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SUMMARY

Histone methyltransferases catalyze site-specific
deposition of methyl groups, enabling recruitment
of transcriptional regulators. In mammals, trimethy-
lation of lysine 4 in histone H3, a modification local-
ized at the transcription start sites of active genes,
is catalyzed by six enzymes (SET1a and SET1b,
MLL1–MLL4) whose specific functions are largely
unknown. By using a genomic approach, we found
that in macrophages, MLL4 (also known as Wbp7)
was required for the expression of Pigp, an essential
component of the GPI-GlcNAc transferase, the
enzyme catalyzing the first step of glycosylphospha-
tidylinositol (GPI) anchor synthesis. Impaired Pigp
expression in Wbp7�/� macrophages abolished GPI
anchor-dependent loading of proteins on the cell
membrane. Consistently, loss of GPI-anchored
CD14, the coreceptor for lipopolysaccharide (LPS)
and other bacterial molecules, markedly attenuated
LPS-triggered intracellular signals and gene expres-
sion changes. These data link a histone-modifying
enzyme to a biosynthetic pathway and indicate
a specialized biological role for Wbp7 in macrophage
function and antimicrobial response.

INTRODUCTION

The inherent structure of chromatin imposes the need for dedi-

cated mechanisms to control accessibility and usage of the

underlying genetic material (Kornberg and Lorch, 1999). At the

same time it provides regulatory opportunities that are exploited

by eukaryotes to control both differential usage of the genomic

information during differentiation and the deployment of specific

gene expression programs in response to changing environ-

ments. At the heart of this control system are the N-terminal tails

of core histones, which undergo a wide array of posttranslational

modifications catalyzed by enzymes involved in multiple steps of

transcriptional control (Jenuwein and Allis, 2001; Kouzarides,

2007).

Histone tail methylation is dynamically controlled by site-

specific methylases and demethylases whose effect on trans-
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cription is dependent on which lysine (or arginine) is modified

and on the degree of methylation (mono-, di-, or trimethylation)

eventually achieved (Cloos et al., 2008; Klose and Zhang,

2007). For instance, trimethylation of K9 and K27 in histone H3

(H3K9me3 and H3K27me3) control transcriptional repression

and silencing (Boyer et al., 2006; Bracken et al., 2006; Lee

et al., 2006b; Peters et al., 2001), and the interaction between

H3K9me3 and HP1 proteins has become the paradigm for the

recognition of a histone modification by a specific ‘‘reader’’ in

charge of translating the modification into a functional outcome

(in this case repression and heterochromatin formation) (Lachner

et al., 2001).

In higher eukaryotes, an additional element of complexity is

represented by the appearance of multiple paralogs and/or

evolutionarily distinct enzymes effecting the same modification.

In some cases these paralogs act redundantly, as exemplified by

the two heterochromatic H3K9 trimethylases Suv39h1 and

Suv39h2 (Peters et al., 2001). However, clear functional differ-

ences can usually be seen among evolutionary unrelated

enzymes acting on the same site: for instance G9a (also known

as Ehmt2) and its dimerization partner (and paralog) Glp (also

known as Ehmt1) selectively catalyze H3K9 methylation in

euchromatin (Tachibana et al., 2002, 2005), thus demonstrating

a different biological function from the heterochromatin-specific

Suv39h1 and Suv39h2 (Peters et al., 2003).

H3K4me3 is associated with the transcription start sites (TSS)

of active or poised genes (Bernstein et al., 2005; Santos-Rosa

et al., 2002) and is detected by several recognition domains

present in transcriptional regulators, including the PHD finger,

the chromodomain, and the tudor domain (Huang et al., 2006;

Kim et al., 2006; Peña et al., 2006; Ruthenburg et al., 2007).

In spite of its correlation with gene activity, the functional role

of H3K4me3 is unclear. In vitro data indicate that this modifica-

tion has no direct effect on transcription (Pavri et al., 2006),

and deletion of the only H3K4 methyltransferase in the yeast

genome, Set1, hasmarginal consequences on the transcriptome

(Miller et al., 2001). A possible role in tuning splicing rates is sug-

gested by the association of an H3K4me3 binding protein, Chd1,

with spliceosome components (Sims et al., 2007). Rather than

promoting gene activation, in higher eukaryotes H3K4me3 may

prevent inappropriate silencing: in Drosophila, deletion of tri-

thorax groupH3K4methyltransferases causes loss of Hox genes

expression, which can be rescued by simultaneous deletion of

Polycomb group proteins (which control H3K27me3-dependent

repression) (Klymenko and Müller, 2004).
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In mammals, H3K4me3 deposition is controlled by the Set1-

MLL family of enzymes, which includes six members: Set1a

and Set1b andMLL1–MLL4. Set-MLL proteins are found in three

multimolecular complexes, each one containing either of two

highly related paralogs as the catalytically active subunit: the

Set1a-Set1b complex, the MLL1-MLL4 complex, and the

MLL2-MLL3 complex (Supplemental Discussion available on-

line; Cho et al., 2007; Hughes et al., 2004; Smith et al., 2011;

Wu et al., 2008). Different subunit composition is responsible

for specific properties of different complexes. Set1a-Set1b

complexes contain a subunit, Wdr82 (Lee and Skalnik, 2008;

Wu et al., 2008), that mediates crosstalk between transcrip-

tion-coupled histone H2B monoubiquitination and H3K4

trimethylation (Kim et al., 2009). Because of this mechanism,

Set1a-Set1b complexes are recruited after transcriptional acti-

vation has initiated and therefore in general they have little

impact on transcription. However, Set1a-Set1b complexes can

also be recruited by a transcription-independent mechanism

that relies on direct recognition of unmethylated CpG dinucleo-

tides in CpG islands by the CXXC domain of the Cfp1 subunit

(Thomson et al., 2010). MLL complexes may not be recruited

by a transcription-dependent mechanism at all. In the case of

MLL1 and MLL4, a CXXC domain in the MLL subunits them-

selves may be essential for binding unmethylated CpG dinucle-

otides and for recruitment to CpG islands. The MLL2 and MLL3

complexes, instead, contain subunits that mediate association

with nuclear receptors (Cho et al., 2007).

