4(x, y, z) = categorize by(x, y, z) : Client(x) ∧ livesIn(x, y) ∧ hasAgeValue(x, z)
VICODI Q5(x, y) = categorize by(x, y) : Scientist(x) ∧ hasRole(y, x)
VICODI Q6(x, y, z) = categorize by(x, y, z) : Leader(x) ∧ hasRole(y, x) ∧ related(x, z) ∧ Individual(y) ∧ Location(z)
LUBM Q7(x, y) = categorize by(x, y) : Faculty(x) ∧ teacherOf(x, y)
LUBM Q8(x, y, z) = categorize by(x, y, z) : Person(x) ∧ memberOf(x, y) ∧ subOrganizationOf(x, z)

5 Experimental evaluation

We have developed a proof-of-concept implementation of our approach in Java,
on top of Pellet reasoner5. Please note, that state-of-the-art reasoners (including
Pellet) do not support conjunctive queries with truly undistinguished variables.
Therefore our prototype implementation supports only DL-safe queries [13], i.e.
queries, where all variables are assumend to be bound to named individuals, and
hence are treated as distinguished.

We have empirically tested our proposed approach using four benchmark
datasets: NEW TESTAMENT-NAMES (NTN)6, FINANCIAL7, VICODI8,
and LUBM 9 (see: Table 2). The experiments were conducted on a laptop com-
puter with a 1.67 GHz Intel processor, 1014 MB of RAM, running Windows
Vista. For each of the datasets we tested 2 queries (see: Table 3). For each of
the queries we tested how our method scales with the growing number of results
for each query. The experimental results are shown in Figure 5. For each of the
query we present the total time of computing, and populating a semantic cate-
gory hierarchy.

Note that the Web users usually browse not more than a few dozens of the
retrieved results. For this number of the results, the basic implementation of our
proposed approach performes well, in real-time, on the tested cases, and scales
linearly with the number of the processed results.

Note further, that not all the nodes of the generated semantic category hi-
erarchy would become ultimately populated. This observation may lead to an
optimization of the proposed algorithm for the cases where some precomputa-
tion would be possible to identify concepts without an extension. These concepts
could be then stored on an index, and the nodes containing them removed from

5 http://clarkparsia.com/pellet/
6 NTN, http://protegewiki.stanford.edu/index.php/Protege Ontology Library
7 FINANCIAL, http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
8 VICODI, http://kaon2.semanticweb.org/download/test ontologies.zip
9 LUBM, http://swat.cse.lehigh.edu/projects/lubm/
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Fig. 5: Results of the experiments.

the semantic category hierarchy in a preprocessing step, before population of the
hierarchy, thus reducing the further complexity of the hierarchy population. We
tested this technique experimentaly reaching a significant decrease in execution
time (for the hardest query, Q8, in case of processing 500 results, the execution
time was shorter more than 5 times than this reported in the figure for the basic
approach).

6 Related work

To the best of our knowledge, ours is the first proposal for grouping conjunctive
query results on the ground of semantics of the underlying knowledge base.

While aggregate queries were extensively studied for relational databases,
there are very few results for aggregate queries over ontologies, especially those
that target to meet the pecularities of the KR formalisms of the Semantic Web.
In [14] the syntax and semantics for epistemic aggregate queries over ontologies
were proposed, and query answering for typical aggregate functions studied for
an ontology language DL-LiteA. The work proposed there was motivated by the
non-adequacy of certain answer semantics for conditional aggregate queries over



ontologies due to open world assumption. In [15] the meaning and implementa-
tion of grouping and aggregate queries over RDF graphs were studied, motivated
by the drawback of the previous works where the grouping and aggregate oper-
ations had not take the graph structure of the base data into account.

However, none of the above approaches exploited the peculiar feature of the
Semantic Web datasets, that is possible availability of the background ontologies
expressing semantics of the data.

Some other works may also be considered as relevant to ours. In [16] an
approach to automatically categorize the results of SQL queries has been pro-
posed that consisted on a dynamic generation of a labeled, hierarchical category
structure. Since this was proposed for relational database model, the constructed
categories could only be built based on the values in the retrieved tuples, and
not on any semantic information linked to them, due to the lack of background,
domain knowledge. As relevant to this work the proposal for clustering the Se-
mantic Web query results may be also considered, as proposed in [17, 18]. How-
ever, there is an essential difference between clustering query results, and our
proposed semantic grouping, such that the former one involves induction, while
the latter one is based simply on deductive reasoning.

7 Conclusions and Future Work

The paper proposes a method for the aggregation of concjuntive query results on
the ground of an ontology of reference. We have defined a new type of categorize
by queries for this purpose. To enable such queries, we have designed a method
where in a deductive modality, answers are grouped taking into account dynam-
ically generated subsumption hierarchy induced by the underlying knowledge
base. This subsumption hierarchy has the form of a hierarchical, multi-valued
classification that may support a faceted search of the results. The research pre-
sented in the paper may constitute a proposal for the next generation query
languages oriented to knowledge bases annotated with ontology languages.

To the best of our knowledge, this work is the first to propose grouping of
conjunctive query results on the ground of semantics of the underlying knowl-
edge base. As such it may be an important first step towards the proposed
direction of semantic grouping, and inspiration to conduct future work on the
proposed idea. In particular, in the future, alternative versions of the compo-
nents of the proposed method may be investigated such as for example different
tree/graph product operators, or different techniques of assigning answers to se-
mantic groups. The interesting future research may also concern an investigation
on a possible integration of semantic grouping into query processing, and query
execution plans.
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