Although MLL1 and MLL4 are produced from paralogous

genes related to Drosophila Trithorax (Trx) and are part of iden-

tical complexes, they have both redundant and nonredundant

functions. At Hox loci, Mll1 is required for H3K4 methylation of

a small subset of genes. However, absence of menin, a compo-

nent of MLL1 andMLL4 complexes (Hughes et al., 2004), results

in near global loss of H3K4me3 at Hox loci, indicating redun-

dancy between the two enzymes (Wang et al., 2009). Mouse

phenotypes resulting from loss of Mll1 are invariably severe but

differ depending on the mutant allele engineered in the mouse

(Ayton et al., 2001; Yagi et al., 1998; Yu et al., 1995). Mll1 is

required for definitive hematopoiesis, in part through mainte-

nance of the expression of a subset of Hox genes (Ernst et al.,

2004a, 2004b). Conversely, Mll4 has unique and nonredundant

roles in controlling bulk H3K4me3 in oocytes (Andreu-Vieyra

et al., 2010), and its loss in adults results in both male and female

sterility (Glaser et al., 2009). Moreover, deletion of Mll4 in utero

before E10.5 is lethal and associated with widespread develop-

mental and growth defects, suggesting a specific requirement

for Mll4 in early development (Glaser et al., 2006, 2009). Consis-

tent with the notion that MLL1 and MLL4 exert exquisitely timed

roles during development, deletion of Mll4 after E11.5 did not

have any obvious phenotypic consequence (Glaser et al., 2009).

By using a combination of epigenomic and transcriptomic

analyses in Mll4 mutant mice, we found that Mll4 loss in mouse

macrophages causes hyporesponsiveness to lipopolysaccha-

ride (LPS). Amechanistic dissection of the phenotype uncovered

a specific underlying defect, namely the absence of GPI-

anchored proteins on the cell surface. The glycosylphosphatidy-

linositol (GPI) anchor is a glycolipidic structure composed of

a linear glycan containing phosphoethanolamine (PE), three

mannose residues (MR), and a nonacetylated glucosamine
(GlcN) linked to phosphatidylinositol (PI) (Kinoshita et al., 2008).

The PI moiety contains two saturated fatty acid chains critical

for association with membrane microdomains. GPI anchor

precursors are synthesized in the endoplasmic reticulum

through nine sequential steps and attached to the C termini of

proteins bearing a GPI-attachment signal (Kinoshita et al.,

2008). The first step of GPI biosynthesis is controlled by the

GPI-GlcNAc transferase complex (GPI-GnT), which consists of

eight distinct proteins. We found that the expression of one

essential component of this enzyme, Pigp (Watanabe et al.,

2000), requires Mll4-mediated antisilencing. Defective GPI

anchor synthesis in Mll4 mutant macrophages caused loss of

membrane association of CD14, a glycoprotein retained on the

surface of myelomonocytic cells via a GPI anchor. CD14 is

involved in recognition of microbial molecules, most notably

LPS (Wright et al., 1990), which are then transferred to the corre-

sponding Toll-like receptor (TLR) to trigger downstream

signaling events. The role of CD14 is therefore to enhance sensi-

tivity of innate immune cells to LPS and other TLR agonists

(Haziot et al., 1996; Lee et al., 1992). In fact, lack of

membrane-anchored CD14 in Mll4�/� macrophages globally

impaired the LPS response. Thus, through the control of GPI-

anchor synthesis, Mll4 enables optimal responsiveness of

macrophages to microbial stimuli.

RESULTS

Gene-Selective H3K4me3 Loss inWbp7–/– Macrophages
To delete Wbp7 in adult mice, we used a floxed Wbp7 allele

based on the ‘‘knock-out first strategy’’ (Testa et al., 2004) in

which exon 2 is flanked by loxP sites (Glaser et al., 2006).

Wbp7fl/fl mice were crossed to Rosa26-CreERT2 heterozygous

mice to induce Cre-mediated recombination upon in vivo admin-

istration (by gavage feeding) of tamoxifen. Recombination

results in a frame-shifted transcript carrying a premature stop

codon (Glaser et al., 2006). Detection of the genomic recombina-

tion product and analysis of exon 2 containing transcripts by

qRT-PCR indicated that recombination is both very efficient

and virtually complete (Figure S1A). Hereinafter, mice and cells

generated from Cre-mediated recombination of the floxed

Wbp7 allele will be indicated asWbp7�/�. Throughout the study,

Wbp7+/� macrophages harboring the Rosa26-CreERT2 allele

were used as control.

Macrophages generated in vitro fromWbp7�/� bone marrows

were indistinguishable from Wbp7+/� macrophages (Figures

S1B and S1C), indicating that Wbp7 is not required for their

differentiation.

H3K4me3 profiles were analyzed inWbp7�/� versusWbp7+/�

macrophages with chromatin immunoprecipitation (ChIP)

coupled to high-throughput sequencing (ChIP-Seq) (Barski

et al., 2007; Mikkelsen et al., 2007). Data were obtained both in

untreated (UT) and LPS-stimulated (4 hr) macrophages. LPS is

the prototypical microbial molecule triggering the deployment

of an inflammatory gene expression program through a specific

surface receptor, Toll-like receptor 4 (TLR4), which signals

through multiple signaling pathways controlling the activation

of several transcription factors (NF-kB, Irf3, AP-1, etc.) (Lee

and Kim, 2007). Overall, deletion ofWbp7 abrogated or reduced

a substantial fraction of H3K4me3 peaks in both untreated
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Figure 1. Gene-Selective H3K4me3 Loss in Wbp7-Deficient Macrophages

(A) Scatter plot showing H3K4me3 levels in Wbp7�/� and Wbp7+/� untreated (top) or LPS-treated (bottom) macrophages, as detected by ChIP-Seq.

The pie charts in the middle indicate the fraction of H3K4me3 peaks that were either hypomethylated (blue) or hypermethylated (red) in Wbp7�/� macro-

phages. Scatter plots on the right show H3K4me3 peaks detected in LPS-stimulated cells at 4 hr and divided in constitutive, LPS-inducible, and LPS-

repressed peaks.

(B) Two representative genomic regions are shown, in which Wbp7 loss caused H3K4me3 hypomethylation at selected peaks (arrows).
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(22.2%, corresponding to 3,948 out of 17,824 total peaks at

p < 10�5) and LPS-treated (21.8%; 3,896/17,899) macrophages

(Figure 1A, left; Table S1). By using a completely unrelated bio-

logical replicate (data not shown), overlap of hypomethylation

was 88% at p < 10�20 and 77.9% at p < 10�5. We also detected

low-magnitude increases in H3K4me3 at 5.5% of peaks in

untreatedmacrophages and 6.1% in LPS-treatedmacrophages,

probably reflecting secondary effects of Wbp7 loss. The domi-

nance of H3K4me3 losses over H3K4me3 gains is indicated by

the asymmetry of the scatter plots in Figure 1A. H3K4me3 is

induced at a few hundred LPS-activated genes in macrophages

(De Santa et al., 2009; Foster et al., 2007). By distinguishing

constitutive from LPS-inducible H3K4me3 peaks, it became

clear that Wbp7 affected both groups to a similar extent (Fig-

ure 1A, top and middle scatter plots on the right), even though

most high-magnitude hypomethylations (those closer to the

bottom-right corner of the plot) were detected in unstimulated

cells. Intriguingly, H3K4me3 peaks that were diminished upon

LPS stimulation in Wbp7+/� cells were conversely increased in

Wbp7�/� macrophages (Figure 1A, bottom scatter plot on the

right). As documented below, this apparently paradoxical result

is readily explainable as an indirect effect. Representative

genomic snapshots are shown in Figure 1B.

Overall, Wbp7 was required to maintain H3K4me3 levels at

about one-fifth of genes in mouse macrophages, with a prefer-

ence for moderately expressed genes containing CpG islands.

First, gene expression (obtained from cDNA microarray data)

was correlated to the status of hypo-, hyper-, or unchanged

methylation according to H3K4me3 levels at the TSS (±2.5 kbp)

in Wbp7�/� versus Wbp7+/� cells. The hypomethylated gene

group showed a moderate enrichment of genes with interme-

diate expression and a strong underrepresentation of highly

expressed genes (p < 13 10�15 in a chi-square test) (Figure 1C).

Second high-CpG-content promoters were moderately overrep-

resented among the RefSeq genes showing hypomethylation in

Wbp7�/�, suggesting that CpG islands may represent preferen-

tial Wbp7 targets (p < 13 10�15 in a chi-square test) (Figure 1D).

However, it is clear that differential CpG content does not suffice

as a satisfactory explanation for the selectivity of the effects of

Wbp7 deletion. We therefore searched for transcription factor

(TF) binding sites overrepresented in the different groups.

Although we could not identify any TF binding sites strongly

enriched in hypomethylated genes, the group of genes showing

no H3K4me3 changes in Wbp7�/� macrophages was instead

characterized by a strong overrepresentation of multiple Ets

family TF binding sites (Table S2 and Figure S1D). These data

suggest that distinct compositions in TF binding sites may in

fact underlie selective coupling of individual promoters to

specific MLL proteins and that Ets TFs are uncoupled from

Wbp7 in macrophages (or compensate for its loss). When the

analyses reported in Figures 1C and 1D were repeated with

a more restrictive threshold for the identification of hypomethy-

lated peaks (p < 10�10, see Supplemental Experimental Proce-
(C) Genes were divided in ten groups based on their expression level in unstimul

the distribution of all genes (left) or the genes where loss of Wbp7 caused no

unstimulated or stimulated conditions.

(D) Bar graph showing the distribution of high-, intermediate-, or low-density C

unchanged, hypomethylated, or hypermethylated in Wbp7�/� macrophages.
dures), the conclusions were fully consistent with those reported

above.

Finally, when the four Hox genes clusters were analyzed, small

H3K4me3 changes were observed only at Hoxa4 (Figure S1E).

This result is consistent with the already described redundancy

between Mll1 and Wbp7 at these loci (Wang et al., 2009).

Wbp7 Loss Attenuates the LPS Response
Wemeasured gene expression changes induced byWbp7 dele-

tion in unstimulated and LPS-stimulated macrophages by using

cDNA microarrays. Considering a fold change of 1.5 and a

p < 0.01 (for a biological triplicate), we found that 211 genes

were downregulated by Wbp7 deletion in unstimulated cells,

about four times more than those that were upregulated (Figures

2A and 2B; Table S3), a result in line with the expected activating

role ofWbp7. The total number of deregulated genes inWbp7�/�

macrophages was strongly increased upon LPS stimulation,

providing an initial indication that Wbp7 loss has a higher impact

on the transcriptional response to LPS than on basal

transcription.

In line with previous reports (Guenther et al., 2007), there was

a clear correlation between H3K4me3 loss and reduction in gene

expression. Genes showing the strongest downregulation in

Wbp7�/� cells were also thosewith themost significant hypome-

thylation (Figure 2C). Symmetrically, genes whose TSS showed

the greatest hypomethylation were more likely to display

reduced expression in the knockout (Figure 2D). However,

more than 90% of hypomethylated genes didn’t display reduced

expression in Wbp7�/� macrophages (Tables S3 and S4).

A gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) provided evidence for a general defect in the LPS

response in Wbp7�/� cells. We considered a total of four gene

sets that included the genes downregulated or upregulated in

Wbp7�/� as compared to Wbp7+/� macrophages at 2 hr (Fig-

ure 2E) or 4 hr (Figure 2F) of LPS stimulation. All RefSeq genes

were ranked (x axis) according to their relative level of expression

in control (Wbp7+/�) macrophages treated with LPS for 2 hr

(Figure 2E) or 4 hr (Figure 2F) as compared to untreated macro-

phages. The distribution of the four gene set components

relative to their respective ranked lists indicated that genes

downregulated in LPS-treated Wbp7�/� macrophages were

overrepresented among those induced by LPS treatment.

Conversely, genes upregulated in Wbp7�/� macrophages were

overrepresented among those downregulated by LPS treatment

(FDR < 0.01 in permutation tests). In other words, genes whose

expression was upregulated by LPSwere less upregulated in the

absence of Wbp7, and genes whose expression was downregu-

lated in response to LPS stimulation were less downregulated in

Wbp7mutants. Hence, Wbp7 loss attenuated the transcriptional

response to LPS that affected in a similar manner the genes

induced and those repressed in response to stimulation. Consis-

tent conclusions were obtained with a fold change of 2 and

a p < 0.01 as thresholds (Figure S2).
ated conditions (via the microarrays described in this study). Bar graph shows

changes in H3K4me3, hypomethylation or hypermethylation, respectively, in

pG promoters (HCP, ICP, and LCP) for all genes (left) or genes classified as
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Figure 2. Widespread Attenuation of LPS-Induced Gene Expression Changes in Wbp7–/– Macrophages

(A) Scatter plot showing gene expression changes in unstimulated and LPS-stimulated Wbp7�/� macrophages as compared to control cells. Downregulated

genes are indicated in blue, upregulated genes in red.

(B) Bar graph showing the actual number of downregulated or upregulated genes in Wbp7�/� macrophages (fold change 1.5; p < 0.01).

(C) Bar plot showing the correlation between reduction in gene expression (y axis) and H3K4me3 hypomethylation (x axis) in Wbp7�/� macrophages. Down-

regulated transcripts were ranked according to their fold change, from the most to the least downregulated in Wbp7�/� compared to control macrophages.

Transcripts were then split into deciles and for each decile the level of hypomethylation (expressed as the distribution of�10*log10(p value) obtained fromMACS)

was computed and shown in the box plots.

(D) The reciprocal correlation between hypomethylation and reduction in gene expression is shown. Genes with hypomethylated TSS were ranked from the most

to the least statistically significant (y axis). Then they were split into deciles and for each decile the fraction of downregulated genes (x axis) was computed.

(E and F) GSEA inWbp7�/�macrophages stimulated with LPS for 2 hr (E) or 4 hr (F). The genes in the lists were sorted (from left to right) based on their relative level

of expression in LPS-stimulated versus untreated control macrophages.
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Transcriptional Impairment versus H3K4me3 Changes
at LPS-Inducible Genes
To obtain further insight into the transcriptional phenotype of

Wbp7�/� macrophages, we analyzed a selected panel of LPS-

induced genes with well-characterized properties by quantita-

tive RT-PCR.

Nfkbia, which encodes the NF-kB inhibitory subunit IkBa, is

a primary LPS response gene whose transcriptional activity

directly reflects nuclear NF-kB levels (Giorgetti et al., 2010).

Therefore, Nfkbia mRNA induction in response to LPS stimula-

tion provides a direct readout of NF-kB activity. In Wbp7�/�
576 Immunity 36, 572–585, April 20, 2012 ª2012 Elsevier Inc.
macrophages,NfkbiamRNA induction was reduced over control

cells at all time points examined (Figure 3), indicating a defective

NF-kB activation. Importantly, H3K4me3 levels at Nfkbia were

identical in knockout and control cells (Figure 3, right) suggesting

that loss of Wbp7 had an H3K4me3-independent effect on

Nfkbia expression. Similarly, the induction of other primary

response genes regulated mainly by NF-kB-like Cxcl1, Cxcl2,

and Nfkbiz was also impaired in Wbp7�/� macrophages (Fig-

ure 3). However, their promoters showed no or minimal

H3K4me3changes.Wealso examinedone late primary response

gene, Ccl5, and one secondary response gene, Il6, with



Figure 3. Transcriptional Impairment versus H3K4me3 Levels at Canonical Inflammatory Genes

Relative mRNA levels of the indicated genes were measured with qRT-PCR in control andWbp7�/�macrophages stimulated with LPS as indicated. mRNA levels

were normalized to TBP (error bars: SD). The genomic snapshots in the right panels indicate H3K4me3 levels at the same genes in control and knockout

macrophages, before and after (4 hr) LPS stimulation.
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Figure 4. LPS-Triggered Signaling Events in

Macrophages Lacking Wbp7

(A) Protein immunoblots were carried out with the

indicated antibodies on cytosolic lysates of control

and Wbp7�/� macrophages stimulated with LPS

as indicated. Images were acquired with a Li-Cor

Odyssey imaging system. Arrowheads, phospho-

IKK; n.s., nonspecific band. For JNK, ERK, and

IRF3, protein immunoblots are shown with both

a phospho-specific antibody (p-JNK, p-ERK, and

p-IRF3) and an antibody recognizing the proteins

irrespective of phosphorylation. Tubulin: loading

control.

(B) Digital quantification (normalized for the

respective control) for some of the images.
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a complex (and therefore more fragile) regulation reflecting the

convergence of multiple signaling pathways. Also at these genes

Wbp7 loss caused a strong, albeit incomplete, transcriptional

impairment without any strong reduction in H3K4me3 levels (Fig-

ure 3). Altogether, we conclude that loss of Wbp7 impairs the

induction of inflammatory genes in a manner that is not directly

related to the deposition of H3K4me3 at these genes.

Consistent with these data, we found that de novoH3K4 trime-

thylation induced by LPS at genes like Il6 and Ccl5 (and at nearly

all other genes where this mark was induced by stimulation)

was entirely dependent on Set1a-Set1b and that it could be

completely ablated without significantly affecting mRNA levels

(data not shown). Finally, when using agonists of TLRs other

than TLR4, transcriptional responses were similarly impaired

(Figure S3).

A Signaling Defect in Wbp7–/– Macrophages
Two major clues pointed to a signaling defect in Wbp7�/�

macrophages. First, GSEA showed a global attenuation of the

transcriptional response to LPS that similarly impacted induced

and repressed genes. Second, impaired NfkbiamRNA induction

suggested a reduced NF-kB activation and/or nuclear import in

response to LPS stimulation. Therefore, we analyzed the activa-

tion of LPS-inducible signaling pathways in Wbp7�/� versus

Wbp7+/� macrophages. Phosphorylation of the IkB kinases

(IKK) was reduced several fold in Wbp7�/� cells (Figures 4A

and 4B). Consistent with this result, although in control cells

degradation of IkBawas complete at 40 min and initial resynthe-

sis (which is NF-kB dependent) was already observed at 60 min,

inWbp7�/�macrophages the whole process of degradation and

resynthesis was delayed and impaired (Figure 4A). Impaired

signaling in Wbp7�/� cells was not restricted to the IKK/NF-kB
578 Immunity 36, 572–585, April 20, 2012 ª2012 Elsevier Inc.
pathway. Indeed, activation of extracel-

lular signal-regulated kinases (Erk1 and

Erk2) and c-Jun N-terminal kinases

(JNK1 and JNK2) were also reduced in

mutant cells (Figures 4A and 4B). Most

importantly, TLR4-induced phosphoryla-

tion of the transcription factor IRF3, which

requires the adaptor TRIF and is essential

for the activation of the interferon beta

(Ifnb1) gene, was severely reduced in

Wbp7-deficient cells. Consistent with
this result, LPS induction of the Ifnb1 mRNA was almost

completely abolished in Wbp7�/� macrophages (Figure S4).

Overall, Wbp7�/� macrophages displayed a general signaling

defect in response to LPS stimulation.

Transcription and H3K4me3 Levels of Pigp
Require Wbp7
To determine the mechanistic basis for impaired signaling in

Wbp7 knockoutmacrophages, we inspected the list of the genes

most affected by Wbp7 deletion. Notably, this list includes

Magohb, the only gene whose expression is completely depen-

dent on Wbp7 in embryonic stem cells (Glaser et al., 2009),

thereby suggesting that some Wbp7 targets may be shared

across cell types.

Two genes were strongly downregulated in unstimulated

Wbp7�/� macrophages: Pigp and Taf9b (Figure 5A). The latter

is a paralog of Taf9, a general transcription factor that binds to

an RNA polymerase II core promoter element, the DPE (down-

stream core promoter element) (Frontini et al., 2005). Although

the specific role of Taf9b in relation to Taf9 is still incompletely

defined, it may be involved in bringing about some of the tran-

scriptional consequences of Wbp7 deletion.

Pigp was the main candidate to account for the signaling defi-

ciency we observed in Wbp7�/� cells. Pigp is an essential

component of the GPI-GlcNAc transferase (Watanabe et al.,

2000), the enzyme that controls the first and rate-limiting step

in GPI anchor synthesis (Kinoshita et al., 2008). Because

CD14, which enhances responsiveness of TLR4 to LPS (Lee

et al., 1992), is a GPI-anchored protein, we hypothesized that

the loss of GPI anchor synthesis and the consequent loss of

membrane-bound CD14 may underlie the signaling impairment

of Wbp7�/� macrophages.



Figure 5. Transcriptional and Epigenomic Changes at the Pigp Gene in Macrophages Lacking Wbp7

(A) Table showing the top downregulated genes in unstimulatedWbp7�/�macrophages and their H3K4me3 andH3K27me3 levelsmeasured byChIP-QPCR.ND,

not determined.

(B) Genomic snapshot showing H3K4me3 loss at Pigp. Pigp transcript variants are indicated.

(C) Anti-menin ChIP in control andWbp7�/� cells. Immunoprecipitated DNA was amplified with primers spanning the Pigp (left) and the Taf9b (right) promoters.

(D) qRT-PCR showing loss of Pigp expression in Wbp7�/� macrophages (error bars: SD).

(E) Pigp mRNA was quantified in different tissues from Wbp7+/� and Wbp7�/� mice. TBP-normalized data are expressed as percent of control.

(F) H3K27me3 ChIP-QPCR. H3K27me3 was measured at the promoters of a representative set of genes downregulated in Wbp7�/� macrophages (error

bars: SD).

(G) H3K27me3 levels over the Pigp gene locus. H3K27me3 was measured by ChIP-QPCR. Primers positions are relative to the TSS of Pigp.
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To evaluate this hypothesis, we first inspected H3K4me3

levels at the Pigp TSS and found that the modification is nearly

completely absent in Wbp7�/� macrophages, with residual

levels lower than 3% of control cells (Figures 5A and 5B).

Second, anti-menin ChIP in wild-type and Wbp7�/� cells

confirmed thatPigp is a bona fideWbp7 target (Figure 5C). Third,

we confirmed by quantitative RT-PCR that Pigp expression is

abrogated in Wbp7�/� cells (Figure 5D). Analysis of multiple

tissues from Wbp7�/� mice (Figures 5E and S5A) demonstrated

a strong contribution of Wbp7 to Pigp expression in liver and

kidney, whereas other tissues or organs in which CreER is highly

efficient (e.g., muscle and spleen) were only marginally affected

(the brain was used as a negative control because Rosa26-
CreERT2 achieves only partial Wbp7 deletion in the central

nervous system).

Because H3K4me3 may have an antisilencing role and specif-

ically prevent H3K27me3 deposition (Klymenko and Müller,

2004), we also analyzed H3K27me3 levels at Pigp and at other

genes dependent on Wbp7 for their expression. Although

H3K27me3 was negligible at the Pigp gene promoter in control

cells, it was greatly increased in the absence of Wbp7 (Figures

5A and 5F), spreading over about 8 kilobases including promoter

and gene body, while leaving adjacent genes unaffected (Fig-

ure 5G). Several other Wbp7-dependent genes containing

a CpG island (such as Taf9b, Maged1, Magohb) also showed

increased H3K27me3 (Figure 5F). H3K4me3 at the Pigp
Immunity 36, 572–585, April 20, 2012 ª2012 Elsevier Inc. 579
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promoter was unaffected by LPS activation of wild-type macro-

phages (Figure S5B); however, promoter acetylation and mRNA

levels were moderately reduced upon sustained stimulation

(Figures S5C and S5D).

Global Loss of GPI-Anchored Proteins and
Membrane-Bound CD14 in Wbp7–/– Macrophages
Because Pigp is essential for the activity of the 8-subunit GPI-

GlcNAc transferase complex, the enzyme catalyzing the first

step of GPI anchor synthesis (Watanabe et al., 2000), we

analyzed surface expression of GPI-anchored proteins in

Wbp7�/� macrophages. To this aim, we exploited the ability of

a bacterial toxin, aerolysin, to bind the GPI anchor with high

affinity (Diep et al., 1998). A fluorescently labeled inactive aeroly-

sin precursor (FLAER) is routinely used for diagnosis of parox-

ysmal nocturnal hemoglobinuria, in which lack of Piga (another

component of the GPI-GlcNAc transferase) results in loss of

GPI-anchored proteins on erythrocytes (Brodsky et al., 2000).

FLAER staining was stable during a prolonged LPS stimulation

of WT macrophages (Figure S5E), suggesting that the moderate

reduction in PigpmRNA levels observed in these conditions (Fig-

ure S5D) is not sufficient to affect the GPI anchor synthesis

capacity of macrophages. Conversely, flow cytometry analysis

demonstrated a nearly complete absence of FLAER staining in

Wbp7�/� macrophages (Figure 6A), thus revealing a global

reduction of GPI-anchored proteins on the cell surface. In

keeping with this result, staining of CD14, a GPI-anchored

protein, was almost completely lost in Wbp7�/� macrophages

(Figure 6A). Another GPI-anchored protein tested, uPAR, simi-

larly showed strongly reduced surface staining in Wbp7�/�

macrophages (Figure 6A).

CD14mRNAwas unaffected byWbp7 deletion, indicating that

loss of surface staining is not due to a transcriptional effect of

Wbp7 loss (Figure 6B). Similarly, TLR4 mRNA was not altered

by Wbp7 loss (Figure 6B) and its surface expression was unaf-

fected (Figure S6).

CD14 captures LPS and transfers it to TLR4, thus facilitating

TLR4 triggering and downstream signaling at low agonist

concentrations (Haziot et al., 1996; Lee et al., 1992). If the impair-

ment in LPS-regulated gene expression in Wbp7�/� macro-

phages is mainly due to a CD14-linked defect in signaling,

a simple prediction is that the defect should be partially rescued

by increasing LPS concentration. In keeping with this prediction,

a 10-fold increase in LPS concentration rescued or attenuated

the gene expression defect at several genes tested (Figure 6C).

In some cases gene induction at the maximal LPS concentration

was even higher than in control cells, reflecting a role of CD14 in

postinduction TLR4 downregulation (Zanoni et al., 2011).

RestoringMembrane CD14 Rescues the Transcriptional
Defects
To determine whether Pigp re-expression in Wbp7�/� macro-

phages is sufficient to rescue the transcriptional phenotype,

we infectedWbp7�/� macrophages with a retrovirus expressing

the Pigp cDNA. Flow cytometry analysis showed that Pigp

expression in Wbp7�/� cells restored surface levels of CD14

similar to those of wild-type cells (Figure 7A). Strikingly, induction

of genes that are strongly dependent on Wbp7 for maximal

expression was rescued in Pigp reconstituted cells (Figure 7B).
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We also reconstituted surface CD14 by retroviral transduction

of CD14 fused to the transmembrane domain of mouse TLR4

(Figure 7C). Also in this case, defective LPS induction of induc-

ible genes could be rescued to wild-type levels (Figure 7D).

Overall, these data demonstrated a central role for loss of GPI-

anchored CD14 in the impaired response of Wbp7-deficient

macrophages to LPS.

DISCUSSION

In this study, we identified a specific role for Wbp7 in the

synthesis of GPI anchors in macrophages. This role of Wbp7 is

exercised through the tight transcriptional control of a single

gene, Pigp, encoding an essential component of the enzymatic

complex that catalyzes the first step of GPI-anchor synthesis.

GPI anchors are indirectly implicated in microbial recognition,

as shown by the fact that CD14, which enhances detection of

LPS (Wright et al., 1990) and other microbial molecules

(Baumann et al., 2010; Lee et al., 2006a) through transfer to

the competent TLRs, requires a GPI anchor for membrane

loading. Moreover, CD14 itself may deliver activation signals

(despite the lack of a cytoplasmic tail), as demonstrated by its

requirement for TLR4-independent, LPS-induced NFAT activa-

tion in dendritic cells (Zanoni et al., 2009). Whereas membrane

anchoring of CD14 appears to represent a particularly relevant

aspect of GPI anchor biosynthesis in macrophages, it is likely

that loss of GPI anchors will affect localization and function of

many other biologically relevant proteins in this system, such

as the urokinase plasminogen activator receptor (uPAR), which

regulates the proteolytic activity of the uPA serine protease (Blasi

and Sidenius, 2010).

Lack of membrane-associated CD14 and the ensuing defect

in LPS recognition resulted in a straightforward cascade of

effects: (1) a reduced activation of intracellular signaling

pathways, including the IKK-NF-kB pathway, the MAPK path-

ways, and the TRIF/IRF3 pathway, followed by (2) a broad atten-

uation of both positive and negative gene expression changes

triggered by LPS. The transcriptional defects were partially

rescued simply by increasing LPS concentration, a result consis-

tent with the central role of CD14 in this phenotype. More

directly, re-expression of Pigp or membrane-anchored CD14 in

Wbp7�/� cells reverted the transcriptional defects.

The central role played in this phenotype by the impact of

Wbp7 on signaling is underscored by the observation that

Wbp7 loss attenuated not only LPS-induced increases in

H3K4me3 (which may reflect a direct role of Wbp7 in de novo

deposition of H3K4me3) but also LPS-induced reductions of

this histone modification, which probably represent an indirect

consequence of the signaling defect. Because of its requirement

for GPI anchor synthesis and CD14 attachment to the macro-

phage membrane, Wbp7 can thus be considered as a compo-

nent of the innate immune system in its own right.

The impact of Wbp7 loss on the macrophage epigenome was

broad, with about 20% of active genes showing reduced

H3K4me3 levels in mutant cells. Attempts to identify specific

sequence features responsible for Wbp7 dependence of

H3K4me3 failed to generate clear-cut results, even though hypo-

methylation tended to occur at high CpG-containing promoters

and at moderately but not highly expressed genes. Moreover,



Figure 6. Global Loss of GPI-Anchored Proteins and Lack of Membrane-Associated CD14 in Wbp7–/– Macrophages

(A) FACS analysis on Wbp7�/� and control macrophages was carried out with antibodies against F4/80 (Emr1), Cd11b, CD14, and uPAR, and with fluorescent

aerolysin (FLAER).

(B) mRNA levels for Cd14 and Tlr4 were measured by qRT-PCR in three independent biological replicates. Data obtained in Wbp7�/� macrophages are

expressed relative to control macrophages (error bars: SEM).

(C)mRNA levels for the indicated genesweremeasured by quantitative RT-PCR in control orWbp7�/�macrophages stimulatedwith the indicated concentrations

of LPS. The dotted boxes indicate the LPS dose used elsewhere in this study (10 ng/ml). Error bars: SD.
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when compared to hypomethylated genes, those showing no

methylation changes in the knockout were enriched for Ets family

TF binding sites, suggesting that TFs bound to promoters repre-

sent an important determinant of selectivity toward specific

MLL proteins. In spite of the amplitude of epigenomic effects

of Wbp7 loss, the number of bona fide Wbp7-dependent genes

was very small, with only 6 genes showing more than a 5-fold
and 30 genes more than a 3-fold reduction in expression in

unstimulated Wbp7�/� macrophages. Overall, only 7.3% of the

genes showing reduced H3K4me3 in Wbp7-deficient macro-

phages also showed reduced mRNA levels. This result suggests

that in most cases reduced H3K4me3 in Wbp7�/� cells will not

lead to detectable transcriptional effects. At least for some of

the most downregulated genes, H3K4me3 reduction was
Immunity 36, 572–585, April 20, 2012 ª2012 Elsevier Inc. 581



Figure 7. Rescue of Surface CD14 Restores Transcriptional Responses to LPS

(A) FACS analysis of surface CD14 in Wbp7�/� cells uninfected or infected with an empty virus (vector) or a Pigp-expressing virus.

(B) mRNA levels for the indicated LPS-inducible genes upon Pigp re-expression in Wbp7�/� cells (error bars: SD).

(C) Anti-CD14 FACS analysis in Wbp7�/� macrophages transduced with a retroviral vector expressing CD14 fused to the transmembrane domain of TLR4

(Tm-CD14).

(D) mRNA for the indicated genes were measured by quantitative RT-PCR in Wbp7+/� and Wbp7�/� macrophages transduced with either a control (vector) or

a Tm-CD14-expressing retrovirus.
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accompanied by an increase in H3K27me3, suggesting that

Wbp7-deposited H3K4me3 has an antisilencing role, as demon-

strated for MLLs orthologs in Drosophila (Klymenko and Müller,

2004) and Wbp7 in mouse embryonic stem cells (Glaser et al.,

2009). Moreover, the gene most dependent onWbp7 for expres-

sion, Pigp, was among those with the highest H3K27me3

enrichment.

These data became particularly meaningful in the conceptual

frame of the standard models describing activity and biological

role of chromatin modifiers. The general assumption is that

most histone methyltransferases and demethylases fine-tune

gene expression acting at hundreds or thousands of genes.

Moreover, in mammals, H3K4 methyltransferases appear as

pairs of paralogs that are believed to work redundantly (Glaser

et al., 2009). For instance, whereas loss of Mll1 in fibroblasts

had limited effects on H3K4me3 levels at Hox genes, loss of
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menin, which simultaneously affects MLL1- and MLL4-contain-

ing complexes, had a much broader impact (Wang et al., 2009).

Our data do not contradict these notions but imply that each

H3K4 methyltransferase in a pair of paralogs also acquired

specific and nonredundant functions. Data obtained with

Wbp7 suggest at least two different scenarios related to speci-

ficity. First, a given H3K4 methyltransferase may exert a domi-

nant role in controlling H3K4me3 in a specific cell type, as in

the case of Wbp7 globally controlling H3K4me3 in oocytes

(Andreu-Vieyra et al., 2010). Second, one individual methyltrans-

ferase, despite controlling H3K4 methylation at a large number

of genomic locations, may impact crucial biological functions

by selectively affecting the expression of one or a few genes

essential for a specific pathway, as shown in this study. In this

context, an intriguing observation is that the only gene strongly

dependent on Wbp7 for expression in ES cells, Magohb, is
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dependent onWbp7 inmacrophages aswell. Therefore,Wbp7 is

connected to the expression of this specific gene independently

of the differentiation state of the cell, a result consistent with the

idea of an extreme functional specialization of a subset of histone

methyltransferases.

In conclusion, our mechanistic analysis of the transcriptional

and epigenomic phenotype of Wbp7-deficient macrophages

revealed that a housekeeping biosynthetic pathway essential

for membrane localization of hundreds of molecules, including

a coreceptor important for microbial recognition, is under tight

and nonredundant control of a single H3K4 methyltransferase,

which is otherwise dispensable for viability of adult mice.

EXPERIMENTAL PROCEDURES

Wbp7-Deficient Mice

Animal experiments were performed in accordance with the Italian Laws

(D.L.vo 116/92 and following additions), which enforce EU 86/609 Directive.

The Wbp7 floxed allele has been described (Glaser et al., 2006, 2009). The

two loxP sites flank the 73 bp of Wbp7 exon 2 and recombination leads to

a frame shift and the generation of a premature stop codon. Wbp7fl/fl mice

were crossed to Rosa26-CreERT2+/� mice and Cre was activated by gavage

feeding of 5mg tamoxifen (Sigma T5648) dissolved in peanut oil (SigmaP2144)

for 5 consecutive days. Mice were sacrificed and bone marrow cells isolated

7–10 days after tamoxifen treatment. Efficiency of recombination was evalu-

ated by Taqman assay (Figure S1A).

Cell Culture and Retroviral Infections

Macrophage cultures and retroviral infections were carried out as described

(De Santa et al., 2007). LPS from E. coli serotype EH100 (Alexis) was used at

10 ng/ml unless otherwise indicated. The cDNA encoding Flag-tagged Pigp

(NM_001159616) was obtained by standard cloningwhereas the cDNA encod-

ing CD14 fused to the transmembrane domain of mouse TLR4 was obtained

by in vitro gene synthesis (MWG). Both cDNAs were subcloned into pMSCV-

puro (Clontech).

Quantitative RT-PCR

RNA was extracted from macrophages with Trizol (Invitrogen) and reverse

transcribed with random hexamers. Primers sequences are in Table S5.

FACS Analysis

Cells were stained with the following antibodies: F4/80 (Abcam ab6640; 1:50

dilution); biotin-labeled CD11b (BD #557395; 1:50 dilution) detected with

streptavidin-PE-Cy5 (BD #554062); FITC-labeled CD14 (Abcam ab65087,

1:50 dilution); uPAR (a gift from N. Sidenius); and fluorescently labeled

aerolysin (FLAER-Alexa488, Pinewood Scientific) at a concentration of

50 nM. The TLR4 antibody is a kind gift of J. Kagan (Harvard Medical School).

The cells were analyzed by FACScalibur 4 or 10 channel flow cytometer (BD

Biosciences).

Chromatin Immunoprecipitation and Sequencing

ChIP experiments were carried out as described starting from 2 3 107 cells

(Ghisletti et al., 2010). Lysates were immunoprecipitated with 5 mg of

H3K4me3 antibody (Active Motif #39159), 10 mg of H3K27me3 antibody

(Active motif #39155), or menin antibody (Bethyl Labs., A300-105A).

Antibodies were prebound to G protein-coupled paramagnetic beads (Dyna-

beads) in PBS/BSA 0.5% and incubated with lysates overnight. Beads were

washed six times in a modified RIPA buffer (50 mM HEPES [pH 7.6],

500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% Na-deoxycholate) and once in

TE containing 50 mM NaCl. DNA was eluted in TE-2% SDS and crosslinks

reversed by incubation overnight at 65�C. DNA was then purified by Qiaquick

columns (QIAGEN) and quantified with PicoGreen (Invitrogen). Yield was

�10 ng/107 cells for H3K4me3. For validation by ChIP-QPCR, 0.4 ml of purified

DNA was used for amplification on an ABI 7500 machine. Primers used for

ChIP QPCR are in Table S5. ChIP DNA was prepared for Solexa 2G

sequencing as described (Ghisletti et al., 2010). DNA quantified both with an
Agilent Bioanalyzer and Picogreen was diluted to 10 nM. Cluster generation

was performed and loaded into individual lanes of a flow cell (4 pmoles/

sample).

A detailed description of the computational analyses is provided in the

Supplemental Information. Statistics referring to the sequencing runs are in

Table S6.

cDNA Microarrays

A biological triplicate was used for cDNA microarray analyses. RNA was puri-

fied with an RNeasy-QIAGEN kit. Quality analysis of total RNA, cRNA

synthesis, hybridization, and data extraction were performed at the Cogentech

Microarray Core Facility. The mouse gene ST1.0 Affymetrix array (Affymetrix)

was used for gene expression screening. Data analysis is described in the

Supplemental Information.

Immunoblot

The following antibodies were used: IkBa (Santa Cruz, sc-371), phospho-IKKa

(S176, S180) (Upstate, #07-837), phospho-JNK (T183, Y185) (CST, #9251),

JNK (CST, #9252), ERK1 (Santa Cruz, sc-94), phospho-ERK1/2 (E10) (CST,

#9106), phospho-IRF3 (CST, #4947), IRF3 (CST #4302), and Tubulin (Sigma,

T9026). For quantified images, secondary IRDye antibodies from Li-Cor

were utilized (cat. no. 926-68021 and 926-32210).

ACCESSION NUMBERS

Raw data sets are available for download at the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/gds/) under the accession

number GSE30973, which comprises expression data (GSE30971) and

ChIP-seq data (GSE30972).
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